1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
|
//===-- RISCVFrameLowering.cpp - RISC-V Frame Information -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISC-V implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "RISCVFrameLowering.h"
#include "MCTargetDesc/RISCVBaseInfo.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/CFIInstBuilder.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/Support/LEB128.h"
#include <algorithm>
#define DEBUG_TYPE "riscv-frame"
using namespace llvm;
static Align getABIStackAlignment(RISCVABI::ABI ABI) {
if (ABI == RISCVABI::ABI_ILP32E)
return Align(4);
if (ABI == RISCVABI::ABI_LP64E)
return Align(8);
return Align(16);
}
RISCVFrameLowering::RISCVFrameLowering(const RISCVSubtarget &STI)
: TargetFrameLowering(
StackGrowsDown, getABIStackAlignment(STI.getTargetABI()),
/*LocalAreaOffset=*/0,
/*TransientStackAlignment=*/getABIStackAlignment(STI.getTargetABI())),
STI(STI) {}
// The register used to hold the frame pointer.
static constexpr MCPhysReg FPReg = RISCV::X8;
// The register used to hold the stack pointer.
static constexpr MCPhysReg SPReg = RISCV::X2;
// The register used to hold the return address.
static constexpr MCPhysReg RAReg = RISCV::X1;
// LIst of CSRs that are given a fixed location by save/restore libcalls or
// Zcmp/Xqccmp Push/Pop. The order in this table indicates the order the
// registers are saved on the stack. Zcmp uses the reverse order of save/restore
// and Xqccmp on the stack, but this is handled when offsets are calculated.
static const MCPhysReg FixedCSRFIMap[] = {
/*ra*/ RAReg, /*s0*/ FPReg, /*s1*/ RISCV::X9,
/*s2*/ RISCV::X18, /*s3*/ RISCV::X19, /*s4*/ RISCV::X20,
/*s5*/ RISCV::X21, /*s6*/ RISCV::X22, /*s7*/ RISCV::X23,
/*s8*/ RISCV::X24, /*s9*/ RISCV::X25, /*s10*/ RISCV::X26,
/*s11*/ RISCV::X27};
// The number of stack bytes allocated by `QC.C.MIENTER(.NEST)` and popped by
// `QC.C.MILEAVERET`.
static constexpr uint64_t QCIInterruptPushAmount = 96;
static const std::pair<MCPhysReg, int8_t> FixedCSRFIQCIInterruptMap[] = {
/* -1 is a gap for mepc/mnepc */
{/*fp*/ FPReg, -2},
/* -3 is a gap for qc.mcause */
{/*ra*/ RAReg, -4},
/* -5 is reserved */
{/*t0*/ RISCV::X5, -6},
{/*t1*/ RISCV::X6, -7},
{/*t2*/ RISCV::X7, -8},
{/*a0*/ RISCV::X10, -9},
{/*a1*/ RISCV::X11, -10},
{/*a2*/ RISCV::X12, -11},
{/*a3*/ RISCV::X13, -12},
{/*a4*/ RISCV::X14, -13},
{/*a5*/ RISCV::X15, -14},
{/*a6*/ RISCV::X16, -15},
{/*a7*/ RISCV::X17, -16},
{/*t3*/ RISCV::X28, -17},
{/*t4*/ RISCV::X29, -18},
{/*t5*/ RISCV::X30, -19},
{/*t6*/ RISCV::X31, -20},
/* -21, -22, -23, -24 are reserved */
};
// For now we use x3, a.k.a gp, as pointer to shadow call stack.
// User should not use x3 in their asm.
static void emitSCSPrologue(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL) {
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
bool HasHWShadowStack = MF.getFunction().hasFnAttribute("hw-shadow-stack") &&
STI.hasStdExtZicfiss();
bool HasSWShadowStack =
MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
if (!HasHWShadowStack && !HasSWShadowStack)
return;
const llvm::RISCVRegisterInfo *TRI = STI.getRegisterInfo();
// Do not save RA to the SCS if it's not saved to the regular stack,
// i.e. RA is not at risk of being overwritten.
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
if (llvm::none_of(
CSI, [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; }))
return;
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (HasHWShadowStack) {
BuildMI(MBB, MI, DL, TII->get(RISCV::SSPUSH)).addReg(RAReg);
return;
}
Register SCSPReg = RISCVABI::getSCSPReg();
bool IsRV64 = STI.is64Bit();
int64_t SlotSize = STI.getXLen() / 8;
// Store return address to shadow call stack
// addi gp, gp, [4|8]
// s[w|d] ra, -[4|8](gp)
BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI))
.addReg(SCSPReg, RegState::Define)
.addReg(SCSPReg)
.addImm(SlotSize)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RAReg)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameSetup);
// Emit a CFI instruction that causes SlotSize to be subtracted from the value
// of the shadow stack pointer when unwinding past this frame.
char DwarfSCSReg = TRI->getDwarfRegNum(SCSPReg, /*IsEH*/ true);
assert(DwarfSCSReg < 32 && "SCS Register should be < 32 (X3).");
char Offset = static_cast<char>(-SlotSize) & 0x7f;
const char CFIInst[] = {
dwarf::DW_CFA_val_expression,
DwarfSCSReg, // register
2, // length
static_cast<char>(unsigned(dwarf::DW_OP_breg0 + DwarfSCSReg)),
Offset, // addend (sleb128)
};
CFIInstBuilder(MBB, MI, MachineInstr::FrameSetup)
.buildEscape(StringRef(CFIInst, sizeof(CFIInst)));
}
static void emitSCSEpilogue(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL) {
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
bool HasHWShadowStack = MF.getFunction().hasFnAttribute("hw-shadow-stack") &&
STI.hasStdExtZicfiss();
bool HasSWShadowStack =
MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
if (!HasHWShadowStack && !HasSWShadowStack)
return;
// See emitSCSPrologue() above.
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
if (llvm::none_of(
CSI, [&](CalleeSavedInfo &CSR) { return CSR.getReg() == RAReg; }))
return;
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (HasHWShadowStack) {
BuildMI(MBB, MI, DL, TII->get(RISCV::SSPOPCHK)).addReg(RAReg);
return;
}
Register SCSPReg = RISCVABI::getSCSPReg();
bool IsRV64 = STI.is64Bit();
int64_t SlotSize = STI.getXLen() / 8;
// Load return address from shadow call stack
// l[w|d] ra, -[4|8](gp)
// addi gp, gp, -[4|8]
BuildMI(MBB, MI, DL, TII->get(IsRV64 ? RISCV::LD : RISCV::LW))
.addReg(RAReg, RegState::Define)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameDestroy);
BuildMI(MBB, MI, DL, TII->get(RISCV::ADDI))
.addReg(SCSPReg, RegState::Define)
.addReg(SCSPReg)
.addImm(-SlotSize)
.setMIFlag(MachineInstr::FrameDestroy);
// Restore the SCS pointer
CFIInstBuilder(MBB, MI, MachineInstr::FrameDestroy).buildRestore(SCSPReg);
}
// Insert instruction to swap mscratchsw with sp
static void emitSiFiveCLICStackSwap(MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->isSiFiveStackSwapInterrupt(MF))
return;
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo *TII = STI.getInstrInfo();
assert(STI.hasVendorXSfmclic() && "Stack Swapping Requires XSfmclic");
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRW))
.addReg(SPReg, RegState::Define)
.addImm(RISCVSysReg::sf_mscratchcsw)
.addReg(SPReg, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
// FIXME: CFI Information for this swap.
}
static void
createSiFivePreemptibleInterruptFrameEntries(MachineFunction &MF,
RISCVMachineFunctionInfo &RVFI) {
if (!RVFI.isSiFivePreemptibleInterrupt(MF))
return;
const TargetRegisterClass &RC = RISCV::GPRRegClass;
const TargetRegisterInfo &TRI =
*MF.getSubtarget<RISCVSubtarget>().getRegisterInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
// Create two frame objects for spilling X8 and X9, which will be done in
// `emitSiFiveCLICPreemptibleSaves`. This is in addition to any other stack
// objects we might have for X8 and X9, as they might be saved twice.
for (int I = 0; I < 2; ++I) {
int FI = MFI.CreateStackObject(TRI.getSpillSize(RC), TRI.getSpillAlign(RC),
true);
RVFI.pushInterruptCSRFrameIndex(FI);
}
}
static void emitSiFiveCLICPreemptibleSaves(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->isSiFivePreemptibleInterrupt(MF))
return;
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo *TII = STI.getInstrInfo();
// FIXME: CFI Information here is nonexistent/wrong.
// X8 and X9 might be stored into the stack twice, initially into the
// `interruptCSRFrameIndex` here, and then maybe again into their CSI frame
// index.
//
// This is done instead of telling the register allocator that we need two
// VRegs to store the value of `mcause` and `mepc` through the instruction,
// which affects other passes.
TII->storeRegToStackSlot(MBB, MBBI, RISCV::X8, /* IsKill=*/true,
RVFI->getInterruptCSRFrameIndex(0),
&RISCV::GPRRegClass, STI.getRegisterInfo(),
Register(), MachineInstr::FrameSetup);
TII->storeRegToStackSlot(MBB, MBBI, RISCV::X9, /* IsKill=*/true,
RVFI->getInterruptCSRFrameIndex(1),
&RISCV::GPRRegClass, STI.getRegisterInfo(),
Register(), MachineInstr::FrameSetup);
// Put `mcause` into X8 (s0), and `mepc` into X9 (s1). If either of these are
// used in the function, then they will appear in `getUnmanagedCSI` and will
// be saved again.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRS))
.addReg(RISCV::X8, RegState::Define)
.addImm(RISCVSysReg::mcause)
.addReg(RISCV::X0)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRS))
.addReg(RISCV::X9, RegState::Define)
.addImm(RISCVSysReg::mepc)
.addReg(RISCV::X0)
.setMIFlag(MachineInstr::FrameSetup);
// Enable interrupts.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRSI))
.addReg(RISCV::X0, RegState::Define)
.addImm(RISCVSysReg::mstatus)
.addImm(8)
.setMIFlag(MachineInstr::FrameSetup);
}
static void emitSiFiveCLICPreemptibleRestores(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (!RVFI->isSiFivePreemptibleInterrupt(MF))
return;
const auto &STI = MF.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo *TII = STI.getInstrInfo();
// FIXME: CFI Information here is nonexistent/wrong.
// Disable interrupts.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRCI))
.addReg(RISCV::X0, RegState::Define)
.addImm(RISCVSysReg::mstatus)
.addImm(8)
.setMIFlag(MachineInstr::FrameSetup);
// Restore `mepc` from x9 (s1), and `mcause` from x8 (s0). If either were used
// in the function, they have already been restored once, so now have the
// value stored in `emitSiFiveCLICPreemptibleSaves`.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRW))
.addReg(RISCV::X0, RegState::Define)
.addImm(RISCVSysReg::mepc)
.addReg(RISCV::X9, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::CSRRW))
.addReg(RISCV::X0, RegState::Define)
.addImm(RISCVSysReg::mcause)
.addReg(RISCV::X8, RegState::Kill)
.setMIFlag(MachineInstr::FrameSetup);
// X8 and X9 need to be restored to their values on function entry, which we
// saved onto the stack in `emitSiFiveCLICPreemptibleSaves`.
