1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
|
//===-- RISCVCallingConv.cpp - RISC-V Custom CC Routines ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the custom routines for the RISC-V Calling Convention.
//
//===----------------------------------------------------------------------===//
#include "RISCVCallingConv.h"
#include "RISCVSubtarget.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCRegister.h"
using namespace llvm;
// Calling Convention Implementation.
// The expectations for frontend ABI lowering vary from target to target.
// Ideally, an LLVM frontend would be able to avoid worrying about many ABI
// details, but this is a longer term goal. For now, we simply try to keep the
// role of the frontend as simple and well-defined as possible. The rules can
// be summarised as:
// * Never split up large scalar arguments. We handle them here.
// * If a hardfloat calling convention is being used, and the struct may be
// passed in a pair of registers (fp+fp, int+fp), and both registers are
// available, then pass as two separate arguments. If either the GPRs or FPRs
// are exhausted, then pass according to the rule below.
// * If a struct could never be passed in registers or directly in a stack
// slot (as it is larger than 2*XLEN and the floating point rules don't
// apply), then pass it using a pointer with the byval attribute.
// * If a struct is less than 2*XLEN, then coerce to either a two-element
// word-sized array or a 2*XLEN scalar (depending on alignment).
// * The frontend can determine whether a struct is returned by reference or
// not based on its size and fields. If it will be returned by reference, the
// frontend must modify the prototype so a pointer with the sret annotation is
// passed as the first argument. This is not necessary for large scalar
// returns.
// * Struct return values and varargs should be coerced to structs containing
// register-size fields in the same situations they would be for fixed
// arguments.
static const MCPhysReg ArgFPR16s[] = {RISCV::F10_H, RISCV::F11_H, RISCV::F12_H,
RISCV::F13_H, RISCV::F14_H, RISCV::F15_H,
RISCV::F16_H, RISCV::F17_H};
static const MCPhysReg ArgFPR32s[] = {RISCV::F10_F, RISCV::F11_F, RISCV::F12_F,
RISCV::F13_F, RISCV::F14_F, RISCV::F15_F,
RISCV::F16_F, RISCV::F17_F};
static const MCPhysReg ArgFPR64s[] = {RISCV::F10_D, RISCV::F11_D, RISCV::F12_D,
RISCV::F13_D, RISCV::F14_D, RISCV::F15_D,
RISCV::F16_D, RISCV::F17_D};
// This is an interim calling convention and it may be changed in the future.
static const MCPhysReg ArgVRs[] = {
RISCV::V8, RISCV::V9, RISCV::V10, RISCV::V11, RISCV::V12, RISCV::V13,
RISCV::V14, RISCV::V15, RISCV::V16, RISCV::V17, RISCV::V18, RISCV::V19,
RISCV::V20, RISCV::V21, RISCV::V22, RISCV::V23};
static const MCPhysReg ArgVRM2s[] = {RISCV::V8M2, RISCV::V10M2, RISCV::V12M2,
RISCV::V14M2, RISCV::V16M2, RISCV::V18M2,
RISCV::V20M2, RISCV::V22M2};
static const MCPhysReg ArgVRM4s[] = {RISCV::V8M4, RISCV::V12M4, RISCV::V16M4,
RISCV::V20M4};
static const MCPhysReg ArgVRM8s[] = {RISCV::V8M8, RISCV::V16M8};
static const MCPhysReg ArgVRN2M1s[] = {
RISCV::V8_V9, RISCV::V9_V10, RISCV::V10_V11, RISCV::V11_V12,
RISCV::V12_V13, RISCV::V13_V14, RISCV::V14_V15, RISCV::V15_V16,
