1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
|
//===- SPIRVInstructionSelector.cpp ------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the targeting of the InstructionSelector class for
// SPIRV.
// TODO: This should be generated by TableGen.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "MCTargetDesc/SPIRVMCTargetDesc.h"
#include "SPIRV.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVInstrInfo.h"
#include "SPIRVRegisterInfo.h"
#include "SPIRVTargetMachine.h"
#include "SPIRVUtils.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/GlobalISel/GIMatchTableExecutorImpl.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#define DEBUG_TYPE "spirv-isel"
using namespace llvm;
namespace CL = SPIRV::OpenCLExtInst;
namespace GL = SPIRV::GLSLExtInst;
using ExtInstList =
std::vector<std::pair<SPIRV::InstructionSet::InstructionSet, uint32_t>>;
namespace {
llvm::SPIRV::SelectionControl::SelectionControl
getSelectionOperandForImm(int Imm) {
if (Imm == 2)
return SPIRV::SelectionControl::Flatten;
if (Imm == 1)
return SPIRV::SelectionControl::DontFlatten;
if (Imm == 0)
return SPIRV::SelectionControl::None;
llvm_unreachable("Invalid immediate");
}
#define GET_GLOBALISEL_PREDICATE_BITSET
#include "SPIRVGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATE_BITSET
class SPIRVInstructionSelector : public InstructionSelector {
const SPIRVSubtarget &STI;
const SPIRVInstrInfo &TII;
const SPIRVRegisterInfo &TRI;
const RegisterBankInfo &RBI;
SPIRVGlobalRegistry &GR;
MachineRegisterInfo *MRI;
MachineFunction *HasVRegsReset = nullptr;
/// We need to keep track of the number we give to anonymous global values to
/// generate the same name every time when this is needed.
mutable DenseMap<const GlobalValue *, unsigned> UnnamedGlobalIDs;
SmallPtrSet<MachineInstr *, 8> DeadMIs;
public:
SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
const SPIRVSubtarget &ST,
const RegisterBankInfo &RBI);
void setupMF(MachineFunction &MF, GISelValueTracking *VT,
CodeGenCoverage *CoverageInfo, ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) override;
// Common selection code. Instruction-specific selection occurs in spvSelect.
bool select(MachineInstr &I) override;
static const char *getName() { return DEBUG_TYPE; }
#define GET_GLOBALISEL_PREDICATES_DECL
#include "SPIRVGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_DECL
#define GET_GLOBALISEL_TEMPORARIES_DECL
#include "SPIRVGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_DECL
private:
void resetVRegsType(MachineFunction &MF);
// tblgen-erated 'select' implementation, used as the initial selector for
// the patterns that don't require complex C++.
bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
// All instruction-specific selection that didn't happen in "select()".
// Is basically a large Switch/Case delegating to all other select method.
bool spvSelect(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectFirstBitHigh(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, bool IsSigned) const;
bool selectFirstBitLow(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectFirstBitSet16(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, unsigned ExtendOpcode,
unsigned BitSetOpcode) const;
bool selectFirstBitSet32(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, Register SrcReg,
unsigned BitSetOpcode) const;
bool selectFirstBitSet64(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, Register SrcReg,
unsigned BitSetOpcode, bool SwapPrimarySide) const;
bool selectFirstBitSet64Overflow(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, Register SrcReg,
unsigned BitSetOpcode,
bool SwapPrimarySide) const;
bool selectGlobalValue(Register ResVReg, MachineInstr &I,
const MachineInstr *Init = nullptr) const;
bool selectOpWithSrcs(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, std::vector<Register> SrcRegs,
unsigned Opcode) const;
bool selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
unsigned Opcode) const;
bool selectBitcast(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectLoad(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectStore(MachineInstr &I) const;
bool selectStackSave(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectStackRestore(MachineInstr &I) const;
bool selectMemOperation(Register ResVReg, MachineInstr &I) const;
bool selectAtomicRMW(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, unsigned NewOpcode,
unsigned NegateOpcode = 0) const;
bool selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectFence(MachineInstr &I) const;
bool selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectAnyOrAll(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, unsigned OpType) const;
bool selectAll(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectAny(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectBitreverse(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectBuildVector(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectSplatVector(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectCmp(Register ResVReg, const SPIRVType *ResType,
unsigned comparisonOpcode, MachineInstr &I) const;
bool selectDiscard(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectICmp(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectFCmp(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectSign(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectFloatDot(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectOverflowArith(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, unsigned Opcode) const;
bool selectIntegerDot(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, bool Signed) const;
bool selectIntegerDotExpansion(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
template <bool Signed>
bool selectDot4AddPacked(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