TII->loadRegFromStackSlot(MBB, MBBI, RISCV::X9,
RVFI->getInterruptCSRFrameIndex(1),
&RISCV::GPRRegClass, STI.getRegisterInfo(),
Register(), MachineInstr::FrameSetup);
TII->loadRegFromStackSlot(MBB, MBBI, RISCV::X8,
RVFI->getInterruptCSRFrameIndex(0),
&RISCV::GPRRegClass, STI.getRegisterInfo(),
Register(), MachineInstr::FrameSetup);
}
// Get the ID of the libcall used for spilling and restoring callee saved
// registers. The ID is representative of the number of registers saved or
// restored by the libcall, except it is zero-indexed - ID 0 corresponds to a
// single register.
static int getLibCallID(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (CSI.empty() || !RVFI->useSaveRestoreLibCalls(MF))
return -1;
MCRegister MaxReg;
for (auto &CS : CSI)
// assignCalleeSavedSpillSlots assigns negative frame indexes to
// registers which can be saved by libcall.
if (CS.getFrameIdx() < 0)
MaxReg = std::max(MaxReg.id(), CS.getReg().id());
if (!MaxReg)
return -1;
switch (MaxReg.id()) {
default:
llvm_unreachable("Something has gone wrong!");
// clang-format off
case /*s11*/ RISCV::X27: return 12;
case /*s10*/ RISCV::X26: return 11;
case /*s9*/ RISCV::X25: return 10;
case /*s8*/ RISCV::X24: return 9;
case /*s7*/ RISCV::X23: return 8;
case /*s6*/ RISCV::X22: return 7;
case /*s5*/ RISCV::X21: return 6;
case /*s4*/ RISCV::X20: return 5;
case /*s3*/ RISCV::X19: return 4;
case /*s2*/ RISCV::X18: return 3;
case /*s1*/ RISCV::X9: return 2;
case /*s0*/ FPReg: return 1;
case /*ra*/ RAReg: return 0;
// clang-format on
}
}
// Get the name of the libcall used for spilling callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getSpillLibCallName(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
static const char *const SpillLibCalls[] = {
"__riscv_save_0",
"__riscv_save_1",
"__riscv_save_2",
"__riscv_save_3",
"__riscv_save_4",
"__riscv_save_5",
"__riscv_save_6",
"__riscv_save_7",
"__riscv_save_8",
"__riscv_save_9",
"__riscv_save_10",
"__riscv_save_11",
"__riscv_save_12"
};
int LibCallID = getLibCallID(MF, CSI);
if (LibCallID == -1)
return nullptr;
return SpillLibCalls[LibCallID];
}
// Get the name of the libcall used for restoring callee saved registers.
// If this function will not use save/restore libcalls, then return a nullptr.
static const char *
getRestoreLibCallName(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
static const char *const RestoreLibCalls[] = {
"__riscv_restore_0",
"__riscv_restore_1",
"__riscv_restore_2",
"__riscv_restore_3",
"__riscv_restore_4",
"__riscv_restore_5",
"__riscv_restore_6",
"__riscv_restore_7",
"__riscv_restore_8",
"__riscv_restore_9",
"__riscv_restore_10",
"__riscv_restore_11",
"__riscv_restore_12"
};
int LibCallID = getLibCallID(MF, CSI);
if (LibCallID == -1)
return nullptr;
return RestoreLibCalls[LibCallID];
}
// Get the max reg of Push/Pop for restoring callee saved registers.
static unsigned getNumPushPopRegs(const std::vector<CalleeSavedInfo> &CSI) {
unsigned NumPushPopRegs = 0;
for (auto &CS : CSI) {
auto *FII = llvm::find_if(FixedCSRFIMap,
[&](MCPhysReg P) { return P == CS.getReg(); });
if (FII != std::end(FixedCSRFIMap)) {
unsigned RegNum = std::distance(std::begin(FixedCSRFIMap), FII);
NumPushPopRegs = std::max(NumPushPopRegs, RegNum + 1);
}
}
assert(NumPushPopRegs != 12 && "x26 requires x27 to also be pushed");
return NumPushPopRegs;
}
// Return true if the specified function should have a dedicated frame
// pointer register. This is true if frame pointer elimination is
// disabled, if it needs dynamic stack realignment, if the function has
// variable sized allocas, or if the frame address is taken.
bool RISCVFrameLowering::hasFPImpl(const MachineFunction &MF) const {
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const MachineFrameInfo &MFI = MF.getFrameInfo();
return MF.getTarget().Options.DisableFramePointerElim(MF) ||
RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
MFI.isFrameAddressTaken();
}
bool RISCVFrameLowering::hasBP(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
// If we do not reserve stack space for outgoing arguments in prologue,
// we will adjust the stack pointer before call instruction. After the
// adjustment, we can not use SP to access the stack objects for the
// arguments. Instead, use BP to access these stack objects.
return (MFI.hasVarSizedObjects() ||
(!hasReservedCallFrame(MF) && (!MFI.isMaxCallFrameSizeComputed() ||
MFI.getMaxCallFrameSize() != 0))) &&
TRI->hasStackRealignment(MF);
}
// Determines the size of the frame and maximum call frame size.
void RISCVFrameLowering::determineFrameLayout(MachineFunction &MF) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Get the number of bytes to allocate from the FrameInfo.
uint64_t FrameSize = MFI.getStackSize();
// QCI Interrupts use at least 96 bytes of stack space
if (RVFI->useQCIInterrupt(MF))
FrameSize = std::max(FrameSize, QCIInterruptPushAmount);
// Get the alignment.
Align StackAlign = getStackAlign();
// Make sure the frame is aligned.
FrameSize = alignTo(FrameSize, StackAlign);
// Update frame info.
MFI.setStackSize(FrameSize);
// When using SP or BP to access stack objects, we may require extra padding
// to ensure the bottom of the RVV stack is correctly aligned within the main
// stack. We calculate this as the amount required to align the scalar local
// variable section up to the RVV alignment.
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
if (RVFI->getRVVStackSize() && (!hasFP(MF) || TRI->hasStackRealignment(MF))) {
int ScalarLocalVarSize = FrameSize - RVFI->getCalleeSavedStackSize() -
RVFI->getVarArgsSaveSize();
if (auto RVVPadding =
offsetToAlignment(ScalarLocalVarSize, RVFI->getRVVStackAlign()))
RVFI->setRVVPadding(RVVPadding);
}
}
// Returns the stack size including RVV padding (when required), rounded back
// up to the required stack alignment.
uint64_t RISCVFrameLowering::getStackSizeWithRVVPadding(
const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
return alignTo(MFI.getStackSize() + RVFI->getRVVPadding(), getStackAlign());
}
static SmallVector<CalleeSavedInfo, 8>
getUnmanagedCSI(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
SmallVector<CalleeSavedInfo, 8> NonLibcallCSI;
for (auto &CS : CSI) {
int FI = CS.getFrameIdx();
if (FI >= 0 && MFI.getStackID(FI) == TargetStackID::Default)
NonLibcallCSI.push_back(CS);
}
return NonLibcallCSI;
}
static SmallVector<CalleeSavedInfo, 8>
getRVVCalleeSavedInfo(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
SmallVector<CalleeSavedInfo, 8> RVVCSI;
for (auto &CS : CSI) {
int FI = CS.getFrameIdx();
if (FI >= 0 && MFI.getStackID(FI) == TargetStackID::ScalableVector)
RVVCSI.push_back(CS);
}
return RVVCSI;
}
static SmallVector<CalleeSavedInfo, 8>
getPushOrLibCallsSavedInfo(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
SmallVector<CalleeSavedInfo, 8> PushOrLibCallsCSI;
if (!RVFI->useSaveRestoreLibCalls(MF) && !RVFI->isPushable(MF))
return PushOrLibCallsCSI;
for (const auto &CS : CSI) {
if (RVFI->useQCIInterrupt(MF)) {
// Some registers are saved by both `QC.C.MIENTER(.NEST)` and
// `QC.CM.PUSH(FP)`. In these cases, prioritise the CFI info that points
// to the versions saved by `QC.C.MIENTER(.NEST)` which is what FP
// unwinding would use.
if (llvm::is_contained(llvm::make_first_range(FixedCSRFIQCIInterruptMap),
CS.getReg()))
continue;
}
if (llvm::is_contained(FixedCSRFIMap, CS.getReg()))
PushOrLibCallsCSI.push_back(CS);
}
return PushOrLibCallsCSI;
}
static SmallVector<CalleeSavedInfo, 8>
getQCISavedInfo(const MachineFunction &MF,
const std::vector<CalleeSavedInfo> &CSI) {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
SmallVector<CalleeSavedInfo, 8> QCIInterruptCSI;
if (!RVFI->useQCIInterrupt(MF))
return QCIInterruptCSI;
for (const auto &CS : CSI) {
if (llvm::is_contained(llvm::make_first_range(FixedCSRFIQCIInterruptMap),
CS.getReg()))
QCIInterruptCSI.push_back(CS);
}
return QCIInterruptCSI;
}
void RISCVFrameLowering::allocateAndProbeStackForRVV(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, const DebugLoc &DL, int64_t Amount,
MachineInstr::MIFlag Flag, bool EmitCFI, bool DynAllocation) const {
assert(Amount != 0 && "Did not need to adjust stack pointer for RVV.");
// Emit a variable-length allocation probing loop.
// Get VLEN in TargetReg
const RISCVInstrInfo *TII = STI.getInstrInfo();
Register TargetReg = RISCV::X6;
uint32_t NumOfVReg = Amount / RISCV::RVVBytesPerBlock;
BuildMI(MBB, MBBI, DL, TII->get(RISCV::PseudoReadVLENB), TargetReg)
.setMIFlag(Flag);
TII->mulImm(MF, MBB, MBBI, DL, TargetReg, NumOfVReg, Flag);
CFIInstBuilder CFIBuilder(MBB, MBBI, MachineInstr::FrameSetup);
if (EmitCFI) {
// Set the CFA register to TargetReg.
CFIBuilder.buildDefCFA(TargetReg, -Amount);
}
// It will be expanded to a probe loop in `inlineStackProbe`.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::PROBED_STACKALLOC_RVV))
.addReg(TargetReg);
if (EmitCFI) {
// Set the CFA register back to SP.