RISCV::V16_V17, RISCV::V17_V18, RISCV::V18_V19, RISCV::V19_V20,
RISCV::V20_V21, RISCV::V21_V22, RISCV::V22_V23};
static const MCPhysReg ArgVRN3M1s[] = {
RISCV::V8_V9_V10, RISCV::V9_V10_V11, RISCV::V10_V11_V12,
RISCV::V11_V12_V13, RISCV::V12_V13_V14, RISCV::V13_V14_V15,
RISCV::V14_V15_V16, RISCV::V15_V16_V17, RISCV::V16_V17_V18,
RISCV::V17_V18_V19, RISCV::V18_V19_V20, RISCV::V19_V20_V21,
RISCV::V20_V21_V22, RISCV::V21_V22_V23};
static const MCPhysReg ArgVRN4M1s[] = {
RISCV::V8_V9_V10_V11, RISCV::V9_V10_V11_V12, RISCV::V10_V11_V12_V13,
RISCV::V11_V12_V13_V14, RISCV::V12_V13_V14_V15, RISCV::V13_V14_V15_V16,
RISCV::V14_V15_V16_V17, RISCV::V15_V16_V17_V18, RISCV::V16_V17_V18_V19,
RISCV::V17_V18_V19_V20, RISCV::V18_V19_V20_V21, RISCV::V19_V20_V21_V22,
RISCV::V20_V21_V22_V23};
static const MCPhysReg ArgVRN5M1s[] = {
RISCV::V8_V9_V10_V11_V12, RISCV::V9_V10_V11_V12_V13,
RISCV::V10_V11_V12_V13_V14, RISCV::V11_V12_V13_V14_V15,
RISCV::V12_V13_V14_V15_V16, RISCV::V13_V14_V15_V16_V17,
RISCV::V14_V15_V16_V17_V18, RISCV::V15_V16_V17_V18_V19,
RISCV::V16_V17_V18_V19_V20, RISCV::V17_V18_V19_V20_V21,
RISCV::V18_V19_V20_V21_V22, RISCV::V19_V20_V21_V22_V23};
static const MCPhysReg ArgVRN6M1s[] = {
RISCV::V8_V9_V10_V11_V12_V13, RISCV::V9_V10_V11_V12_V13_V14,
RISCV::V10_V11_V12_V13_V14_V15, RISCV::V11_V12_V13_V14_V15_V16,
RISCV::V12_V13_V14_V15_V16_V17, RISCV::V13_V14_V15_V16_V17_V18,
RISCV::V14_V15_V16_V17_V18_V19, RISCV::V15_V16_V17_V18_V19_V20,
RISCV::V16_V17_V18_V19_V20_V21, RISCV::V17_V18_V19_V20_V21_V22,
RISCV::V18_V19_V20_V21_V22_V23};
static const MCPhysReg ArgVRN7M1s[] = {
RISCV::V8_V9_V10_V11_V12_V13_V14, RISCV::V9_V10_V11_V12_V13_V14_V15,
RISCV::V10_V11_V12_V13_V14_V15_V16, RISCV::V11_V12_V13_V14_V15_V16_V17,
RISCV::V12_V13_V14_V15_V16_V17_V18, RISCV::V13_V14_V15_V16_V17_V18_V19,
RISCV::V14_V15_V16_V17_V18_V19_V20, RISCV::V15_V16_V17_V18_V19_V20_V21,
RISCV::V16_V17_V18_V19_V20_V21_V22, RISCV::V17_V18_V19_V20_V21_V22_V23};
static const MCPhysReg ArgVRN8M1s[] = {RISCV::V8_V9_V10_V11_V12_V13_V14_V15,
RISCV::V9_V10_V11_V12_V13_V14_V15_V16,
RISCV::V10_V11_V12_V13_V14_V15_V16_V17,
RISCV::V11_V12_V13_V14_V15_V16_V17_V18,
RISCV::V12_V13_V14_V15_V16_V17_V18_V19,
RISCV::V13_V14_V15_V16_V17_V18_V19_V20,
RISCV::V14_V15_V16_V17_V18_V19_V20_V21,
RISCV::V15_V16_V17_V18_V19_V20_V21_V22,
RISCV::V16_V17_V18_V19_V20_V21_V22_V23};
static const MCPhysReg ArgVRN2M2s[] = {RISCV::V8M2_V10M2, RISCV::V10M2_V12M2,
RISCV::V12M2_V14M2, RISCV::V14M2_V16M2,
RISCV::V16M2_V18M2, RISCV::V18M2_V20M2,
RISCV::V20M2_V22M2};
static const MCPhysReg ArgVRN3M2s[] = {
RISCV::V8M2_V10M2_V12M2, RISCV::V10M2_V12M2_V14M2,
RISCV::V12M2_V14M2_V16M2, RISCV::V14M2_V16M2_V18M2,
RISCV::V16M2_V18M2_V20M2, RISCV::V18M2_V20M2_V22M2};
static const MCPhysReg ArgVRN4M2s[] = {
RISCV::V8M2_V10M2_V12M2_V14M2, RISCV::V10M2_V12M2_V14M2_V16M2,
RISCV::V12M2_V14M2_V16M2_V18M2, RISCV::V14M2_V16M2_V18M2_V20M2,
RISCV::V16M2_V18M2_V20M2_V22M2};
static const MCPhysReg ArgVRN2M4s[] = {RISCV::V8M4_V12M4, RISCV::V12M4_V16M4,
RISCV::V16M4_V20M4};
ArrayRef<MCPhysReg> RISCV::getArgGPRs(const RISCVABI::ABI ABI) {
// The GPRs used for passing arguments in the ILP32* and LP64* ABIs, except
// the ILP32E ABI.