template <bool Signed>
bool selectDot4AddPackedExpansion(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectWaveReduceMax(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, bool IsUnsigned) const;
bool selectWaveReduceSum(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectConst(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectSelect(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
bool IsSigned) const;
bool selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
bool IsSigned, unsigned Opcode) const;
bool selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
bool IsSigned) const;
bool selectTrunc(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectSUCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
bool IsSigned) const;
bool selectIntToBool(Register IntReg, Register ResVReg, MachineInstr &I,
const SPIRVType *intTy, const SPIRVType *boolTy) const;
bool selectOpUndef(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectFreeze(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectIntrinsic(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectExtractVal(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectInsertVal(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectExtractElt(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectInsertElt(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectGEP(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectFrameIndex(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectAllocaArray(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectBranch(MachineInstr &I) const;
bool selectBranchCond(MachineInstr &I) const;
bool selectPhi(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectExtInst(Register ResVReg, const SPIRVType *RestType,
MachineInstr &I, GL::GLSLExtInst GLInst) const;
bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, CL::OpenCLExtInst CLInst) const;
bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, CL::OpenCLExtInst CLInst,
GL::GLSLExtInst GLInst) const;
bool selectExtInst(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, const ExtInstList &ExtInsts) const;
bool selectLog10(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectSaturate(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectWaveOpInst(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I, unsigned Opcode) const;
bool selectWaveActiveCountBits(Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectUnmergeValues(MachineInstr &I) const;
bool selectHandleFromBinding(Register &ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectReadImageIntrinsic(Register &ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool selectImageWriteIntrinsic(MachineInstr &I) const;
bool selectResourceGetPointer(Register &ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
// Utilities
std::pair<Register, bool>
buildI32Constant(uint32_t Val, MachineInstr &I,
const SPIRVType *ResType = nullptr) const;
Register buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const;
Register buildZerosValF(const SPIRVType *ResType, MachineInstr &I) const;
Register buildOnesVal(bool AllOnes, const SPIRVType *ResType,
MachineInstr &I) const;
Register buildOnesValF(const SPIRVType *ResType, MachineInstr &I) const;
bool wrapIntoSpecConstantOp(MachineInstr &I,
SmallVector<Register> &CompositeArgs) const;
Register getUcharPtrTypeReg(MachineInstr &I,
SPIRV::StorageClass::StorageClass SC) const;
MachineInstrBuilder buildSpecConstantOp(MachineInstr &I, Register Dest,
Register Src, Register DestType,
uint32_t Opcode) const;
MachineInstrBuilder buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
SPIRVType *SrcPtrTy) const;
Register buildPointerToResource(const SPIRVType *ResType,
SPIRV::StorageClass::StorageClass SC,
uint32_t Set, uint32_t Binding,
uint32_t ArraySize, Register IndexReg,
bool IsNonUniform, StringRef Name,
MachineIRBuilder MIRBuilder) const;
SPIRVType *widenTypeToVec4(const SPIRVType *Type, MachineInstr &I) const;
bool extractSubvector(Register &ResVReg, const SPIRVType *ResType,
Register &ReadReg, MachineInstr &InsertionPoint) const;
bool generateImageRead(Register &ResVReg, const SPIRVType *ResType,
Register ImageReg, Register IdxReg, DebugLoc Loc,
MachineInstr &Pos) const;
bool BuildCOPY(Register DestReg, Register SrcReg, MachineInstr &I) const;
bool loadVec3BuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool loadBuiltinInputID(SPIRV::BuiltIn::BuiltIn BuiltInValue,
Register ResVReg, const SPIRVType *ResType,
MachineInstr &I) const;
bool loadHandleBeforePosition(Register &HandleReg, const SPIRVType *ResType,
GIntrinsic &HandleDef, MachineInstr &Pos) const;
};
bool sampledTypeIsSignedInteger(const llvm::Type *HandleType) {
const TargetExtType *TET = cast<TargetExtType>(HandleType);
if (TET->getTargetExtName() == "spirv.Image") {
return false;
}
assert(TET->getTargetExtName() == "spirv.SignedImage");
return TET->getTypeParameter(0)->isIntegerTy();
}
} // end anonymous namespace
#define GET_GLOBALISEL_IMPL
#include "SPIRVGenGlobalISel.inc"
#undef GET_GLOBALISEL_IMPL
SPIRVInstructionSelector::SPIRVInstructionSelector(const SPIRVTargetMachine &TM,
const SPIRVSubtarget &ST,
const RegisterBankInfo &RBI)
: InstructionSelector(), STI(ST), TII(*ST.getInstrInfo()),
TRI(*ST.getRegisterInfo()), RBI(RBI), GR(*ST.getSPIRVGlobalRegistry()),
#define GET_GLOBALISEL_PREDICATES_INIT
#include "SPIRVGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
#include "SPIRVGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_INIT
{
}
void SPIRVInstructionSelector::setupMF(MachineFunction &MF,
GISelValueTracking *VT,
CodeGenCoverage *CoverageInfo,
ProfileSummaryInfo *PSI,
BlockFrequencyInfo *BFI) {
MRI = &MF.getRegInfo();
GR.setCurrentFunc(MF);
InstructionSelector::setupMF(MF, VT, CoverageInfo, PSI, BFI);
}
// Ensure that register classes correspond to pattern matching rules.