CFIBuilder.buildDefCFARegister(SPReg);
}
// SUB SP, SP, T1
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SUB), SPReg)
.addReg(SPReg)
.addReg(TargetReg)
.setMIFlag(Flag);
// If we have a dynamic allocation later we need to probe any residuals.
if (DynAllocation) {
BuildMI(MBB, MBBI, DL, TII->get(STI.is64Bit() ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(MachineInstr::FrameSetup);
}
}
static void appendScalableVectorExpression(const TargetRegisterInfo &TRI,
SmallVectorImpl<char> &Expr,
int FixedOffset, int ScalableOffset,
llvm::raw_string_ostream &Comment) {
unsigned DwarfVLenB = TRI.getDwarfRegNum(RISCV::VLENB, true);
uint8_t Buffer[16];
if (FixedOffset) {
Expr.push_back(dwarf::DW_OP_consts);
Expr.append(Buffer, Buffer + encodeSLEB128(FixedOffset, Buffer));
Expr.push_back((uint8_t)dwarf::DW_OP_plus);
Comment << (FixedOffset < 0 ? " - " : " + ") << std::abs(FixedOffset);
}
Expr.push_back((uint8_t)dwarf::DW_OP_consts);
Expr.append(Buffer, Buffer + encodeSLEB128(ScalableOffset, Buffer));
Expr.push_back((uint8_t)dwarf::DW_OP_bregx);
Expr.append(Buffer, Buffer + encodeULEB128(DwarfVLenB, Buffer));
Expr.push_back(0);
Expr.push_back((uint8_t)dwarf::DW_OP_mul);
Expr.push_back((uint8_t)dwarf::DW_OP_plus);
Comment << (ScalableOffset < 0 ? " - " : " + ") << std::abs(ScalableOffset)
<< " * vlenb";
}
static MCCFIInstruction createDefCFAExpression(const TargetRegisterInfo &TRI,
Register Reg,
uint64_t FixedOffset,
uint64_t ScalableOffset) {
assert(ScalableOffset != 0 && "Did not need to adjust CFA for RVV");
SmallString<64> Expr;
std::string CommentBuffer;
llvm::raw_string_ostream Comment(CommentBuffer);
// Build up the expression (Reg + FixedOffset + ScalableOffset * VLENB).
unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
Expr.push_back((uint8_t)(dwarf::DW_OP_breg0 + DwarfReg));
Expr.push_back(0);
if (Reg == SPReg)
Comment << "sp";
else
Comment << printReg(Reg, &TRI);
appendScalableVectorExpression(TRI, Expr, FixedOffset, ScalableOffset,
Comment);
SmallString<64> DefCfaExpr;
uint8_t Buffer[16];
DefCfaExpr.push_back(dwarf::DW_CFA_def_cfa_expression);
DefCfaExpr.append(Buffer, Buffer + encodeULEB128(Expr.size(), Buffer));
DefCfaExpr.append(Expr.str());
return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), SMLoc(),
Comment.str());
}
static MCCFIInstruction createDefCFAOffset(const TargetRegisterInfo &TRI,
Register Reg, uint64_t FixedOffset,
uint64_t ScalableOffset) {
assert(ScalableOffset != 0 && "Did not need to adjust CFA for RVV");
SmallString<64> Expr;
std::string CommentBuffer;
llvm::raw_string_ostream Comment(CommentBuffer);
Comment << printReg(Reg, &TRI) << " @ cfa";
// Build up the expression (FixedOffset + ScalableOffset * VLENB).
appendScalableVectorExpression(TRI, Expr, FixedOffset, ScalableOffset,
Comment);
SmallString<64> DefCfaExpr;
uint8_t Buffer[16];
unsigned DwarfReg = TRI.getDwarfRegNum(Reg, true);
DefCfaExpr.push_back(dwarf::DW_CFA_expression);
DefCfaExpr.append(Buffer, Buffer + encodeULEB128(DwarfReg, Buffer));
DefCfaExpr.append(Buffer, Buffer + encodeULEB128(Expr.size(), Buffer));
DefCfaExpr.append(Expr.str());
return MCCFIInstruction::createEscape(nullptr, DefCfaExpr.str(), SMLoc(),
Comment.str());
}
// Allocate stack space and probe it if necessary.
void RISCVFrameLowering::allocateStack(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineFunction &MF, uint64_t Offset,
uint64_t RealStackSize, bool EmitCFI,
bool NeedProbe, uint64_t ProbeSize,
bool DynAllocation,
MachineInstr::MIFlag Flag) const {
DebugLoc DL;
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
const RISCVInstrInfo *TII = STI.getInstrInfo();
bool IsRV64 = STI.is64Bit();
CFIInstBuilder CFIBuilder(MBB, MBBI, MachineInstr::FrameSetup);
// Simply allocate the stack if it's not big enough to require a probe.
if (!NeedProbe || Offset <= ProbeSize) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(-Offset),
Flag, getStackAlign());
if (EmitCFI)
CFIBuilder.buildDefCFAOffset(RealStackSize);
if (NeedProbe && DynAllocation) {
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(Flag);
}
return;
}
// Unroll the probe loop depending on the number of iterations.
if (Offset < ProbeSize * 5) {
uint64_t CurrentOffset = 0;
while (CurrentOffset + ProbeSize <= Offset) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg,
StackOffset::getFixed(-ProbeSize), Flag, getStackAlign());
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(Flag);
CurrentOffset += ProbeSize;
if (EmitCFI)
CFIBuilder.buildDefCFAOffset(CurrentOffset);
}
uint64_t Residual = Offset - CurrentOffset;
if (Residual) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg,
StackOffset::getFixed(-Residual), Flag, getStackAlign());
if (EmitCFI)
CFIBuilder.buildDefCFAOffset(Offset);
if (DynAllocation) {
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(Flag);
}
}
return;
}
// Emit a variable-length allocation probing loop.
uint64_t RoundedSize = alignDown(Offset, ProbeSize);
uint64_t Residual = Offset - RoundedSize;
Register TargetReg = RISCV::X6;
// SUB TargetReg, SP, RoundedSize
RI->adjustReg(MBB, MBBI, DL, TargetReg, SPReg,
StackOffset::getFixed(-RoundedSize), Flag, getStackAlign());
if (EmitCFI) {
// Set the CFA register to TargetReg.
CFIBuilder.buildDefCFA(TargetReg, RoundedSize);
}
// It will be expanded to a probe loop in `inlineStackProbe`.
BuildMI(MBB, MBBI, DL, TII->get(RISCV::PROBED_STACKALLOC)).addReg(TargetReg);
if (EmitCFI) {
// Set the CFA register back to SP.
CFIBuilder.buildDefCFARegister(SPReg);
}
if (Residual) {
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(-Residual),
Flag, getStackAlign());
if (DynAllocation) {
// s[d|w] zero, 0(sp)
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(Flag);
}
}
if (EmitCFI)
CFIBuilder.buildDefCFAOffset(Offset);
}
static bool isPush(unsigned Opcode) {
switch (Opcode) {
case RISCV::CM_PUSH:
case RISCV::QC_CM_PUSH:
case RISCV::QC_CM_PUSHFP:
return true;
default:
return false;
}
}
static bool isPop(unsigned Opcode) {
// There are other pops but these are the only ones introduced during this
// pass.
switch (Opcode) {
case RISCV::CM_POP:
case RISCV::QC_CM_POP:
return true;
default:
return false;
}
}
static unsigned getPushOpcode(RISCVMachineFunctionInfo::PushPopKind Kind,
bool UpdateFP) {
switch (Kind) {
case RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp:
return RISCV::CM_PUSH;
case RISCVMachineFunctionInfo::PushPopKind::VendorXqccmp:
return UpdateFP ? RISCV::QC_CM_PUSHFP : RISCV::QC_CM_PUSH;
default:
llvm_unreachable("Unhandled PushPopKind");
}
}
static unsigned getPopOpcode(RISCVMachineFunctionInfo::PushPopKind Kind) {
// There are other pops but they are introduced later by the Push/Pop
// Optimizer.
switch (Kind) {
case RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp:
return RISCV::CM_POP;
case RISCVMachineFunctionInfo::PushPopKind::VendorXqccmp:
return RISCV::QC_CM_POP;
default:
llvm_unreachable("Unhandled PushPopKind");
}
}
void RISCVFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
MachineBasicBlock::iterator MBBI = MBB.begin();
Register BPReg = RISCVABI::getBPReg();
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
DebugLoc DL;
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// SiFive CLIC needs to swap `sp` into `sf.mscratchcsw`
emitSiFiveCLICStackSwap(MF, MBB, MBBI, DL);
// Emit prologue for shadow call stack.
emitSCSPrologue(MF, MBB, MBBI, DL);
// We keep track of the first instruction because it might be a
// `(QC.)CM.PUSH(FP)`, and we may need to adjust the immediate rather than
// inserting an `addi sp, sp, -N*16`
auto PossiblePush = MBBI;
// Skip past all callee-saved register spill instructions.
while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
++MBBI;
// Determine the correct frame layout
determineFrameLayout(MF);
const auto &CSI = MFI.getCalleeSavedInfo();
// Skip to before the spills of scalar callee-saved registers
// FIXME: assumes exactly one instruction is used to restore each
// callee-saved register.
MBBI = std::prev(MBBI, getRVVCalleeSavedInfo(MF, CSI).size() +
getUnmanagedCSI(MF, CSI).size());
CFIInstBuilder CFIBuilder(MBB, MBBI, MachineInstr::FrameSetup);
// If libcalls are used to spill and restore callee-saved registers, the frame
// has two sections; the opaque section managed by the libcalls, and the
// section managed by MachineFrameInfo which can also hold callee saved
// registers in fixed stack slots, both of which have negative frame indices.
// This gets even more complicated when incoming arguments are passed via the
// stack, as these too have negative frame indices. An example is detailed
// below:
//
// | incoming arg | <- FI[-3]
// | libcallspill |
// | calleespill | <- FI[-2]
// | calleespill | <- FI[-1]
// | this_frame | <- FI[0]
//
// For negative frame indices, the offset from the frame pointer will differ
// depending on which of these groups the frame index applies to.
// The following calculates the correct offset knowing the number of callee
// saved registers spilt by the two methods.
if (int LibCallRegs = getLibCallID(MF, MFI.getCalleeSavedInfo()) + 1) {
// Calculate the size of the frame managed by the libcall. The stack
// alignment of these libcalls should be the same as how we set it in
// getABIStackAlignment.
unsigned LibCallFrameSize =
alignTo((STI.getXLen() / 8) * LibCallRegs, getStackAlign());
RVFI->setLibCallStackSize(LibCallFrameSize);
CFIBuilder.buildDefCFAOffset(LibCallFrameSize);
for (const CalleeSavedInfo &CS : getPushOrLibCallsSavedInfo(MF, CSI))
CFIBuilder.buildOffset(CS.getReg(),
MFI.getObjectOffset(CS.getFrameIdx()));
}
// FIXME (note copied from Lanai): This appears to be overallocating. Needs
// investigation. Get the number of bytes to allocate from the FrameInfo.
uint64_t RealStackSize = getStackSizeWithRVVPadding(MF);
uint64_t StackSize = RealStackSize - RVFI->getReservedSpillsSize();
uint64_t RVVStackSize = RVFI->getRVVStackSize();
// Early exit if there is no need to allocate on the stack
if (RealStackSize == 0 && !MFI.adjustsStack() && RVVStackSize == 0)
return;
// If the stack pointer has been marked as reserved, then produce an error if
// the frame requires stack allocation
if (STI.isRegisterReservedByUser(SPReg))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "Stack pointer required, but has been reserved."});
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
// Split the SP adjustment to reduce the offsets of callee saved spill.
if (FirstSPAdjustAmount) {
StackSize = FirstSPAdjustAmount;
RealStackSize = FirstSPAdjustAmount;
}
if (RVFI->useQCIInterrupt(MF)) {
// The function starts with `QC.C.MIENTER(.NEST)`, so the `(QC.)CM.PUSH(FP)`
// could only be the next instruction.
++PossiblePush;
// Insert the CFI metadata before where we think the `(QC.)CM.PUSH(FP)`
// could be. The PUSH will also get its own CFI metadata for its own
// modifications, which should come after the PUSH.