static const MCPhysReg ArgIGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12,
RISCV::X13, RISCV::X14, RISCV::X15,
RISCV::X16, RISCV::X17};
// The GPRs used for passing arguments in the ILP32E/LP64E ABI.
static const MCPhysReg ArgEGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12,
RISCV::X13, RISCV::X14, RISCV::X15};
if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E)
return ArrayRef(ArgEGPRs);
return ArrayRef(ArgIGPRs);
}
static ArrayRef<MCPhysReg> getArgGPR16s(const RISCVABI::ABI ABI) {
// The GPRs used for passing arguments in the ILP32* and LP64* ABIs, except
// the ILP32E ABI.
static const MCPhysReg ArgIGPRs[] = {RISCV::X10_H, RISCV::X11_H, RISCV::X12_H,
RISCV::X13_H, RISCV::X14_H, RISCV::X15_H,
RISCV::X16_H, RISCV::X17_H};
// The GPRs used for passing arguments in the ILP32E/LP64E ABI.
static const MCPhysReg ArgEGPRs[] = {RISCV::X10_H, RISCV::X11_H,
RISCV::X12_H, RISCV::X13_H,
RISCV::X14_H, RISCV::X15_H};
if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E)
return ArrayRef(ArgEGPRs);
return ArrayRef(ArgIGPRs);
}
static ArrayRef<MCPhysReg> getArgGPR32s(const RISCVABI::ABI ABI) {
// The GPRs used for passing arguments in the ILP32* and LP64* ABIs, except
// the ILP32E ABI.
static const MCPhysReg ArgIGPRs[] = {RISCV::X10_W, RISCV::X11_W, RISCV::X12_W,
RISCV::X13_W, RISCV::X14_W, RISCV::X15_W,
RISCV::X16_W, RISCV::X17_W};
// The GPRs used for passing arguments in the ILP32E/LP64E ABI.
static const MCPhysReg ArgEGPRs[] = {RISCV::X10_W, RISCV::X11_W,
RISCV::X12_W, RISCV::X13_W,
RISCV::X14_W, RISCV::X15_W};
if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E)
return ArrayRef(ArgEGPRs);
return ArrayRef(ArgIGPRs);
}
static ArrayRef<MCPhysReg> getFastCCArgGPRs(const RISCVABI::ABI ABI) {
// The GPRs used for passing arguments in the FastCC, X5 and X6 might be used
// for save-restore libcall, so we don't use them.
// Don't use X7 for fastcc, since Zicfilp uses X7 as the label register.
static const MCPhysReg FastCCIGPRs[] = {
RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13, RISCV::X14, RISCV::X15,
RISCV::X16, RISCV::X17, RISCV::X28, RISCV::X29, RISCV::X30, RISCV::X31};
// The GPRs used for passing arguments in the FastCC when using ILP32E/LP64E.
static const MCPhysReg FastCCEGPRs[] = {RISCV::X10, RISCV::X11, RISCV::X12,
RISCV::X13, RISCV::X14, RISCV::X15};
if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E)
return ArrayRef(FastCCEGPRs);
return ArrayRef(FastCCIGPRs);
}
static ArrayRef<MCPhysReg> getFastCCArgGPRF16s(const RISCVABI::ABI ABI) {
// The GPRs used for passing arguments in the FastCC, X5 and X6 might be used
// for save-restore libcall, so we don't use them.
// Don't use X7 for fastcc, since Zicfilp uses X7 as the label register.
static const MCPhysReg FastCCIGPRs[] = {
RISCV::X10_H, RISCV::X11_H, RISCV::X12_H, RISCV::X13_H,
RISCV::X14_H, RISCV::X15_H, RISCV::X16_H, RISCV::X17_H,
RISCV::X28_H, RISCV::X29_H, RISCV::X30_H, RISCV::X31_H};
// The GPRs used for passing arguments in the FastCC when using ILP32E/LP64E.
static const MCPhysReg FastCCEGPRs[] = {RISCV::X10_H, RISCV::X11_H,
RISCV::X12_H, RISCV::X13_H,
RISCV::X14_H, RISCV::X15_H};
if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E)
return ArrayRef(FastCCEGPRs);
return ArrayRef(FastCCIGPRs);
}
static ArrayRef<MCPhysReg> getFastCCArgGPRF32s(const RISCVABI::ABI ABI) {
// The GPRs used for passing arguments in the FastCC, X5 and X6 might be used
// for save-restore libcall, so we don't use them.