void SPIRVInstructionSelector::resetVRegsType(MachineFunction &MF) {
if (HasVRegsReset == &MF)
return;
HasVRegsReset = &MF;
MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
Register Reg = Register::index2VirtReg(I);
LLT RegType = MRI.getType(Reg);
if (RegType.isScalar())
MRI.setType(Reg, LLT::scalar(64));
else if (RegType.isPointer())
MRI.setType(Reg, LLT::pointer(0, 64));
else if (RegType.isVector())
MRI.setType(Reg, LLT::fixed_vector(2, LLT::scalar(64)));
}
for (const auto &MBB : MF) {
for (const auto &MI : MBB) {
if (isPreISelGenericOpcode(MI.getOpcode()))
GR.erase(&MI);
if (MI.getOpcode() != SPIRV::ASSIGN_TYPE)
continue;
Register DstReg = MI.getOperand(0).getReg();
LLT DstType = MRI.getType(DstReg);
Register SrcReg = MI.getOperand(1).getReg();
LLT SrcType = MRI.getType(SrcReg);
if (DstType != SrcType)
MRI.setType(DstReg, MRI.getType(SrcReg));
const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg);
const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg);
if (DstRC != SrcRC && SrcRC)
MRI.setRegClass(DstReg, SrcRC);
}
}
}
// Return true if the type represents a constant register
static bool isConstReg(MachineRegisterInfo *MRI, MachineInstr *OpDef,
SmallPtrSet<SPIRVType *, 4> &Visited) {
OpDef = passCopy(OpDef, MRI);
if (Visited.contains(OpDef))
return true;
Visited.insert(OpDef);
unsigned Opcode = OpDef->getOpcode();
switch (Opcode) {
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_FCONSTANT:
return true;
case TargetOpcode::G_INTRINSIC:
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
return cast<GIntrinsic>(*OpDef).getIntrinsicID() ==
Intrinsic::spv_const_composite;
case TargetOpcode::G_BUILD_VECTOR:
case TargetOpcode::G_SPLAT_VECTOR: {
for (unsigned i = OpDef->getNumExplicitDefs(); i < OpDef->getNumOperands();
i++) {
MachineInstr *OpNestedDef =
OpDef->getOperand(i).isReg()
? MRI->getVRegDef(OpDef->getOperand(i).getReg())
: nullptr;
if (OpNestedDef && !isConstReg(MRI, OpNestedDef, Visited))
return false;
}
return true;
case SPIRV::OpConstantTrue:
case SPIRV::OpConstantFalse:
case SPIRV::OpConstantI:
case SPIRV::OpConstantF:
case SPIRV::OpConstantComposite:
case SPIRV::OpConstantCompositeContinuedINTEL:
case SPIRV::OpConstantSampler:
case SPIRV::OpConstantNull:
case SPIRV::OpUndef:
case SPIRV::OpConstantFunctionPointerINTEL:
return true;
}
}
return false;
}
// Return true if the virtual register represents a constant
static bool isConstReg(MachineRegisterInfo *MRI, Register OpReg) {
SmallPtrSet<SPIRVType *, 4> Visited;
if (MachineInstr *OpDef = MRI->getVRegDef(OpReg))
return isConstReg(MRI, OpDef, Visited);
return false;
}
bool isDead(const MachineInstr &MI, const MachineRegisterInfo &MRI) {
for (const auto &MO : MI.all_defs()) {
Register Reg = MO.getReg();
if (Reg.isPhysical() || !MRI.use_nodbg_empty(Reg))
return false;
}
if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE || MI.isFakeUse() ||
MI.isLifetimeMarker())
return false;
if (MI.isPHI())
return true;
if (MI.mayStore() || MI.isCall() ||
(MI.mayLoad() && MI.hasOrderedMemoryRef()) || MI.isPosition() ||
MI.isDebugInstr() || MI.isTerminator() || MI.isJumpTableDebugInfo())
return false;
return true;
}
bool SPIRVInstructionSelector::select(MachineInstr &I) {
resetVRegsType(*I.getParent()->getParent());
assert(I.getParent() && "Instruction should be in a basic block!");
assert(I.getParent()->getParent() && "Instruction should be in a function!");
Register Opcode = I.getOpcode();
// If it's not a GMIR instruction, we've selected it already.