CFIInstBuilder PushCFIBuilder(MBB, PossiblePush, MachineInstr::FrameSetup);
PushCFIBuilder.buildDefCFAOffset(QCIInterruptPushAmount);
for (const CalleeSavedInfo &CS : getQCISavedInfo(MF, CSI))
PushCFIBuilder.buildOffset(CS.getReg(),
MFI.getObjectOffset(CS.getFrameIdx()));
}
if (RVFI->isPushable(MF) && PossiblePush != MBB.end() &&
isPush(PossiblePush->getOpcode())) {
// Use available stack adjustment in push instruction to allocate additional
// stack space. Align the stack size down to a multiple of 16. This is
// needed for RVE.
// FIXME: Can we increase the stack size to a multiple of 16 instead?
uint64_t StackAdj =
std::min(alignDown(StackSize, 16), static_cast<uint64_t>(48));
PossiblePush->getOperand(1).setImm(StackAdj);
StackSize -= StackAdj;
CFIBuilder.buildDefCFAOffset(RealStackSize - StackSize);
for (const CalleeSavedInfo &CS : getPushOrLibCallsSavedInfo(MF, CSI))
CFIBuilder.buildOffset(CS.getReg(),
MFI.getObjectOffset(CS.getFrameIdx()));
}
// Allocate space on the stack if necessary.
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
const RISCVTargetLowering *TLI = Subtarget.getTargetLowering();
bool NeedProbe = TLI->hasInlineStackProbe(MF);
uint64_t ProbeSize = TLI->getStackProbeSize(MF, getStackAlign());
bool DynAllocation =
MF.getInfo<RISCVMachineFunctionInfo>()->hasDynamicAllocation();
if (StackSize != 0)
allocateStack(MBB, MBBI, MF, StackSize, RealStackSize, /*EmitCFI=*/true,
NeedProbe, ProbeSize, DynAllocation,
MachineInstr::FrameSetup);
// Save SiFive CLIC CSRs into Stack
emitSiFiveCLICPreemptibleSaves(MF, MBB, MBBI, DL);
// The frame pointer is callee-saved, and code has been generated for us to
// save it to the stack. We need to skip over the storing of callee-saved
// registers as the frame pointer must be modified after it has been saved
// to the stack, not before.
// FIXME: assumes exactly one instruction is used to save each callee-saved
// register.
std::advance(MBBI, getUnmanagedCSI(MF, CSI).size());
CFIBuilder.setInsertPoint(MBBI);
// Iterate over list of callee-saved registers and emit .cfi_offset
// directives.
for (const CalleeSavedInfo &CS : getUnmanagedCSI(MF, CSI))
CFIBuilder.buildOffset(CS.getReg(), MFI.getObjectOffset(CS.getFrameIdx()));
// Generate new FP.
if (hasFP(MF)) {
if (STI.isRegisterReservedByUser(FPReg))
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(), "Frame pointer required, but has been reserved."});
// The frame pointer does need to be reserved from register allocation.
assert(MF.getRegInfo().isReserved(FPReg) && "FP not reserved");
// Some stack management variants automatically keep FP updated, so we don't
// need an instruction to do so.
if (!RVFI->hasImplicitFPUpdates(MF)) {
RI->adjustReg(
MBB, MBBI, DL, FPReg, SPReg,
StackOffset::getFixed(RealStackSize - RVFI->getVarArgsSaveSize()),
MachineInstr::FrameSetup, getStackAlign());
}
CFIBuilder.buildDefCFA(FPReg, RVFI->getVarArgsSaveSize());
}
uint64_t SecondSPAdjustAmount = 0;
// Emit the second SP adjustment after saving callee saved registers.
if (FirstSPAdjustAmount) {
SecondSPAdjustAmount = getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount;
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
allocateStack(MBB, MBBI, MF, SecondSPAdjustAmount,
getStackSizeWithRVVPadding(MF), !hasFP(MF), NeedProbe,
ProbeSize, DynAllocation, MachineInstr::FrameSetup);
}
if (RVVStackSize) {
if (NeedProbe) {
allocateAndProbeStackForRVV(MF, MBB, MBBI, DL, RVVStackSize,
MachineInstr::FrameSetup, !hasFP(MF),
DynAllocation);
} else {
// We must keep the stack pointer aligned through any intermediate
// updates.
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg,
StackOffset::getScalable(-RVVStackSize),
MachineInstr::FrameSetup, getStackAlign());
}
if (!hasFP(MF)) {
// Emit .cfi_def_cfa_expression "sp + StackSize + RVVStackSize * vlenb".
CFIBuilder.insertCFIInst(createDefCFAExpression(
*RI, SPReg, getStackSizeWithRVVPadding(MF), RVVStackSize / 8));
}
std::advance(MBBI, getRVVCalleeSavedInfo(MF, CSI).size());
emitCalleeSavedRVVPrologCFI(MBB, MBBI, hasFP(MF));
}
if (hasFP(MF)) {
// Realign Stack
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
if (RI->hasStackRealignment(MF)) {
Align MaxAlignment = MFI.getMaxAlign();
const RISCVInstrInfo *TII = STI.getInstrInfo();
if (isInt<12>(-(int)MaxAlignment.value())) {
BuildMI(MBB, MBBI, DL, TII->get(RISCV::ANDI), SPReg)
.addReg(SPReg)
.addImm(-(int)MaxAlignment.value())
.setMIFlag(MachineInstr::FrameSetup);
} else {
unsigned ShiftAmount = Log2(MaxAlignment);
Register VR =
MF.getRegInfo().createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SRLI), VR)
.addReg(SPReg)
.addImm(ShiftAmount)
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII->get(RISCV::SLLI), SPReg)
.addReg(VR)
.addImm(ShiftAmount)
.setMIFlag(MachineInstr::FrameSetup);
}
if (NeedProbe && RVVStackSize == 0) {
// Do a probe if the align + size allocated just passed the probe size
// and was not yet probed.
if (SecondSPAdjustAmount < ProbeSize &&
SecondSPAdjustAmount + MaxAlignment.value() >= ProbeSize) {
bool IsRV64 = STI.is64Bit();
BuildMI(MBB, MBBI, DL, TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(MachineInstr::FrameSetup);
}
}
// FP will be used to restore the frame in the epilogue, so we need
// another base register BP to record SP after re-alignment. SP will
// track the current stack after allocating variable sized objects.
if (hasBP(MF)) {
// move BP, SP
BuildMI(MBB, MBBI, DL, TII->get(RISCV::ADDI), BPReg)
.addReg(SPReg)
.addImm(0)
.setMIFlag(MachineInstr::FrameSetup);
}
}
}
}
void RISCVFrameLowering::deallocateStack(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL,
uint64_t &StackSize,
int64_t CFAOffset) const {
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
RI->adjustReg(MBB, MBBI, DL, SPReg, SPReg, StackOffset::getFixed(StackSize),
MachineInstr::FrameDestroy, getStackAlign());
StackSize = 0;
CFIInstBuilder(MBB, MBBI, MachineInstr::FrameDestroy)
.buildDefCFAOffset(CFAOffset);
}
void RISCVFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const RISCVRegisterInfo *RI = STI.getRegisterInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// Get the insert location for the epilogue. If there were no terminators in
// the block, get the last instruction.
MachineBasicBlock::iterator MBBI = MBB.end();
DebugLoc DL;
if (!MBB.empty()) {
MBBI = MBB.getLastNonDebugInstr();
if (MBBI != MBB.end())
DL = MBBI->getDebugLoc();
MBBI = MBB.getFirstTerminator();
// Skip to before the restores of all callee-saved registers.
while (MBBI != MBB.begin() &&
std::prev(MBBI)->getFlag(MachineInstr::FrameDestroy))
--MBBI;
}
const auto &CSI = MFI.getCalleeSavedInfo();
// Skip to before the restores of scalar callee-saved registers
// FIXME: assumes exactly one instruction is used to restore each
// callee-saved register.
auto FirstScalarCSRRestoreInsn =
std::next(MBBI, getRVVCalleeSavedInfo(MF, CSI).size());
CFIInstBuilder CFIBuilder(MBB, FirstScalarCSRRestoreInsn,
MachineInstr::FrameDestroy);
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
uint64_t RealStackSize = FirstSPAdjustAmount ? FirstSPAdjustAmount
: getStackSizeWithRVVPadding(MF);
uint64_t StackSize = FirstSPAdjustAmount ? FirstSPAdjustAmount
: getStackSizeWithRVVPadding(MF) -
RVFI->getReservedSpillsSize();
uint64_t FPOffset = RealStackSize - RVFI->getVarArgsSaveSize();
uint64_t RVVStackSize = RVFI->getRVVStackSize();
bool RestoreSPFromFP = RI->hasStackRealignment(MF) ||
MFI.hasVarSizedObjects() || !hasReservedCallFrame(MF);
if (RVVStackSize) {
// If RestoreSPFromFP the stack pointer will be restored using the frame
// pointer value.
if (!RestoreSPFromFP)
RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, SPReg,
StackOffset::getScalable(RVVStackSize),
MachineInstr::FrameDestroy, getStackAlign());
if (!hasFP(MF))
CFIBuilder.buildDefCFA(SPReg, RealStackSize);
emitCalleeSavedRVVEpilogCFI(MBB, FirstScalarCSRRestoreInsn);
}
if (FirstSPAdjustAmount) {
uint64_t SecondSPAdjustAmount =
getStackSizeWithRVVPadding(MF) - FirstSPAdjustAmount;
assert(SecondSPAdjustAmount > 0 &&
"SecondSPAdjustAmount should be greater than zero");
// If RestoreSPFromFP the stack pointer will be restored using the frame
// pointer value.
if (!RestoreSPFromFP)
RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, SPReg,
StackOffset::getFixed(SecondSPAdjustAmount),
MachineInstr::FrameDestroy, getStackAlign());
if (!hasFP(MF))
CFIBuilder.buildDefCFAOffset(FirstSPAdjustAmount);
}
// Restore the stack pointer using the value of the frame pointer. Only
// necessary if the stack pointer was modified, meaning the stack size is
// unknown.
//
// In order to make sure the stack point is right through the EH region,
// we also need to restore stack pointer from the frame pointer if we
// don't preserve stack space within prologue/epilogue for outgoing variables,
// normally it's just checking the variable sized object is present or not
// is enough, but we also don't preserve that at prologue/epilogue when
// have vector objects in stack.
if (RestoreSPFromFP) {
assert(hasFP(MF) && "frame pointer should not have been eliminated");
RI->adjustReg(MBB, FirstScalarCSRRestoreInsn, DL, SPReg, FPReg,
StackOffset::getFixed(-FPOffset), MachineInstr::FrameDestroy,
getStackAlign());
}
if (hasFP(MF))
CFIBuilder.buildDefCFA(SPReg, RealStackSize);
// Skip to after the restores of scalar callee-saved registers
// FIXME: assumes exactly one instruction is used to restore each
// callee-saved register.
MBBI = std::next(FirstScalarCSRRestoreInsn, getUnmanagedCSI(MF, CSI).size());
CFIBuilder.setInsertPoint(MBBI);
if (getLibCallID(MF, CSI) != -1) {
// tail __riscv_restore_[0-12] instruction is considered as a terminator,
// therefore it is unnecessary to place any CFI instructions after it. Just
// deallocate stack if needed and return.
if (StackSize != 0)
deallocateStack(MF, MBB, MBBI, DL, StackSize,
RVFI->getLibCallStackSize());
// Emit epilogue for shadow call stack.
emitSCSEpilogue(MF, MBB, MBBI, DL);
return;
}
// Recover callee-saved registers.
for (const CalleeSavedInfo &CS : getUnmanagedCSI(MF, CSI))
CFIBuilder.buildRestore(CS.getReg());
if (RVFI->isPushable(MF) && MBBI != MBB.end() && isPop(MBBI->getOpcode())) {
// Use available stack adjustment in pop instruction to deallocate stack
// space. Align the stack size down to a multiple of 16. This is needed for
// RVE.