// Don't use X7 for fastcc, since Zicfilp uses X7 as the label register.
static const MCPhysReg FastCCIGPRs[] = {
RISCV::X10_W, RISCV::X11_W, RISCV::X12_W, RISCV::X13_W,
RISCV::X14_W, RISCV::X15_W, RISCV::X16_W, RISCV::X17_W,
RISCV::X28_W, RISCV::X29_W, RISCV::X30_W, RISCV::X31_W};
// The GPRs used for passing arguments in the FastCC when using ILP32E/LP64E.
static const MCPhysReg FastCCEGPRs[] = {RISCV::X10_W, RISCV::X11_W,
RISCV::X12_W, RISCV::X13_W,
RISCV::X14_W, RISCV::X15_W};
if (ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E)
return ArrayRef(FastCCEGPRs);
return ArrayRef(FastCCIGPRs);
}
// Pass a 2*XLEN argument that has been split into two XLEN values through
// registers or the stack as necessary.
static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
MVT ValVT2, MVT LocVT2,
ISD::ArgFlagsTy ArgFlags2, bool EABI) {
unsigned XLenInBytes = XLen / 8;
const RISCVSubtarget &STI =
State.getMachineFunction().getSubtarget<RISCVSubtarget>();
ArrayRef<MCPhysReg> ArgGPRs = RISCV::getArgGPRs(STI.getTargetABI());
if (MCRegister Reg = State.AllocateReg(ArgGPRs)) {
// At least one half can be passed via register.
State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
VA1.getLocVT(), CCValAssign::Full));
} else {
// Both halves must be passed on the stack, with proper alignment.
// TODO: To be compatible with GCC's behaviors, we force them to have 4-byte
// alignment. This behavior may be changed when RV32E/ILP32E is ratified.
Align StackAlign(XLenInBytes);
if (!EABI || XLen != 32)
StackAlign = std::max(StackAlign, ArgFlags1.getNonZeroOrigAlign());
State.addLoc(
CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
State.AllocateStack(XLenInBytes, StackAlign),
VA1.getLocVT(), CCValAssign::Full));
State.addLoc(CCValAssign::getMem(
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
LocVT2, CCValAssign::Full));
return false;
}
if (MCRegister Reg = State.AllocateReg(ArgGPRs)) {
// The second half can also be passed via register.
State.addLoc(
CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
} else {
// The second half is passed via the stack, without additional alignment.
State.addLoc(CCValAssign::getMem(
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, Align(XLenInBytes)),
LocVT2, CCValAssign::Full));
}
return false;
}
static MCRegister allocateRVVReg(MVT ValVT, unsigned ValNo, CCState &State,
const RISCVTargetLowering &TLI) {
const TargetRegisterClass *RC = TLI.getRegClassFor(ValVT);
if (RC == &RISCV::VRRegClass) {
// Assign the first mask argument to V0.
// This is an interim calling convention and it may be changed in the
// future.
if (ValVT.getVectorElementType() == MVT::i1)
if (MCRegister Reg = State.AllocateReg(RISCV::V0))
return Reg;
return State.AllocateReg(ArgVRs);
}
if (RC == &RISCV::VRM2RegClass)
return State.AllocateReg(ArgVRM2s);
if (RC == &RISCV::VRM4RegClass)
return State.AllocateReg(ArgVRM4s);
if (RC == &RISCV::VRM8RegClass)
return State.AllocateReg(ArgVRM8s);
if (RC == &RISCV::VRN2M1RegClass)
return State.AllocateReg(ArgVRN2M1s);
if (RC == &RISCV::VRN3M1RegClass)
return State.AllocateReg(ArgVRN3M1s);
if (RC == &RISCV::VRN4M1RegClass)
return State.AllocateReg(ArgVRN4M1s);
if (RC == &RISCV::VRN5M1RegClass)
return State.AllocateReg(ArgVRN5M1s);
if (RC == &RISCV::VRN6M1RegClass)
return State.AllocateReg(ArgVRN6M1s);
if (RC == &RISCV::VRN7M1RegClass)
return State.AllocateReg(ArgVRN7M1s);
if (RC == &RISCV::VRN8M1RegClass)
return State.AllocateReg(ArgVRN8M1s);
if (RC == &RISCV::VRN2M2RegClass)
return State.AllocateReg(ArgVRN2M2s);
if (RC == &RISCV::VRN3M2RegClass)
return State.AllocateReg(ArgVRN3M2s);
if (RC == &RISCV::VRN4M2RegClass)
return State.AllocateReg(ArgVRN4M2s);
if (RC == &RISCV::VRN2M4RegClass)
return State.AllocateReg(ArgVRN2M4s);
llvm_unreachable("Unhandled register class for ValueType");
}
// Implements the RISC-V calling convention. Returns true upon failure.
