File: RISCVTargetTransformInfo.h

package info (click to toggle)
llvm-toolchain-21 1%3A21.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,235,796 kB
  • sloc: cpp: 7,617,614; ansic: 1,433,901; asm: 1,058,726; python: 252,096; f90: 94,671; objc: 70,753; lisp: 42,813; pascal: 18,401; sh: 10,032; ml: 5,111; perl: 4,720; awk: 3,523; makefile: 3,401; javascript: 2,272; xml: 892; fortran: 770
file content (479 lines) | stat: -rw-r--r-- 20,014 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
//===- RISCVTargetTransformInfo.h - RISC-V specific TTI ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines a TargetTransformInfoImplBase conforming object specific
/// to the RISC-V target machine. It uses the target's detailed information to
/// provide more precise answers to certain TTI queries, while letting the
/// target independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H
#define LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H

#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/IR/Function.h"
#include <optional>

namespace llvm {

class RISCVTTIImpl final : public BasicTTIImplBase<RISCVTTIImpl> {
  using BaseT = BasicTTIImplBase<RISCVTTIImpl>;
  using TTI = TargetTransformInfo;

  friend BaseT;

  const RISCVSubtarget *ST;
  const RISCVTargetLowering *TLI;

  const RISCVSubtarget *getST() const { return ST; }
  const RISCVTargetLowering *getTLI() const { return TLI; }

  /// This function returns an estimate for VL to be used in VL based terms
  /// of the cost model.  For fixed length vectors, this is simply the
  /// vector length.  For scalable vectors, we return results consistent
  /// with getVScaleForTuning under the assumption that clients are also
  /// using that when comparing costs between scalar and vector representation.
  /// This does unfortunately mean that we can both undershoot and overshot
  /// the true cost significantly if getVScaleForTuning is wildly off for the
  /// actual target hardware.
  unsigned getEstimatedVLFor(VectorType *Ty) const;

  /// This function calculates the costs for one or more RVV opcodes based
  /// on the vtype and the cost kind.
  /// \param Opcodes A list of opcodes of the RVV instruction to evaluate.
  /// \param VT The MVT of vtype associated with the RVV instructions.
  /// For widening/narrowing instructions where the result and source types
  /// differ, it is important to check the spec to determine whether the vtype
  /// refers to the result or source type.
  /// \param CostKind The type of cost to compute.
  InstructionCost getRISCVInstructionCost(ArrayRef<unsigned> OpCodes, MVT VT,
                                          TTI::TargetCostKind CostKind) const;

  /// Return the cost of accessing a constant pool entry of the specified
  /// type.
  InstructionCost getConstantPoolLoadCost(Type *Ty,
                                          TTI::TargetCostKind CostKind) const;

  /// If this shuffle can be lowered as a masked slide pair (at worst),
  /// return a cost for it.
  InstructionCost getSlideCost(FixedVectorType *Tp, ArrayRef<int> Mask,
                               TTI::TargetCostKind CostKind) const;

public:
  explicit RISCVTTIImpl(const RISCVTargetMachine *TM, const Function &F)
      : BaseT(TM, F.getDataLayout()), ST(TM->getSubtargetImpl(F)),
        TLI(ST->getTargetLowering()) {}

  /// Return the cost of materializing an immediate for a value operand of
  /// a store instruction.
  InstructionCost getStoreImmCost(Type *VecTy, TTI::OperandValueInfo OpInfo,
                                  TTI::TargetCostKind CostKind) const;

  InstructionCost getIntImmCost(const APInt &Imm, Type *Ty,
                                TTI::TargetCostKind CostKind) const override;
  InstructionCost getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                    const APInt &Imm, Type *Ty,
                                    TTI::TargetCostKind CostKind,
                                    Instruction *Inst = nullptr) const override;
  InstructionCost
  getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
                      Type *Ty, TTI::TargetCostKind CostKind) const override;

  /// \name EVL Support for predicated vectorization.
  /// Whether the target supports the %evl parameter of VP intrinsic efficiently
  /// in hardware. (see LLVM Language Reference - "Vector Predication
  /// Intrinsics",
  /// https://llvm.org/docs/LangRef.html#vector-predication-intrinsics and
  /// "IR-level VP intrinsics",
  /// https://llvm.org/docs/Proposals/VectorPredication.html#ir-level-vp-intrinsics).
  bool hasActiveVectorLength() const override;

  TargetTransformInfo::PopcntSupportKind
  getPopcntSupport(unsigned TyWidth) const override;