if (!isPreISelGenericOpcode(Opcode)) {
if (Opcode == SPIRV::ASSIGN_TYPE) { // These pseudos aren't needed any more.
Register DstReg = I.getOperand(0).getReg();
Register SrcReg = I.getOperand(1).getReg();
auto *Def = MRI->getVRegDef(SrcReg);
if (isTypeFoldingSupported(Def->getOpcode()) &&
Def->getOpcode() != TargetOpcode::G_CONSTANT &&
Def->getOpcode() != TargetOpcode::G_FCONSTANT) {
bool Res = selectImpl(I, *CoverageInfo);
LLVM_DEBUG({
if (!Res && Def->getOpcode() != TargetOpcode::G_CONSTANT) {
dbgs() << "Unexpected pattern in ASSIGN_TYPE.\nInstruction: ";
I.print(dbgs());
}
});
assert(Res || Def->getOpcode() == TargetOpcode::G_CONSTANT);
if (Res) {
if (!isTriviallyDead(*Def, *MRI) && isDead(*Def, *MRI))
DeadMIs.insert(Def);
return Res;
}
}
MRI->setRegClass(SrcReg, MRI->getRegClass(DstReg));
MRI->replaceRegWith(SrcReg, DstReg);
GR.invalidateMachineInstr(&I);
I.removeFromParent();
return true;
} else if (I.getNumDefs() == 1) {
// Make all vregs 64 bits (for SPIR-V IDs).
MRI->setType(I.getOperand(0).getReg(), LLT::scalar(64));
}
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
if (DeadMIs.contains(&I)) {
// if the instruction has been already made dead by folding it away
// erase it
LLVM_DEBUG(dbgs() << "Instruction is folded and dead.\n");
salvageDebugInfo(*MRI, I);
GR.invalidateMachineInstr(&I);
I.eraseFromParent();
return true;
}
if (I.getNumOperands() != I.getNumExplicitOperands()) {
LLVM_DEBUG(errs() << "Generic instr has unexpected implicit operands\n");
return false;
}
// Common code for getting return reg+type, and removing selected instr
// from parent occurs here. Instr-specific selection happens in spvSelect().
bool HasDefs = I.getNumDefs() > 0;
Register ResVReg = HasDefs ? I.getOperand(0).getReg() : Register(0);
SPIRVType *ResType = HasDefs ? GR.getSPIRVTypeForVReg(ResVReg) : nullptr;
assert(!HasDefs || ResType || I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF);
if (spvSelect(ResVReg, ResType, I)) {
if (HasDefs) // Make all vregs 64 bits (for SPIR-V IDs).