bool llvm::CC_RISCV(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
CCState &State, bool IsFixed, bool IsRet, Type *OrigTy) {
const MachineFunction &MF = State.getMachineFunction();
const DataLayout &DL = MF.getDataLayout();
const RISCVSubtarget &Subtarget = MF.getSubtarget<RISCVSubtarget>();
const RISCVTargetLowering &TLI = *Subtarget.getTargetLowering();
unsigned XLen = Subtarget.getXLen();
MVT XLenVT = Subtarget.getXLenVT();
if (ArgFlags.isNest()) {
// Static chain parameter must not be passed in normal argument registers,
// so we assign t2/t3 for it as done in GCC's
// __builtin_call_with_static_chain
bool HasCFBranch =
Subtarget.hasStdExtZicfilp() &&
MF.getFunction().getParent()->getModuleFlag("cf-protection-branch");
// Normal: t2, Branch control flow protection: t3
const auto StaticChainReg = HasCFBranch ? RISCV::X28 : RISCV::X7;
RISCVABI::ABI ABI = Subtarget.getTargetABI();
if (HasCFBranch &&
(ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E))
reportFatalUsageError(
"Nested functions with control flow protection are not "
"usable with ILP32E or LP64E ABI.");
if (MCRegister Reg = State.AllocateReg(StaticChainReg)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
// Any return value split in to more than two values can't be returned
// directly. Vectors are returned via the available vector registers.
if (!LocVT.isVector() && IsRet && ValNo > 1)
return true;
// UseGPRForF16_F32 if targeting one of the soft-float ABIs, if passing a
// variadic argument, or if no F16/F32 argument registers are available.
bool UseGPRForF16_F32 = true;
// UseGPRForF64 if targeting soft-float ABIs or an FLEN=32 ABI, if passing a
// variadic argument, or if no F64 argument registers are available.
bool UseGPRForF64 = true;
RISCVABI::ABI ABI = Subtarget.getTargetABI();
switch (ABI) {
default:
llvm_unreachable("Unexpected ABI");
case RISCVABI::ABI_ILP32:
case RISCVABI::ABI_ILP32E:
case RISCVABI::ABI_LP64:
case RISCVABI::ABI_LP64E:
break;
case RISCVABI::ABI_ILP32F:
case RISCVABI::ABI_LP64F:
UseGPRForF16_F32 = !IsFixed;
break;
case RISCVABI::ABI_ILP32D:
case RISCVABI::ABI_LP64D:
UseGPRForF16_F32 = !IsFixed;
UseGPRForF64 = !IsFixed;
break;
}
if ((LocVT == MVT::f16 || LocVT == MVT::bf16) && !UseGPRForF16_F32) {
if (MCRegister Reg = State.AllocateReg(ArgFPR16s)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f32 && !UseGPRForF16_F32) {
if (MCRegister Reg = State.AllocateReg(ArgFPR32s)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f64 && !UseGPRForF64) {
if (MCRegister Reg = State.AllocateReg(ArgFPR64s)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if ((ValVT == MVT::f16 && Subtarget.hasStdExtZhinxmin())) {
if (MCRegister Reg = State.AllocateReg(getArgGPR16s(ABI))) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (ValVT == MVT::f32 && Subtarget.hasStdExtZfinx()) {
if (MCRegister Reg = State.AllocateReg(getArgGPR32s(ABI))) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
ArrayRef<MCPhysReg> ArgGPRs = RISCV::getArgGPRs(ABI);
// Zdinx use GPR without a bitcast when possible.
if (LocVT == MVT::f64 && XLen == 64 && Subtarget.hasStdExtZdinx()) {
if (MCRegister Reg = State.AllocateReg(ArgGPRs)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
// FP smaller than XLen, uses custom GPR.