// FIXME: Can we increase the stack size to a multiple of 16 instead?
uint64_t StackAdj =
std::min(alignDown(StackSize, 16), static_cast<uint64_t>(48));
MBBI->getOperand(1).setImm(StackAdj);
StackSize -= StackAdj;
if (StackSize != 0)
deallocateStack(MF, MBB, MBBI, DL, StackSize,
/*stack_adj of cm.pop instr*/ RealStackSize - StackSize);
auto NextI = next_nodbg(MBBI, MBB.end());
if (NextI == MBB.end() || NextI->getOpcode() != RISCV::PseudoRET) {
++MBBI;
CFIBuilder.setInsertPoint(MBBI);
for (const CalleeSavedInfo &CS : getPushOrLibCallsSavedInfo(MF, CSI))
CFIBuilder.buildRestore(CS.getReg());
// Update CFA Offset. If this is a QCI interrupt function, there will be a
// leftover offset which is deallocated by `QC.C.MILEAVERET`, otherwise
// getQCIInterruptStackSize() will be 0.
CFIBuilder.buildDefCFAOffset(RVFI->getQCIInterruptStackSize());
}
}
emitSiFiveCLICPreemptibleRestores(MF, MBB, MBBI, DL);
// Deallocate stack if StackSize isn't a zero yet. If this is a QCI interrupt
// function, there will be a leftover offset which is deallocated by
// `QC.C.MILEAVERET`, otherwise getQCIInterruptStackSize() will be 0.
if (StackSize != 0)
deallocateStack(MF, MBB, MBBI, DL, StackSize,
RVFI->getQCIInterruptStackSize());
// Emit epilogue for shadow call stack.
emitSCSEpilogue(MF, MBB, MBBI, DL);
// SiFive CLIC needs to swap `sf.mscratchcsw` into `sp`
emitSiFiveCLICStackSwap(MF, MBB, MBBI, DL);
}
StackOffset
RISCVFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
Register &FrameReg) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Callee-saved registers should be referenced relative to the stack
// pointer (positive offset), otherwise use the frame pointer (negative
// offset).
const auto &CSI = getUnmanagedCSI(MF, MFI.getCalleeSavedInfo());
int MinCSFI = 0;
int MaxCSFI = -1;
StackOffset Offset;
auto StackID = MFI.getStackID(FI);
assert((StackID == TargetStackID::Default ||
StackID == TargetStackID::ScalableVector) &&
"Unexpected stack ID for the frame object.");
if (StackID == TargetStackID::Default) {
assert(getOffsetOfLocalArea() == 0 && "LocalAreaOffset is not 0!");
Offset = StackOffset::getFixed(MFI.getObjectOffset(FI) +
MFI.getOffsetAdjustment());
} else if (StackID == TargetStackID::ScalableVector) {
Offset = StackOffset::getScalable(MFI.getObjectOffset(FI));
}
uint64_t FirstSPAdjustAmount = getFirstSPAdjustAmount(MF);
if (CSI.size()) {
MinCSFI = CSI[0].getFrameIdx();
MaxCSFI = CSI[CSI.size() - 1].getFrameIdx();
}
if (FI >= MinCSFI && FI <= MaxCSFI) {
FrameReg = SPReg;
if (FirstSPAdjustAmount)
Offset += StackOffset::getFixed(FirstSPAdjustAmount);
else
Offset += StackOffset::getFixed(getStackSizeWithRVVPadding(MF));
return Offset;
}
if (RI->hasStackRealignment(MF) && !MFI.isFixedObjectIndex(FI)) {
// If the stack was realigned, the frame pointer is set in order to allow
// SP to be restored, so we need another base register to record the stack
// after realignment.
// |--------------------------| -- <-- FP
// | callee-allocated save | | <----|
// | area for register varargs| | |
// |--------------------------| | |
// | callee-saved registers | | |
// |--------------------------| -- |
// | realignment (the size of | | |
// | this area is not counted | | |
// | in MFI.getStackSize()) | | |
// |--------------------------| -- |-- MFI.getStackSize()
// | RVV alignment padding | | |
// | (not counted in | | |
// | MFI.getStackSize() but | | |
// | counted in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | RVV objects | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | padding before RVV | | |
// | (not counted in | | |
// | MFI.getStackSize() or in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | scalar local variables | | <----'
// |--------------------------| -- <-- BP (if var sized objects present)
// | VarSize objects | |
// |--------------------------| -- <-- SP
if (hasBP(MF)) {
FrameReg = RISCVABI::getBPReg();
} else {
// VarSize objects must be empty in this case!
assert(!MFI.hasVarSizedObjects());
FrameReg = SPReg;
}
} else {
FrameReg = RI->getFrameRegister(MF);
}
if (FrameReg == FPReg) {
Offset += StackOffset::getFixed(RVFI->getVarArgsSaveSize());
// When using FP to access scalable vector objects, we need to minus
// the frame size.
//
// |--------------------------| -- <-- FP
// | callee-allocated save | |
// | area for register varargs| |
// |--------------------------| |
// | callee-saved registers | |
// |--------------------------| | MFI.getStackSize()
// | scalar local variables | |
// |--------------------------| -- (Offset of RVV objects is from here.)
// | RVV objects |
// |--------------------------|
// | VarSize objects |
// |--------------------------| <-- SP
if (StackID == TargetStackID::ScalableVector) {
assert(!RI->hasStackRealignment(MF) &&
"Can't index across variable sized realign");
// We don't expect any extra RVV alignment padding, as the stack size
// and RVV object sections should be correct aligned in their own
// right.
assert(MFI.getStackSize() == getStackSizeWithRVVPadding(MF) &&
"Inconsistent stack layout");
Offset -= StackOffset::getFixed(MFI.getStackSize());
}
return Offset;
}
// This case handles indexing off both SP and BP.
// If indexing off SP, there must not be any var sized objects
assert(FrameReg == RISCVABI::getBPReg() || !MFI.hasVarSizedObjects());
// When using SP to access frame objects, we need to add RVV stack size.
//
// |--------------------------| -- <-- FP
// | callee-allocated save | | <----|
// | area for register varargs| | |
// |--------------------------| | |
// | callee-saved registers | | |
// |--------------------------| -- |
// | RVV alignment padding | | |
// | (not counted in | | |
// | MFI.getStackSize() but | | |
// | counted in | | |
// | RVFI.getRVVStackSize()) | | |
// |--------------------------| -- |
// | RVV objects | | |-- MFI.getStackSize()
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | padding before RVV | | |
// | (not counted in | | |
// | MFI.getStackSize()) | | |
// |--------------------------| -- |
// | scalar local variables | | <----'
// |--------------------------| -- <-- BP (if var sized objects present)
// | VarSize objects | |
// |--------------------------| -- <-- SP
//
// The total amount of padding surrounding RVV objects is described by
// RVV->getRVVPadding() and it can be zero. It allows us to align the RVV
// objects to the required alignment.
if (MFI.getStackID(FI) == TargetStackID::Default) {
if (MFI.isFixedObjectIndex(FI)) {
assert(!RI->hasStackRealignment(MF) &&
"Can't index across variable sized realign");
Offset += StackOffset::get(getStackSizeWithRVVPadding(MF),
RVFI->getRVVStackSize());
} else {
Offset += StackOffset::getFixed(MFI.getStackSize());
}
} else if (MFI.getStackID(FI) == TargetStackID::ScalableVector) {
// Ensure the base of the RVV stack is correctly aligned: add on the
// alignment padding.
int ScalarLocalVarSize = MFI.getStackSize() -
RVFI->getCalleeSavedStackSize() -
RVFI->getVarArgsSaveSize() + RVFI->getRVVPadding();
Offset += StackOffset::get(ScalarLocalVarSize, RVFI->getRVVStackSize());
}
return Offset;
}
void RISCVFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
// Unconditionally spill RA and FP only if the function uses a frame
// pointer.
if (hasFP(MF)) {
SavedRegs.set(RAReg);
SavedRegs.set(FPReg);
}
// Mark BP as used if function has dedicated base pointer.
if (hasBP(MF))
SavedRegs.set(RISCVABI::getBPReg());
// When using cm.push/pop we must save X27 if we save X26.
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
if (RVFI->isPushable(MF) && SavedRegs.test(RISCV::X26))
SavedRegs.set(RISCV::X27);
// SiFive Preemptible Interrupt Handlers need additional frame entries
createSiFivePreemptibleInterruptFrameEntries(MF, *RVFI);
}
std::pair<int64_t, Align>
RISCVFrameLowering::assignRVVStackObjectOffsets(MachineFunction &MF) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
// Create a buffer of RVV objects to allocate.
SmallVector<int, 8> ObjectsToAllocate;
auto pushRVVObjects = [&](int FIBegin, int FIEnd) {
for (int I = FIBegin, E = FIEnd; I != E; ++I) {
unsigned StackID = MFI.getStackID(I);
if (StackID != TargetStackID::ScalableVector)
continue;
if (MFI.isDeadObjectIndex(I))
continue;
ObjectsToAllocate.push_back(I);
}
};
// First push RVV Callee Saved object, then push RVV stack object
std::vector<CalleeSavedInfo> &CSI = MF.getFrameInfo().getCalleeSavedInfo();
const auto &RVVCSI = getRVVCalleeSavedInfo(MF, CSI);
if (!RVVCSI.empty())
pushRVVObjects(RVVCSI[0].getFrameIdx(),
RVVCSI[RVVCSI.size() - 1].getFrameIdx() + 1);
pushRVVObjects(0, MFI.getObjectIndexEnd() - RVVCSI.size());
// The minimum alignment is 16 bytes.
Align RVVStackAlign(16);
const auto &ST = MF.getSubtarget<RISCVSubtarget>();
if (!ST.hasVInstructions()) {
assert(ObjectsToAllocate.empty() &&
"Can't allocate scalable-vector objects without V instructions");
return std::make_pair(0, RVVStackAlign);
}
// Allocate all RVV locals and spills
int64_t Offset = 0;
for (int FI : ObjectsToAllocate) {
// ObjectSize in bytes.
int64_t ObjectSize = MFI.getObjectSize(FI);
auto ObjectAlign =
std::max(Align(RISCV::RVVBytesPerBlock), MFI.getObjectAlign(FI));
// If the data type is the fractional vector type, reserve one vector
// register for it.
if (ObjectSize < RISCV::RVVBytesPerBlock)
ObjectSize = RISCV::RVVBytesPerBlock;
Offset = alignTo(Offset + ObjectSize, ObjectAlign);
MFI.setObjectOffset(FI, -Offset);
// Update the maximum alignment of the RVV stack section
RVVStackAlign = std::max(RVVStackAlign, ObjectAlign);
}
uint64_t StackSize = Offset;
// Ensure the alignment of the RVV stack. Since we want the most-aligned
// object right at the bottom (i.e., any padding at the top of the frame),
// readjust all RVV objects down by the alignment padding.