  InstructionCost getPartialReductionCost(
      unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
      ElementCount VF, TTI::PartialReductionExtendKind OpAExtend,
      TTI::PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
      TTI::TargetCostKind CostKind) const override;

  bool shouldExpandReduction(const IntrinsicInst *II) const override;
  bool supportsScalableVectors() const override {
    return ST->hasVInstructions();
  }
  bool enableOrderedReductions() const override { return true; }
  bool enableScalableVectorization() const override {
    return ST->hasVInstructions();
  }
  TailFoldingStyle
  getPreferredTailFoldingStyle(bool IVUpdateMayOverflow) const override {
    return ST->hasVInstructions() ? TailFoldingStyle::Data
                                  : TailFoldingStyle::DataWithoutLaneMask;
  }
  std::optional<unsigned> getMaxVScale() const override;
  std::optional<unsigned> getVScaleForTuning() const override;

  TypeSize
  getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const override;

  unsigned getRegUsageForType(Type *Ty) const override;

  unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override;

  bool preferAlternateOpcodeVectorization() const override { return false; }

  bool preferEpilogueVectorization() const override {
    // Epilogue vectorization is usually unprofitable - tail folding or
    // a smaller VF would have been better.  This a blunt hammer - we
    // should re-examine this once vectorization is better tuned.
    return false;
  }

  InstructionCost
  getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
                        unsigned AddressSpace,
                        TTI::TargetCostKind CostKind) const override;

  InstructionCost
  getPointersChainCost(ArrayRef<const Value *> Ptrs, const Value *Base,
                       const TTI::PointersChainInfo &Info, Type *AccessTy,
                       TTI::TargetCostKind CostKind) const override;

  void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                               TTI::UnrollingPreferences &UP,
                               OptimizationRemarkEmitter *ORE) const override;

  void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                             TTI::PeelingPreferences &PP) const override;

  unsigned getMinVectorRegisterBitWidth() const override {
    return ST->useRVVForFixedLengthVectors() ? 16 : 0;
  }

  InstructionCost
  getShuffleCost(TTI::ShuffleKind Kind, VectorType *DstTy, VectorType *SrcTy,
                 ArrayRef<int> Mask, TTI::TargetCostKind CostKind, int Index,
                 VectorType *SubTp, ArrayRef<const Value *> Args = {},
                 const Instruction *CxtI = nullptr) const override;

  InstructionCost getScalarizationOverhead(
      VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
      TTI::TargetCostKind CostKind, bool ForPoisonSrc = true,
      ArrayRef<Value *> VL = {}) const override;

  InstructionCost
  getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
                        TTI::TargetCostKind CostKind) const override;

  InstructionCost getInterleavedMemoryOpCost(
      unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
      Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
      bool UseMaskForCond = false, bool UseMaskForGaps = false) const override;

  InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
                                         const Value *Ptr, bool VariableMask,
                                         Align Alignment,
                                         TTI::TargetCostKind CostKind,
                                         const Instruction *I) const override;

  InstructionCost
  getExpandCompressMemoryOpCost(unsigned Opcode, Type *Src, bool VariableMask,
                                Align Alignment, TTI::TargetCostKind CostKind,
                                const Instruction *I = nullptr) const override;

  InstructionCost getStridedMemoryOpCost(unsigned Opcode, Type *DataTy,
                                         const Value *Ptr, bool VariableMask,
                                         Align Alignment,
                                         TTI::TargetCostKind CostKind,
                                         const Instruction *I) const override;

  InstructionCost
  getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const override;

  InstructionCost
  getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                   TTI::CastContextHint CCH, TTI::TargetCostKind CostKind,
                   const Instruction *I = nullptr) const override;

  InstructionCost
  getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF,
                         TTI::TargetCostKind CostKind) const override;

  InstructionCost
  getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
                             std::optional<FastMathFlags> FMF,
                             TTI::TargetCostKind CostKind) const override;

  InstructionCost
  getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy,
                           VectorType *ValTy, std::optional<FastMathFlags> FMF,
                           TTI::TargetCostKind CostKind) const override;

  InstructionCost getMemoryOpCost(
      unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
      TTI::TargetCostKind CostKind,
      TTI::OperandValueInfo OpdInfo = {TTI::OK_AnyValue, TTI::OP_None},
      const Instruction *I = nullptr) const override;

  InstructionCost getCmpSelInstrCost(
      unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
      TTI::TargetCostKind CostKind,
      TTI::OperandValueInfo Op1Info = {TTI::OK_AnyValue, TTI::OP_None},
      TTI::OperandValueInfo Op2Info = {TTI::OK_AnyValue, TTI::OP_None},
      const Instruction *I = nullptr) const override;

  InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
                                 const Instruction *I = nullptr) const override;

  using BaseT::getVectorInstrCost;
  InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
                                     TTI::TargetCostKind CostKind,
                                     unsigned Index, const Value *Op0,
                                     const Value *Op1) const override;

  InstructionCost getArithmeticInstrCost(
      unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
      TTI::OperandValueInfo Op1Info = {TTI::OK_AnyValue, TTI::OP_None},
      TTI::OperandValueInfo Op2Info = {TTI::OK_AnyValue, TTI::OP_None},
      ArrayRef<const Value *> Args = {},
      const Instruction *CxtI = nullptr) const override;

  bool isElementTypeLegalForScalableVector(Type *Ty) const override {
    return TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty));
  }

  bool isLegalMaskedLoadStore(Type *DataType, Align Alignment) const {
    if (!ST->hasVInstructions())
      return false;

    EVT DataTypeVT = TLI->getValueType(DL, DataType);

    // Only support fixed vectors if we know the minimum vector size.
    if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
      return false;

    EVT ElemType = DataTypeVT.getScalarType();
    if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
      return false;

    return TLI->isLegalElementTypeForRVV(ElemType);
  }

  bool isLegalMaskedLoad(Type *DataType, Align Alignment,
                         unsigned /*AddressSpace*/) const override {
    return isLegalMaskedLoadStore(DataType, Alignment);
  }
  bool isLegalMaskedStore(Type *DataType, Align Alignment,
                          unsigned /*AddressSpace*/) const override {
    return isLegalMaskedLoadStore(DataType, Alignment);
  }

  bool isLegalMaskedGatherScatter(Type *DataType, Align Alignment) const {
    if (!ST->hasVInstructions())
      return false;

    EVT DataTypeVT = TLI->getValueType(DL, DataType);

    // Only support fixed vectors if we know the minimum vector size.
    if (DataTypeVT.isFixedLengthVector() && !ST->useRVVForFixedLengthVectors())
      return false;

    // We also need to check if the vector of address is valid.
    EVT PointerTypeVT = EVT(TLI->getPointerTy(DL));
    if (DataTypeVT.isScalableVector() &&
        !TLI->isLegalElementTypeForRVV(PointerTypeVT))
      return false;

    EVT ElemType = DataTypeVT.getScalarType();
    if (!ST->enableUnalignedVectorMem() && Alignment < ElemType.getStoreSize())
      return false;

    return TLI->isLegalElementTypeForRVV(ElemType);
  }

  bool isLegalMaskedGather(Type *DataType, Align Alignment) const override {
    return isLegalMaskedGatherScatter(DataType, Alignment);
  }
  bool isLegalMaskedScatter(Type *DataType, Align Alignment) const override {
    return isLegalMaskedGatherScatter(DataType, Alignment);
  }

  bool forceScalarizeMaskedGather(VectorType *VTy,
                                  Align Alignment) const override {
    // Scalarize masked gather for RV64 if EEW=64 indices aren't supported.
    return ST->is64Bit() && !ST->hasVInstructionsI64();
  }

  bool forceScalarizeMaskedScatter(VectorType *VTy,
                                   Align Alignment) const override {
    // Scalarize masked scatter for RV64 if EEW=64 indices aren't supported.
    return ST->is64Bit() && !ST->hasVInstructionsI64();
  }

  bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const override {
    EVT DataTypeVT = TLI->getValueType(DL, DataType);
    return TLI->isLegalStridedLoadStore(DataTypeVT, Alignment);
  }

  bool isLegalInterleavedAccessType(VectorType *VTy, unsigned Factor,
                                    Align Alignment,
                                    unsigned AddrSpace) const override {
    return TLI->isLegalInterleavedAccessType(VTy, Factor, Alignment, AddrSpace,
                                             DL);
  }

  bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const override;

  bool isLegalMaskedCompressStore(Type *DataTy, Align Alignment) const override;

  bool isVScaleKnownToBeAPowerOfTwo() const override {
    return TLI->isVScaleKnownToBeAPowerOfTwo();
  }

  /// \returns How the target needs this vector-predicated operation to be
  /// transformed.
  TargetTransformInfo::VPLegalization
  getVPLegalizationStrategy(const VPIntrinsic &PI) const override {
    using VPLegalization = TargetTransformInfo::VPLegalization;
    if (!ST->hasVInstructions() ||
        (PI.getIntrinsicID() == Intrinsic::vp_reduce_mul &&
         cast<VectorType>(PI.getArgOperand(1)->getType())
                 ->getElementType()
                 ->getIntegerBitWidth() != 1))
      return VPLegalization(VPLegalization::Discard, VPLegalization::Convert);
    return VPLegalization(VPLegalization::Legal, VPLegalization::Legal);
  }

  bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc,
                                   ElementCount VF) const override {
    if (!VF.isScalable())
      return true;