if (LocVT == MVT::f16 || LocVT == MVT::bf16 ||
(LocVT == MVT::f32 && XLen == 64)) {
if (MCRegister Reg = State.AllocateReg(ArgGPRs)) {
LocVT = XLenVT;
State.addLoc(
CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
// Bitcast FP to GPR if we can use a GPR register.
if ((XLen == 32 && LocVT == MVT::f32) || (XLen == 64 && LocVT == MVT::f64)) {
if (MCRegister Reg = State.AllocateReg(ArgGPRs)) {
LocVT = XLenVT;
LocInfo = CCValAssign::BCvt;
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
// If this is a variadic argument, the RISC-V calling convention requires
// that it is assigned an 'even' or 'aligned' register if it has 8-byte
// alignment (RV32) or 16-byte alignment (RV64). An aligned register should
// be used regardless of whether the original argument was split during
// legalisation or not. The argument will not be passed by registers if the
// original type is larger than 2*XLEN, so the register alignment rule does
// not apply.
// TODO: To be compatible with GCC's behaviors, we don't align registers
// currently if we are using ILP32E calling convention. This behavior may be
// changed when RV32E/ILP32E is ratified.
unsigned TwoXLenInBytes = (2 * XLen) / 8;
if (!IsFixed && ArgFlags.getNonZeroOrigAlign() == TwoXLenInBytes &&
DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes &&
ABI != RISCVABI::ABI_ILP32E) {
unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
// Skip 'odd' register if necessary.
if (RegIdx != std::size(ArgGPRs) && RegIdx % 2 == 1)
State.AllocateReg(ArgGPRs);
}
SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
State.getPendingArgFlags();
assert(PendingLocs.size() == PendingArgFlags.size() &&
"PendingLocs and PendingArgFlags out of sync");
// Handle passing f64 on RV32D with a soft float ABI or when floating point
// registers are exhausted.
if (XLen == 32 && LocVT == MVT::f64) {
assert(PendingLocs.empty() && "Can't lower f64 if it is split");
// Depending on available argument GPRS, f64 may be passed in a pair of
// GPRs, split between a GPR and the stack, or passed completely on the
// stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
// cases.
MCRegister Reg = State.AllocateReg(ArgGPRs);
if (!Reg) {
int64_t StackOffset = State.AllocateStack(8, Align(8));
State.addLoc(
CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
return false;
}
LocVT = MVT::i32;
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
MCRegister HiReg = State.AllocateReg(ArgGPRs);
if (HiReg) {
State.addLoc(
CCValAssign::getCustomReg(ValNo, ValVT, HiReg, LocVT, LocInfo));
} else {
int64_t StackOffset = State.AllocateStack(4, Align(4));
State.addLoc(
CCValAssign::getCustomMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
}
return false;
}
// Split arguments might be passed indirectly, so keep track of the pending
// values. Split vectors are passed via a mix of registers and indirectly, so
// treat them as we would any other argument.
if (ValVT.isScalarInteger() && (ArgFlags.isSplit() || !PendingLocs.empty())) {
LocVT = XLenVT;
LocInfo = CCValAssign::Indirect;
PendingLocs.push_back(
CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
PendingArgFlags.push_back(ArgFlags);
if (!ArgFlags.isSplitEnd()) {
return false;
}
}
// If the split argument only had two elements, it should be passed directly
// in registers or on the stack.
if (ValVT.isScalarInteger() && ArgFlags.isSplitEnd() &&
PendingLocs.size() <= 2) {
assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
// Apply the normal calling convention rules to the first half of the
// split argument.
CCValAssign VA = PendingLocs[0];
ISD::ArgFlagsTy AF = PendingArgFlags[0];
PendingLocs.clear();
PendingArgFlags.clear();
return CC_RISCVAssign2XLen(
XLen, State, VA, AF, ValNo, ValVT, LocVT, ArgFlags,
ABI == RISCVABI::ABI_ILP32E || ABI == RISCVABI::ABI_LP64E);
}
// Allocate to a register if possible, or else a stack slot.
MCRegister Reg;
unsigned StoreSizeBytes = XLen / 8;
Align StackAlign = Align(XLen / 8);
if (ValVT.isVector() || ValVT.isRISCVVectorTuple()) {
Reg = allocateRVVReg(ValVT, ValNo, State, TLI);
if (Reg) {
// Fixed-length vectors are located in the corresponding scalable-vector
// container types.
if (ValVT.isFixedLengthVector()) {
LocVT = TLI.getContainerForFixedLengthVector(LocVT);
State.addLoc(
CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
} else {
// For return values, the vector must be passed fully via registers or
// via the stack.