// Stack size and offsets are multiples of vscale, stack alignment is in
// bytes, we can divide stack alignment by minimum vscale to get a maximum
// stack alignment multiple of vscale.
auto VScale =
std::max<uint64_t>(ST.getRealMinVLen() / RISCV::RVVBitsPerBlock, 1);
if (auto RVVStackAlignVScale = RVVStackAlign.value() / VScale) {
if (auto AlignmentPadding =
offsetToAlignment(StackSize, Align(RVVStackAlignVScale))) {
StackSize += AlignmentPadding;
for (int FI : ObjectsToAllocate)
MFI.setObjectOffset(FI, MFI.getObjectOffset(FI) - AlignmentPadding);
}
}
return std::make_pair(StackSize, RVVStackAlign);
}
static unsigned getScavSlotsNumForRVV(MachineFunction &MF) {
// For RVV spill, scalable stack offsets computing requires up to two scratch
// registers
static constexpr unsigned ScavSlotsNumRVVSpillScalableObject = 2;
// For RVV spill, non-scalable stack offsets computing requires up to one
// scratch register.
static constexpr unsigned ScavSlotsNumRVVSpillNonScalableObject = 1;
// ADDI instruction's destination register can be used for computing
// offsets. So Scalable stack offsets require up to one scratch register.
static constexpr unsigned ScavSlotsADDIScalableObject = 1;
static constexpr unsigned MaxScavSlotsNumKnown =
std::max({ScavSlotsADDIScalableObject, ScavSlotsNumRVVSpillScalableObject,
ScavSlotsNumRVVSpillNonScalableObject});
unsigned MaxScavSlotsNum = 0;
if (!MF.getSubtarget<RISCVSubtarget>().hasVInstructions())
return false;
for (const MachineBasicBlock &MBB : MF)
for (const MachineInstr &MI : MBB) {
bool IsRVVSpill = RISCV::isRVVSpill(MI);
for (auto &MO : MI.operands()) {
if (!MO.isFI())
continue;
bool IsScalableVectorID = MF.getFrameInfo().getStackID(MO.getIndex()) ==
TargetStackID::ScalableVector;
if (IsRVVSpill) {
MaxScavSlotsNum = std::max(
MaxScavSlotsNum, IsScalableVectorID
? ScavSlotsNumRVVSpillScalableObject
: ScavSlotsNumRVVSpillNonScalableObject);
} else if (MI.getOpcode() == RISCV::ADDI && IsScalableVectorID) {
MaxScavSlotsNum =
std::max(MaxScavSlotsNum, ScavSlotsADDIScalableObject);
}
}
if (MaxScavSlotsNum == MaxScavSlotsNumKnown)
return MaxScavSlotsNumKnown;
}
return MaxScavSlotsNum;
}
static bool hasRVVFrameObject(const MachineFunction &MF) {
// Originally, the function will scan all the stack objects to check whether
// if there is any scalable vector object on the stack or not. However, it
// causes errors in the register allocator. In issue 53016, it returns false
// before RA because there is no RVV stack objects. After RA, it returns true
// because there are spilling slots for RVV values during RA. It will not
// reserve BP during register allocation and generate BP access in the PEI
// pass due to the inconsistent behavior of the function.
//
// The function is changed to use hasVInstructions() as the return value. It
// is not precise, but it can make the register allocation correct.
//
// FIXME: Find a better way to make the decision or revisit the solution in
// D103622.
//
// Refer to https://github.com/llvm/llvm-project/issues/53016.
return MF.getSubtarget<RISCVSubtarget>().hasVInstructions();
}
static unsigned estimateFunctionSizeInBytes(const MachineFunction &MF,
const RISCVInstrInfo &TII) {
unsigned FnSize = 0;
for (auto &MBB : MF) {
for (auto &MI : MBB) {
// Far branches over 20-bit offset will be relaxed in branch relaxation
// pass. In the worst case, conditional branches will be relaxed into
// the following instruction sequence. Unconditional branches are
// relaxed in the same way, with the exception that there is no first
// branch instruction.
//
// foo
// bne t5, t6, .rev_cond # `TII->getInstSizeInBytes(MI)` bytes
// sd s11, 0(sp) # 4 bytes, or 2 bytes with Zca
// jump .restore, s11 # 8 bytes
// .rev_cond
// bar
// j .dest_bb # 4 bytes, or 2 bytes with Zca
// .restore:
// ld s11, 0(sp) # 4 bytes, or 2 bytes with Zca
// .dest:
// baz
if (MI.isConditionalBranch())
FnSize += TII.getInstSizeInBytes(MI);
if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
if (MF.getSubtarget<RISCVSubtarget>().hasStdExtZca())
FnSize += 2 + 8 + 2 + 2;
else
FnSize += 4 + 8 + 4 + 4;
continue;
}
FnSize += TII.getInstSizeInBytes(MI);
}
}
return FnSize;
}
void RISCVFrameLowering::processFunctionBeforeFrameFinalized(
MachineFunction &MF, RegScavenger *RS) const {
const RISCVRegisterInfo *RegInfo =
MF.getSubtarget<RISCVSubtarget>().getRegisterInfo();
const RISCVInstrInfo *TII = MF.getSubtarget<RISCVSubtarget>().getInstrInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
int64_t RVVStackSize;
Align RVVStackAlign;
std::tie(RVVStackSize, RVVStackAlign) = assignRVVStackObjectOffsets(MF);
RVFI->setRVVStackSize(RVVStackSize);
RVFI->setRVVStackAlign(RVVStackAlign);
if (hasRVVFrameObject(MF)) {
// Ensure the entire stack is aligned to at least the RVV requirement: some
// scalable-vector object alignments are not considered by the
// target-independent code.
MFI.ensureMaxAlignment(RVVStackAlign);
}
unsigned ScavSlotsNum = 0;
// estimateStackSize has been observed to under-estimate the final stack
// size, so give ourselves wiggle-room by checking for stack size
// representable an 11-bit signed field rather than 12-bits.
if (!isInt<11>(MFI.estimateStackSize(MF)))
ScavSlotsNum = 1;
// Far branches over 20-bit offset require a spill slot for scratch register.
bool IsLargeFunction = !isInt<20>(estimateFunctionSizeInBytes(MF, *TII));
if (IsLargeFunction)
ScavSlotsNum = std::max(ScavSlotsNum, 1u);
// RVV loads & stores have no capacity to hold the immediate address offsets
// so we must always reserve an emergency spill slot if the MachineFunction
// contains any RVV spills.
ScavSlotsNum = std::max(ScavSlotsNum, getScavSlotsNumForRVV(MF));
for (unsigned I = 0; I < ScavSlotsNum; I++) {
int FI = MFI.CreateSpillStackObject(RegInfo->getSpillSize(*RC),
RegInfo->getSpillAlign(*RC));
RS->addScavengingFrameIndex(FI);
if (IsLargeFunction && RVFI->getBranchRelaxationScratchFrameIndex() == -1)
RVFI->setBranchRelaxationScratchFrameIndex(FI);
}
unsigned Size = RVFI->getReservedSpillsSize();
for (const auto &Info : MFI.getCalleeSavedInfo()) {
int FrameIdx = Info.getFrameIdx();
if (FrameIdx < 0 || MFI.getStackID(FrameIdx) != TargetStackID::Default)
continue;
Size += MFI.getObjectSize(FrameIdx);
}
RVFI->setCalleeSavedStackSize(Size);
}
// Not preserve stack space within prologue for outgoing variables when the
// function contains variable size objects or there are vector objects accessed
// by the frame pointer.
// Let eliminateCallFramePseudoInstr preserve stack space for it.
bool RISCVFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
return !MF.getFrameInfo().hasVarSizedObjects() &&
!(hasFP(MF) && hasRVVFrameObject(MF));
}
// Eliminate ADJCALLSTACKDOWN, ADJCALLSTACKUP pseudo instructions.
MachineBasicBlock::iterator RISCVFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
DebugLoc DL = MI->getDebugLoc();
if (!hasReservedCallFrame(MF)) {
// If space has not been reserved for a call frame, ADJCALLSTACKDOWN and
// ADJCALLSTACKUP must be converted to instructions manipulating the stack
// pointer. This is necessary when there is a variable length stack
// allocation (e.g. alloca), which means it's not possible to allocate
// space for outgoing arguments from within the function prologue.
int64_t Amount = MI->getOperand(0).getImm();
if (Amount != 0) {
// Ensure the stack remains aligned after adjustment.
Amount = alignSPAdjust(Amount);
if (MI->getOpcode() == RISCV::ADJCALLSTACKDOWN)
Amount = -Amount;
const RISCVTargetLowering *TLI =
MF.getSubtarget<RISCVSubtarget>().getTargetLowering();
int64_t ProbeSize = TLI->getStackProbeSize(MF, getStackAlign());
if (TLI->hasInlineStackProbe(MF) && -Amount >= ProbeSize) {
// When stack probing is enabled, the decrement of SP may need to be
// probed. We can handle both the decrement and the probing in
// allocateStack.
bool DynAllocation =
MF.getInfo<RISCVMachineFunctionInfo>()->hasDynamicAllocation();
allocateStack(MBB, MI, MF, -Amount, -Amount, !hasFP(MF),
/*NeedProbe=*/true, ProbeSize, DynAllocation,
MachineInstr::NoFlags);
} else {
const RISCVRegisterInfo &RI = *STI.getRegisterInfo();
RI.adjustReg(MBB, MI, DL, SPReg, SPReg, StackOffset::getFixed(Amount),
MachineInstr::NoFlags, getStackAlign());
}
}
}
return MBB.erase(MI);
}
// We would like to split the SP adjustment to reduce prologue/epilogue
// as following instructions. In this way, the offset of the callee saved
// register could fit in a single store. Supposed that the first sp adjust
// amount is 2032.
// add sp,sp,-2032
// sw ra,2028(sp)
// sw s0,2024(sp)
// sw s1,2020(sp)
// sw s3,2012(sp)
// sw s4,2008(sp)
// add sp,sp,-64
uint64_t
RISCVFrameLowering::getFirstSPAdjustAmount(const MachineFunction &MF) const {
const auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
const MachineFrameInfo &MFI = MF.getFrameInfo();
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
uint64_t StackSize = getStackSizeWithRVVPadding(MF);
// Disable SplitSPAdjust if save-restore libcall, push/pop or QCI interrupts
// are used. The callee-saved registers will be pushed by the save-restore
// libcalls, so we don't have to split the SP adjustment in this case.
if (RVFI->getReservedSpillsSize())
return 0;
// Return the FirstSPAdjustAmount if the StackSize can not fit in a signed
// 12-bit and there exists a callee-saved register needing to be pushed.
if (!isInt<12>(StackSize) && (CSI.size() > 0)) {
// FirstSPAdjustAmount is chosen at most as (2048 - StackAlign) because
// 2048 will cause sp = sp + 2048 in the epilogue to be split into multiple
// instructions. Offsets smaller than 2048 can fit in a single load/store
// instruction, and we have to stick with the stack alignment. 2048 has
// 16-byte alignment. The stack alignment for RV32 and RV64 is 16 and for
// RV32E it is 4. So (2048 - StackAlign) will satisfy the stack alignment.
const uint64_t StackAlign = getStackAlign().value();
// Amount of (2048 - StackAlign) will prevent callee saved and restored
// instructions be compressed, so try to adjust the amount to the largest
// offset that stack compression instructions accept when target supports
// compression instructions.
if (STI.hasStdExtZca()) {
// The compression extensions may support the following instructions:
// riscv32: c.lwsp rd, offset[7:2] => 2^(6 + 2)
// c.swsp rs2, offset[7:2] => 2^(6 + 2)
// c.flwsp rd, offset[7:2] => 2^(6 + 2)
// c.fswsp rs2, offset[7:2] => 2^(6 + 2)
// riscv64: c.ldsp rd, offset[8:3] => 2^(6 + 3)
// c.sdsp rs2, offset[8:3] => 2^(6 + 3)
// c.fldsp rd, offset[8:3] => 2^(6 + 3)
// c.fsdsp rs2, offset[8:3] => 2^(6 + 3)
const uint64_t RVCompressLen = STI.getXLen() * 8;
// Compared with amount (2048 - StackAlign), StackSize needs to
// satisfy the following conditions to avoid using more instructions
// to adjust the sp after adjusting the amount, such as
// StackSize meets the condition (StackSize <= 2048 + RVCompressLen),
// case1: Amount is 2048 - StackAlign: use addi + addi to adjust sp.