    Type *Ty = RdxDesc.getRecurrenceType();
    if (!TLI->isLegalElementTypeForRVV(TLI->getValueType(DL, Ty)))
      return false;

    switch (RdxDesc.getRecurrenceKind()) {
    case RecurKind::Add:
    case RecurKind::And:
    case RecurKind::Or:
    case RecurKind::Xor:
    case RecurKind::SMin:
    case RecurKind::SMax:
    case RecurKind::UMin:
    case RecurKind::UMax:
    case RecurKind::FMin:
    case RecurKind::FMax:
      return true;
    case RecurKind::AnyOf:
    case RecurKind::FAdd:
    case RecurKind::FMulAdd:
      // We can't promote f16/bf16 fadd reductions and scalable vectors can't be
      // expanded.
      if (Ty->isBFloatTy() || (Ty->isHalfTy() && !ST->hasVInstructionsF16()))
        return false;
      return true;
    default:
      return false;
    }
  }

  unsigned getMaxInterleaveFactor(ElementCount VF) const override {
    // Don't interleave if the loop has been vectorized with scalable vectors.
    if (VF.isScalable())
      return 1;
    // If the loop will not be vectorized, don't interleave the loop.
    // Let regular unroll to unroll the loop.
    return VF.isScalar() ? 1 : ST->getMaxInterleaveFactor();
  }

  bool enableInterleavedAccessVectorization() const override { return true; }

  unsigned getMinTripCountTailFoldingThreshold() const override;

  enum RISCVRegisterClass { GPRRC, FPRRC, VRRC };
  unsigned getNumberOfRegisters(unsigned ClassID) const override {
    switch (ClassID) {
    case RISCVRegisterClass::GPRRC:
      // 31 = 32 GPR - x0 (zero register)
      // FIXME: Should we exclude fixed registers like SP, TP or GP?
      return 31;
    case RISCVRegisterClass::FPRRC:
      if (ST->hasStdExtF())
        return 32;
      return 0;
    case RISCVRegisterClass::VRRC:
      // Although there are 32 vector registers, v0 is special in that it is the
      // only register that can be used to hold a mask.
      // FIXME: Should we conservatively return 31 as the number of usable
      // vector registers?
      return ST->hasVInstructions() ? 32 : 0;
    }
    llvm_unreachable("unknown register class");
  }

  TTI::AddressingModeKind
  getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const override;

  unsigned getRegisterClassForType(bool Vector,
                                   Type *Ty = nullptr) const override {
    if (Vector)
      return RISCVRegisterClass::VRRC;
    if (!Ty)
      return RISCVRegisterClass::GPRRC;

    Type *ScalarTy = Ty->getScalarType();
    if ((ScalarTy->isHalfTy() && ST->hasStdExtZfhmin()) ||
        (ScalarTy->isFloatTy() && ST->hasStdExtF()) ||
        (ScalarTy->isDoubleTy() && ST->hasStdExtD())) {
      return RISCVRegisterClass::FPRRC;
    }

    return RISCVRegisterClass::GPRRC;
  }

  const char *getRegisterClassName(unsigned ClassID) const override {
    switch (ClassID) {
    case RISCVRegisterClass::GPRRC:
      return "RISCV::GPRRC";
    case RISCVRegisterClass::FPRRC:
      return "RISCV::FPRRC";
    case RISCVRegisterClass::VRRC:
      return "RISCV::VRRC";
    }
    llvm_unreachable("unknown register class");
  }

  bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
                     const TargetTransformInfo::LSRCost &C2) const override;

  bool shouldConsiderAddressTypePromotion(
      const Instruction &I,
      bool &AllowPromotionWithoutCommonHeader) const override;
  std::optional<unsigned> getMinPageSize() const override { return 4096; }
  /// Return true if the (vector) instruction I will be lowered to an
  /// instruction with a scalar splat operand for the given Operand number.
  bool canSplatOperand(Instruction *I, int Operand) const;
  /// Return true if a vector instruction will lower to a target instruction
  /// able to splat the given operand.
  bool canSplatOperand(unsigned Opcode, int Operand) const;

  bool isProfitableToSinkOperands(Instruction *I,
                                  SmallVectorImpl<Use *> &Ops) const override;

  TTI::MemCmpExpansionOptions
  enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const override;
};

} // end namespace llvm

#endif // LLVM_LIB_TARGET_RISCV_RISCVTARGETTRANSFORMINFO_H