// FIXME: The proposed vector ABI only mandates v8-v15 for return values,
// but we're using all of them.
if (IsRet)
return true;
// Try using a GPR to pass the address
if ((Reg = State.AllocateReg(ArgGPRs))) {
LocVT = XLenVT;
LocInfo = CCValAssign::Indirect;
} else if (ValVT.isScalableVector()) {
LocVT = XLenVT;
LocInfo = CCValAssign::Indirect;
} else {
StoreSizeBytes = ValVT.getStoreSize();
// Align vectors to their element sizes, being careful for vXi1
// vectors.
StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
}
}
} else {
Reg = State.AllocateReg(ArgGPRs);
}
int64_t StackOffset =
Reg ? 0 : State.AllocateStack(StoreSizeBytes, StackAlign);
// If we reach this point and PendingLocs is non-empty, we must be at the
// end of a split argument that must be passed indirectly.
if (!PendingLocs.empty()) {
assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
for (auto &It : PendingLocs) {
if (Reg)
It.convertToReg(Reg);
else
It.convertToMem(StackOffset);
State.addLoc(It);
}
PendingLocs.clear();
PendingArgFlags.clear();
return false;
}
assert(((ValVT.isFloatingPoint() && !ValVT.isVector()) || LocVT == XLenVT ||
(TLI.getSubtarget().hasVInstructions() &&
(ValVT.isVector() || ValVT.isRISCVVectorTuple()))) &&
"Expected an XLenVT or vector types at this stage");
if (Reg) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
State.addLoc(CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
return false;
}
// FastCC has less than 1% performance improvement for some particular
// benchmark. But theoretically, it may have benefit for some cases.
bool llvm::CC_RISCV_FastCC(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State,
bool IsFixed, bool IsRet, Type *OrigTy) {
const MachineFunction &MF = State.getMachineFunction();
const RISCVSubtarget &Subtarget = MF.getSubtarget<RISCVSubtarget>();
const RISCVTargetLowering &TLI = *Subtarget.getTargetLowering();
RISCVABI::ABI ABI = Subtarget.getTargetABI();
if ((LocVT == MVT::f16 && Subtarget.hasStdExtZfhmin()) ||
(LocVT == MVT::bf16 && Subtarget.hasStdExtZfbfmin())) {
static const MCPhysReg FPR16List[] = {
RISCV::F10_H, RISCV::F11_H, RISCV::F12_H, RISCV::F13_H, RISCV::F14_H,
RISCV::F15_H, RISCV::F16_H, RISCV::F17_H, RISCV::F0_H, RISCV::F1_H,
RISCV::F2_H, RISCV::F3_H, RISCV::F4_H, RISCV::F5_H, RISCV::F6_H,
RISCV::F7_H, RISCV::F28_H, RISCV::F29_H, RISCV::F30_H, RISCV::F31_H};
if (MCRegister Reg = State.AllocateReg(FPR16List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f32 && Subtarget.hasStdExtF()) {
static const MCPhysReg FPR32List[] = {
RISCV::F10_F, RISCV::F11_F, RISCV::F12_F, RISCV::F13_F, RISCV::F14_F,
RISCV::F15_F, RISCV::F16_F, RISCV::F17_F, RISCV::F0_F, RISCV::F1_F,
RISCV::F2_F, RISCV::F3_F, RISCV::F4_F, RISCV::F5_F, RISCV::F6_F,
RISCV::F7_F, RISCV::F28_F, RISCV::F29_F, RISCV::F30_F, RISCV::F31_F};
if (MCRegister Reg = State.AllocateReg(FPR32List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f64 && Subtarget.hasStdExtD()) {
static const MCPhysReg FPR64List[] = {
RISCV::F10_D, RISCV::F11_D, RISCV::F12_D, RISCV::F13_D, RISCV::F14_D,
RISCV::F15_D, RISCV::F16_D, RISCV::F17_D, RISCV::F0_D, RISCV::F1_D,
RISCV::F2_D, RISCV::F3_D, RISCV::F4_D, RISCV::F5_D, RISCV::F6_D,
RISCV::F7_D, RISCV::F28_D, RISCV::F29_D, RISCV::F30_D, RISCV::F31_D};
if (MCRegister Reg = State.AllocateReg(FPR64List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
MVT XLenVT = Subtarget.getXLenVT();
// Check if there is an available GPRF16 before hitting the stack.