// case2: Amount is RVCompressLen: use addi + addi to adjust sp.
auto CanCompress = [&](uint64_t CompressLen) -> bool {
if (StackSize <= 2047 + CompressLen ||
(StackSize > 2048 * 2 - StackAlign &&
StackSize <= 2047 * 2 + CompressLen) ||
StackSize > 2048 * 3 - StackAlign)
return true;
return false;
};
// In the epilogue, addi sp, sp, 496 is used to recover the sp and it
// can be compressed(C.ADDI16SP, offset can be [-512, 496]), but
// addi sp, sp, 512 can not be compressed. So try to use 496 first.
const uint64_t ADDI16SPCompressLen = 496;
if (STI.is64Bit() && CanCompress(ADDI16SPCompressLen))
return ADDI16SPCompressLen;
if (CanCompress(RVCompressLen))
return RVCompressLen;
}
return 2048 - StackAlign;
}
return 0;
}
bool RISCVFrameLowering::assignCalleeSavedSpillSlots(
MachineFunction &MF, const TargetRegisterInfo *TRI,
std::vector<CalleeSavedInfo> &CSI, unsigned &MinCSFrameIndex,
unsigned &MaxCSFrameIndex) const {
auto *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
// Preemptible Interrupts have two additional Callee-save Frame Indexes,
// not tracked by `CSI`.
if (RVFI->isSiFivePreemptibleInterrupt(MF)) {
for (int I = 0; I < 2; ++I) {
int FI = RVFI->getInterruptCSRFrameIndex(I);
MinCSFrameIndex = std::min<unsigned>(MinCSFrameIndex, FI);
MaxCSFrameIndex = std::max<unsigned>(MaxCSFrameIndex, FI);
}
}
// Early exit if no callee saved registers are modified!
if (CSI.empty())
return true;
if (RVFI->useQCIInterrupt(MF)) {
RVFI->setQCIInterruptStackSize(QCIInterruptPushAmount);
}
if (RVFI->isPushable(MF)) {
// Determine how many GPRs we need to push and save it to RVFI.
unsigned PushedRegNum = getNumPushPopRegs(CSI);
// `QC.C.MIENTER(.NEST)` will save `ra` and `s0`, so we should only push if
// we want to push more than 2 registers. Otherwise, we should push if we
// want to push more than 0 registers.
unsigned OnlyPushIfMoreThan = RVFI->useQCIInterrupt(MF) ? 2 : 0;
if (PushedRegNum > OnlyPushIfMoreThan) {
RVFI->setRVPushRegs(PushedRegNum);
RVFI->setRVPushStackSize(alignTo((STI.getXLen() / 8) * PushedRegNum, 16));
}
}
MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
for (auto &CS : CSI) {
MCRegister Reg = CS.getReg();
const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg);
unsigned Size = RegInfo->getSpillSize(*RC);
if (RVFI->useQCIInterrupt(MF)) {
const auto *FFI = llvm::find_if(FixedCSRFIQCIInterruptMap, [&](auto P) {
return P.first == CS.getReg();
});
if (FFI != std::end(FixedCSRFIQCIInterruptMap)) {
int64_t Offset = FFI->second * (int64_t)Size;
int FrameIdx = MFI.CreateFixedSpillStackObject(Size, Offset);
assert(FrameIdx < 0);
CS.setFrameIdx(FrameIdx);
continue;
}
}
if (RVFI->useSaveRestoreLibCalls(MF) || RVFI->isPushable(MF)) {
const auto *FII = llvm::find_if(
FixedCSRFIMap, [&](MCPhysReg P) { return P == CS.getReg(); });
unsigned RegNum = std::distance(std::begin(FixedCSRFIMap), FII);
if (FII != std::end(FixedCSRFIMap)) {
int64_t Offset;
if (RVFI->getPushPopKind(MF) ==
RISCVMachineFunctionInfo::PushPopKind::StdExtZcmp)
Offset = -int64_t(RVFI->getRVPushRegs() - RegNum) * Size;
else
Offset = -int64_t(RegNum + 1) * Size;
if (RVFI->useQCIInterrupt(MF))
Offset -= QCIInterruptPushAmount;
int FrameIdx = MFI.CreateFixedSpillStackObject(Size, Offset);
assert(FrameIdx < 0);
CS.setFrameIdx(FrameIdx);
continue;
}
}
// Not a fixed slot.
Align Alignment = RegInfo->getSpillAlign(*RC);
// We may not be able to satisfy the desired alignment specification of
// the TargetRegisterClass if the stack alignment is smaller. Use the
// min.
Alignment = std::min(Alignment, getStackAlign());
int FrameIdx = MFI.CreateStackObject(Size, Alignment, true);
if ((unsigned)FrameIdx < MinCSFrameIndex)
MinCSFrameIndex = FrameIdx;
if ((unsigned)FrameIdx > MaxCSFrameIndex)
MaxCSFrameIndex = FrameIdx;
CS.setFrameIdx(FrameIdx);
if (RISCVRegisterInfo::isRVVRegClass(RC))
MFI.setStackID(FrameIdx, TargetStackID::ScalableVector);
}
if (RVFI->useQCIInterrupt(MF)) {
// Allocate a fixed object that covers the entire QCI stack allocation,
// because there are gaps which are reserved for future use.
MFI.CreateFixedSpillStackObject(
QCIInterruptPushAmount, -static_cast<int64_t>(QCIInterruptPushAmount));
}
if (RVFI->isPushable(MF)) {
int64_t QCIOffset = RVFI->useQCIInterrupt(MF) ? QCIInterruptPushAmount : 0;
// Allocate a fixed object that covers the full push.
if (int64_t PushSize = RVFI->getRVPushStackSize())
MFI.CreateFixedSpillStackObject(PushSize, -PushSize - QCIOffset);
} else if (int LibCallRegs = getLibCallID(MF, CSI) + 1) {
int64_t LibCallFrameSize =
alignTo((STI.getXLen() / 8) * LibCallRegs, getStackAlign());
MFI.CreateFixedSpillStackObject(LibCallFrameSize, -LibCallFrameSize);
}
return true;
}
bool RISCVFrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction *MF = MBB.getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
DebugLoc DL;
if (MI != MBB.end() && !MI->isDebugInstr())
DL = MI->getDebugLoc();
RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
if (RVFI->useQCIInterrupt(*MF)) {
// Emit QC.C.MIENTER(.NEST)
BuildMI(
MBB, MI, DL,
TII.get(RVFI->getInterruptStackKind(*MF) ==
RISCVMachineFunctionInfo::InterruptStackKind::QCINest
? RISCV::QC_C_MIENTER_NEST
: RISCV::QC_C_MIENTER))
.setMIFlag(MachineInstr::FrameSetup);
for (auto [Reg, _Offset] : FixedCSRFIQCIInterruptMap)
MBB.addLiveIn(Reg);
}
if (RVFI->isPushable(*MF)) {
// Emit CM.PUSH with base StackAdj & evaluate Push stack
unsigned PushedRegNum = RVFI->getRVPushRegs();
if (PushedRegNum > 0) {
// Use encoded number to represent registers to spill.
unsigned Opcode = getPushOpcode(
RVFI->getPushPopKind(*MF), hasFP(*MF) && !RVFI->useQCIInterrupt(*MF));
unsigned RegEnc = RISCVZC::encodeRegListNumRegs(PushedRegNum);
MachineInstrBuilder PushBuilder =
BuildMI(MBB, MI, DL, TII.get(Opcode))
.setMIFlag(MachineInstr::FrameSetup);
PushBuilder.addImm(RegEnc);
PushBuilder.addImm(0);
for (unsigned i = 0; i < PushedRegNum; i++)
PushBuilder.addUse(FixedCSRFIMap[i], RegState::Implicit);
}
} else if (const char *SpillLibCall = getSpillLibCallName(*MF, CSI)) {
// Add spill libcall via non-callee-saved register t0.
BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoCALLReg), RISCV::X5)
.addExternalSymbol(SpillLibCall, RISCVII::MO_CALL)
.setMIFlag(MachineInstr::FrameSetup);
// Add registers spilled in libcall as liveins.
for (auto &CS : CSI)
MBB.addLiveIn(CS.getReg());
}
// Manually spill values not spilled by libcall & Push/Pop.
const auto &UnmanagedCSI = getUnmanagedCSI(*MF, CSI);
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, CSI);
auto storeRegsToStackSlots = [&](decltype(UnmanagedCSI) CSInfo) {
for (auto &CS : CSInfo) {
// Insert the spill to the stack frame.
MCRegister Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.storeRegToStackSlot(MBB, MI, Reg, !MBB.isLiveIn(Reg),
CS.getFrameIdx(), RC, TRI, Register(),
MachineInstr::FrameSetup);
}
};
storeRegsToStackSlots(UnmanagedCSI);
storeRegsToStackSlots(RVVCSI);
return true;
}
static unsigned getCalleeSavedRVVNumRegs(const Register &BaseReg) {
return RISCV::VRRegClass.contains(BaseReg) ? 1
: RISCV::VRM2RegClass.contains(BaseReg) ? 2
: RISCV::VRM4RegClass.contains(BaseReg) ? 4
: 8;
}
static MCRegister getRVVBaseRegister(const RISCVRegisterInfo &TRI,
const Register &Reg) {
MCRegister BaseReg = TRI.getSubReg(Reg, RISCV::sub_vrm1_0);
// If it's not a grouped vector register, it doesn't have subregister, so
// the base register is just itself.
if (BaseReg == RISCV::NoRegister)
BaseReg = Reg;
return BaseReg;
}
void RISCVFrameLowering::emitCalleeSavedRVVPrologCFI(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, bool HasFP) const {
MachineFunction *MF = MBB.getParent();
const MachineFrameInfo &MFI = MF->getFrameInfo();
RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
const RISCVRegisterInfo &TRI = *STI.getRegisterInfo();
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, MFI.getCalleeSavedInfo());
if (RVVCSI.empty())
return;
uint64_t FixedSize = getStackSizeWithRVVPadding(*MF);
if (!HasFP) {
uint64_t ScalarLocalVarSize =
MFI.getStackSize() - RVFI->getCalleeSavedStackSize() -
RVFI->getVarArgsSaveSize() + RVFI->getRVVPadding();
FixedSize -= ScalarLocalVarSize;
}
CFIInstBuilder CFIBuilder(MBB, MI, MachineInstr::FrameSetup);
for (auto &CS : RVVCSI) {
// Insert the spill to the stack frame.
int FI = CS.getFrameIdx();
MCRegister BaseReg = getRVVBaseRegister(TRI, CS.getReg());
unsigned NumRegs = getCalleeSavedRVVNumRegs(CS.getReg());
for (unsigned i = 0; i < NumRegs; ++i) {
CFIBuilder.insertCFIInst(createDefCFAOffset(
TRI, BaseReg + i, -FixedSize, MFI.getObjectOffset(FI) / 8 + i));
}
}
}
void RISCVFrameLowering::emitCalleeSavedRVVEpilogCFI(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const {
MachineFunction *MF = MBB.getParent();
const MachineFrameInfo &MFI = MF->getFrameInfo();
const RISCVRegisterInfo &TRI = *STI.getRegisterInfo();
CFIInstBuilder CFIHelper(MBB, MI, MachineInstr::FrameDestroy);
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, MFI.getCalleeSavedInfo());
for (auto &CS : RVVCSI) {
MCRegister BaseReg = getRVVBaseRegister(TRI, CS.getReg());
unsigned NumRegs = getCalleeSavedRVVNumRegs(CS.getReg());
for (unsigned i = 0; i < NumRegs; ++i)
CFIHelper.buildRestore(BaseReg + i);
}
}
bool RISCVFrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return true;
MachineFunction *MF = MBB.getParent();
const TargetInstrInfo &TII = *MF->getSubtarget().getInstrInfo();
DebugLoc DL;
if (MI != MBB.end() && !MI->isDebugInstr())
DL = MI->getDebugLoc();
// Manually restore values not restored by libcall & Push/Pop.