if ((LocVT == MVT::f16 && Subtarget.hasStdExtZhinxmin())) {
if (MCRegister Reg = State.AllocateReg(getFastCCArgGPRF16s(ABI))) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
// Check if there is an available GPRF32 before hitting the stack.
if (LocVT == MVT::f32 && Subtarget.hasStdExtZfinx()) {
if (MCRegister Reg = State.AllocateReg(getFastCCArgGPRF32s(ABI))) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
// Check if there is an available GPR before hitting the stack.
if (LocVT == MVT::f64 && Subtarget.is64Bit() && Subtarget.hasStdExtZdinx()) {
if (MCRegister Reg = State.AllocateReg(getFastCCArgGPRs(ABI))) {
if (LocVT.getSizeInBits() != Subtarget.getXLen()) {
LocVT = XLenVT;
State.addLoc(
CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
ArrayRef<MCPhysReg> ArgGPRs = getFastCCArgGPRs(ABI);
if (LocVT.isVector()) {
if (MCRegister Reg = allocateRVVReg(ValVT, ValNo, State, TLI)) {
// Fixed-length vectors are located in the corresponding scalable-vector
// container types.
if (LocVT.isFixedLengthVector()) {
LocVT = TLI.getContainerForFixedLengthVector(LocVT);
State.addLoc(
CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
// Pass scalable vectors indirectly. Pass fixed vectors indirectly if we
// have a free GPR.
if (LocVT.isScalableVector() ||
State.getFirstUnallocated(ArgGPRs) != ArgGPRs.size()) {
LocInfo = CCValAssign::Indirect;
LocVT = XLenVT;
}
}
if (LocVT == XLenVT) {
if (MCRegister Reg = State.AllocateReg(getFastCCArgGPRs(ABI))) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == XLenVT || LocVT == MVT::f16 || LocVT == MVT::bf16 ||
LocVT == MVT::f32 || LocVT == MVT::f64 || LocVT.isFixedLengthVector()) {
Align StackAlign = MaybeAlign(ValVT.getScalarSizeInBits() / 8).valueOrOne();
int64_t Offset = State.AllocateStack(LocVT.getStoreSize(), StackAlign);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return false;
}
return true; // CC didn't match.
}
bool llvm::CC_RISCV_GHC(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
CCState &State) {
if (ArgFlags.isNest()) {
report_fatal_error(
"Attribute 'nest' is not supported in GHC calling convention");
}
static const MCPhysReg GPRList[] = {
RISCV::X9, RISCV::X18, RISCV::X19, RISCV::X20, RISCV::X21, RISCV::X22,
RISCV::X23, RISCV::X24, RISCV::X25, RISCV::X26, RISCV::X27};
if (LocVT == MVT::i32 || LocVT == MVT::i64) {
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, SpLim
// s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
if (MCRegister Reg = State.AllocateReg(GPRList)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
const RISCVSubtarget &Subtarget =
State.getMachineFunction().getSubtarget<RISCVSubtarget>();
if (LocVT == MVT::f32 && Subtarget.hasStdExtF()) {
// Pass in STG registers: F1, ..., F6
// fs0 ... fs5
static const MCPhysReg FPR32List[] = {RISCV::F8_F, RISCV::F9_F,
RISCV::F18_F, RISCV::F19_F,
RISCV::F20_F, RISCV::F21_F};
if (MCRegister Reg = State.AllocateReg(FPR32List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f64 && Subtarget.hasStdExtD()) {
// Pass in STG registers: D1, ..., D6
// fs6 ... fs11
static const MCPhysReg FPR64List[] = {RISCV::F22_D, RISCV::F23_D,
RISCV::F24_D, RISCV::F25_D,
RISCV::F26_D, RISCV::F27_D};
if (MCRegister Reg = State.AllocateReg(FPR64List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f32 && Subtarget.hasStdExtZfinx()) {
static const MCPhysReg GPR32List[] = {
RISCV::X9_W, RISCV::X18_W, RISCV::X19_W, RISCV::X20_W,
RISCV::X21_W, RISCV::X22_W, RISCV::X23_W, RISCV::X24_W,
RISCV::X25_W, RISCV::X26_W, RISCV::X27_W};
if (MCRegister Reg = State.AllocateReg(GPR32List)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
if (LocVT == MVT::f64 && Subtarget.hasStdExtZdinx() && Subtarget.is64Bit()) {
if (MCRegister Reg = State.AllocateReg(GPRList)) {
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
}
report_fatal_error("No registers left in GHC calling convention");
return true;
}
|