// Reverse the restore order in epilog. In addition, the return
// address will be restored first in the epilogue. It increases
// the opportunity to avoid the load-to-use data hazard between
// loading RA and return by RA. loadRegFromStackSlot can insert
// multiple instructions.
const auto &UnmanagedCSI = getUnmanagedCSI(*MF, CSI);
const auto &RVVCSI = getRVVCalleeSavedInfo(*MF, CSI);
auto loadRegFromStackSlot = [&](decltype(UnmanagedCSI) CSInfo) {
for (auto &CS : CSInfo) {
MCRegister Reg = CS.getReg();
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
TII.loadRegFromStackSlot(MBB, MI, Reg, CS.getFrameIdx(), RC, TRI,
Register(), MachineInstr::FrameDestroy);
assert(MI != MBB.begin() &&
"loadRegFromStackSlot didn't insert any code!");
}
};
loadRegFromStackSlot(RVVCSI);
loadRegFromStackSlot(UnmanagedCSI);
RISCVMachineFunctionInfo *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
if (RVFI->useQCIInterrupt(*MF)) {
// Don't emit anything here because restoration is handled by
// QC.C.MILEAVERET which we already inserted to return.
assert(MI->getOpcode() == RISCV::QC_C_MILEAVERET &&
"Unexpected QCI Interrupt Return Instruction");
}
if (RVFI->isPushable(*MF)) {
unsigned PushedRegNum = RVFI->getRVPushRegs();
if (PushedRegNum > 0) {
unsigned Opcode = getPopOpcode(RVFI->getPushPopKind(*MF));
unsigned RegEnc = RISCVZC::encodeRegListNumRegs(PushedRegNum);
MachineInstrBuilder PopBuilder =
BuildMI(MBB, MI, DL, TII.get(Opcode))
.setMIFlag(MachineInstr::FrameDestroy);
// Use encoded number to represent registers to restore.
PopBuilder.addImm(RegEnc);
PopBuilder.addImm(0);
for (unsigned i = 0; i < RVFI->getRVPushRegs(); i++)
PopBuilder.addDef(FixedCSRFIMap[i], RegState::ImplicitDefine);
}
} else {
const char *RestoreLibCall = getRestoreLibCallName(*MF, CSI);
if (RestoreLibCall) {
// Add restore libcall via tail call.
MachineBasicBlock::iterator NewMI =
BuildMI(MBB, MI, DL, TII.get(RISCV::PseudoTAIL))
.addExternalSymbol(RestoreLibCall, RISCVII::MO_CALL)
.setMIFlag(MachineInstr::FrameDestroy);
// Remove trailing returns, since the terminator is now a tail call to the
// restore function.
if (MI != MBB.end() && MI->getOpcode() == RISCV::PseudoRET) {
NewMI->copyImplicitOps(*MF, *MI);
MI->eraseFromParent();
}
}
}
return true;
}
bool RISCVFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
// Keep the conventional code flow when not optimizing.
if (MF.getFunction().hasOptNone())
return false;
return true;
}
bool RISCVFrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
const MachineFunction *MF = MBB.getParent();
const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
// Make sure VTYPE and VL are not live-in since we will use vsetvli in the
// prologue to get the VLEN, and that will clobber these registers.
//
// We may do also check the stack contains objects with scalable vector type,
// but this will require iterating over all the stack objects, but this may
// not worth since the situation is rare, we could do further check in future
// if we find it is necessary.
if (STI.preferVsetvliOverReadVLENB() &&
(MBB.isLiveIn(RISCV::VTYPE) || MBB.isLiveIn(RISCV::VL)))
return false;
if (!RVFI->useSaveRestoreLibCalls(*MF))
return true;
// Inserting a call to a __riscv_save libcall requires the use of the register
// t0 (X5) to hold the return address. Therefore if this register is already
// used we can't insert the call.
RegScavenger RS;
RS.enterBasicBlock(*TmpMBB);
return !RS.isRegUsed(RISCV::X5);
}
bool RISCVFrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
const MachineFunction *MF = MBB.getParent();
MachineBasicBlock *TmpMBB = const_cast<MachineBasicBlock *>(&MBB);
const auto *RVFI = MF->getInfo<RISCVMachineFunctionInfo>();
// We do not want QC.C.MILEAVERET to be subject to shrink-wrapping - it must
// come in the final block of its function as it both pops and returns.
if (RVFI->useQCIInterrupt(*MF))
return MBB.succ_empty();
if (!RVFI->useSaveRestoreLibCalls(*MF))
return true;
// Using the __riscv_restore libcalls to restore CSRs requires a tail call.
// This means if we still need to continue executing code within this function
// the restore cannot take place in this basic block.
if (MBB.succ_size() > 1)
return false;
MachineBasicBlock *SuccMBB =
MBB.succ_empty() ? TmpMBB->getFallThrough() : *MBB.succ_begin();
// Doing a tail call should be safe if there are no successors, because either
// we have a returning block or the end of the block is unreachable, so the
// restore will be eliminated regardless.
if (!SuccMBB)
return true;
// The successor can only contain a return, since we would effectively be
// replacing the successor with our own tail return at the end of our block.
return SuccMBB->isReturnBlock() && SuccMBB->size() == 1;
}
bool RISCVFrameLowering::isSupportedStackID(TargetStackID::Value ID) const {
switch (ID) {
case TargetStackID::Default:
case TargetStackID::ScalableVector:
return true;
case TargetStackID::NoAlloc:
case TargetStackID::SGPRSpill:
case TargetStackID::WasmLocal:
return false;
}
llvm_unreachable("Invalid TargetStackID::Value");
}
TargetStackID::Value RISCVFrameLowering::getStackIDForScalableVectors() const {
return TargetStackID::ScalableVector;
}
// Synthesize the probe loop.
static void emitStackProbeInline(MachineBasicBlock::iterator MBBI, DebugLoc DL,
Register TargetReg, bool IsRVV) {
assert(TargetReg != RISCV::X2 && "New top of stack cannot already be in SP");
MachineBasicBlock &MBB = *MBBI->getParent();
MachineFunction &MF = *MBB.getParent();
auto &Subtarget = MF.getSubtarget<RISCVSubtarget>();
const RISCVInstrInfo *TII = Subtarget.getInstrInfo();
bool IsRV64 = Subtarget.is64Bit();
Align StackAlign = Subtarget.getFrameLowering()->getStackAlign();
const RISCVTargetLowering *TLI = Subtarget.getTargetLowering();
uint64_t ProbeSize = TLI->getStackProbeSize(MF, StackAlign);
MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator());
MachineBasicBlock *LoopTestMBB =
MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MF.insert(MBBInsertPoint, LoopTestMBB);
MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock());
MF.insert(MBBInsertPoint, ExitMBB);
MachineInstr::MIFlag Flags = MachineInstr::FrameSetup;
Register ScratchReg = RISCV::X7;
// ScratchReg = ProbeSize
TII->movImm(MBB, MBBI, DL, ScratchReg, ProbeSize, Flags);
// LoopTest:
// SUB SP, SP, ProbeSize
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::SUB), SPReg)
.addReg(SPReg)
.addReg(ScratchReg)
.setMIFlags(Flags);
// s[d|w] zero, 0(sp)
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL,
TII->get(IsRV64 ? RISCV::SD : RISCV::SW))
.addReg(RISCV::X0)
.addReg(SPReg)
.addImm(0)
.setMIFlags(Flags);
if (IsRVV) {
// SUB TargetReg, TargetReg, ProbeSize
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::SUB),
TargetReg)
.addReg(TargetReg)
.addReg(ScratchReg)
.setMIFlags(Flags);
// BGE TargetReg, ProbeSize, LoopTest
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::BGE))
.addReg(TargetReg)
.addReg(ScratchReg)
.addMBB(LoopTestMBB)
.setMIFlags(Flags);
} else {
// BNE SP, TargetReg, LoopTest
BuildMI(*LoopTestMBB, LoopTestMBB->end(), DL, TII->get(RISCV::BNE))
.addReg(SPReg)
.addReg(TargetReg)
.addMBB(LoopTestMBB)
.setMIFlags(Flags);
}
ExitMBB->splice(ExitMBB->end(), &MBB, std::next(MBBI), MBB.end());
ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB);
LoopTestMBB->addSuccessor(ExitMBB);
LoopTestMBB->addSuccessor(LoopTestMBB);
MBB.addSuccessor(LoopTestMBB);
// Update liveins.
fullyRecomputeLiveIns({ExitMBB, LoopTestMBB});
}
void RISCVFrameLowering::inlineStackProbe(MachineFunction &MF,
MachineBasicBlock &MBB) const {
// Get the instructions that need to be replaced. We emit at most two of
// these. Remember them in order to avoid complications coming from the need
// to traverse the block while potentially creating more blocks.
SmallVector<MachineInstr *, 4> ToReplace;
for (MachineInstr &MI : MBB) {
unsigned Opc = MI.getOpcode();
if (Opc == RISCV::PROBED_STACKALLOC ||
Opc == RISCV::PROBED_STACKALLOC_RVV) {
ToReplace.push_back(&MI);
}
}
for (MachineInstr *MI : ToReplace) {
if (MI->getOpcode() == RISCV::PROBED_STACKALLOC ||
MI->getOpcode() == RISCV::PROBED_STACKALLOC_RVV) {
MachineBasicBlock::iterator MBBI = MI->getIterator();
DebugLoc DL = MBB.findDebugLoc(MBBI);
Register TargetReg = MI->getOperand(0).getReg();
emitStackProbeInline(MBBI, DL, TargetReg,
(MI->getOpcode() == RISCV::PROBED_STACKALLOC_RVV));
MBBI->eraseFromParent();
}
}
}
|