for (unsigned i = 0; i < I.getNumDefs(); ++i)
MRI->setType(I.getOperand(i).getReg(), LLT::scalar(64));
GR.invalidateMachineInstr(&I);
I.removeFromParent();
return true;
}
return false;
}
static bool mayApplyGenericSelection(unsigned Opcode) {
switch (Opcode) {
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_FCONSTANT:
return false;
case TargetOpcode::G_SADDO:
case TargetOpcode::G_SSUBO:
return true;
}
return isTypeFoldingSupported(Opcode);
}
bool SPIRVInstructionSelector::BuildCOPY(Register DestReg, Register SrcReg,
MachineInstr &I) const {
const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(DestReg);
const TargetRegisterClass *SrcRC = MRI->getRegClassOrNull(SrcReg);
if (DstRC != SrcRC && SrcRC)
MRI->setRegClass(DestReg, SrcRC);
return BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(TargetOpcode::COPY))
.addDef(DestReg)
.addUse(SrcReg)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::spvSelect(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
const unsigned Opcode = I.getOpcode();
if (mayApplyGenericSelection(Opcode))
return selectImpl(I, *CoverageInfo);
switch (Opcode) {
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_FCONSTANT:
return selectConst(ResVReg, ResType, I);
case TargetOpcode::G_GLOBAL_VALUE:
return selectGlobalValue(ResVReg, I);
case TargetOpcode::G_IMPLICIT_DEF:
return selectOpUndef(ResVReg, ResType, I);
case TargetOpcode::G_FREEZE:
return selectFreeze(ResVReg, ResType, I);
case TargetOpcode::G_INTRINSIC:
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
case TargetOpcode::G_INTRINSIC_CONVERGENT:
case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
return selectIntrinsic(ResVReg, ResType, I);
case TargetOpcode::G_BITREVERSE:
return selectBitreverse(ResVReg, ResType, I);
case TargetOpcode::G_BUILD_VECTOR:
return selectBuildVector(ResVReg, ResType, I);
case TargetOpcode::G_SPLAT_VECTOR:
return selectSplatVector(ResVReg, ResType, I);
case TargetOpcode::G_SHUFFLE_VECTOR: {
MachineBasicBlock &BB = *I.getParent();
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(I.getOperand(1).getReg())
.addUse(I.getOperand(2).getReg());
for (auto V : I.getOperand(3).getShuffleMask())
MIB.addImm(V);
return MIB.constrainAllUses(TII, TRI, RBI);
}
case TargetOpcode::G_MEMMOVE:
case TargetOpcode::G_MEMCPY:
case TargetOpcode::G_MEMSET:
return selectMemOperation(ResVReg, I);
case TargetOpcode::G_ICMP:
return selectICmp(ResVReg, ResType, I);
case TargetOpcode::G_FCMP:
return selectFCmp(ResVReg, ResType, I);
case TargetOpcode::G_FRAME_INDEX:
return selectFrameIndex(ResVReg, ResType, I);
case TargetOpcode::G_LOAD:
return selectLoad(ResVReg, ResType, I);
case TargetOpcode::G_STORE:
return selectStore(I);
case TargetOpcode::G_BR:
return selectBranch(I);
case TargetOpcode::G_BRCOND:
return selectBranchCond(I);
case TargetOpcode::G_PHI:
return selectPhi(ResVReg, ResType, I);
case TargetOpcode::G_FPTOSI:
return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS);
case TargetOpcode::G_FPTOUI:
return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU);
case TargetOpcode::G_SITOFP:
return selectIToF(ResVReg, ResType, I, true, SPIRV::OpConvertSToF);
case TargetOpcode::G_UITOFP:
return selectIToF(ResVReg, ResType, I, false, SPIRV::OpConvertUToF);
case TargetOpcode::G_CTPOP:
return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitCount);
case TargetOpcode::G_SMIN:
return selectExtInst(ResVReg, ResType, I, CL::s_min, GL::SMin);
case TargetOpcode::G_UMIN:
return selectExtInst(ResVReg, ResType, I, CL::u_min, GL::UMin);
case TargetOpcode::G_SMAX:
return selectExtInst(ResVReg, ResType, I, CL::s_max, GL::SMax);
case TargetOpcode::G_UMAX:
return selectExtInst(ResVReg, ResType, I, CL::u_max, GL::UMax);
case TargetOpcode::G_SCMP:
return selectSUCmp(ResVReg, ResType, I, true);
case TargetOpcode::G_UCMP:
return selectSUCmp(ResVReg, ResType, I, false);
case TargetOpcode::G_STRICT_FMA:
case TargetOpcode::G_FMA:
return selectExtInst(ResVReg, ResType, I, CL::fma, GL::Fma);
case TargetOpcode::G_STRICT_FLDEXP:
return selectExtInst(ResVReg, ResType, I, CL::ldexp);
case TargetOpcode::G_FPOW:
return selectExtInst(ResVReg, ResType, I, CL::pow, GL::Pow);
case TargetOpcode::G_FPOWI:
return selectExtInst(ResVReg, ResType, I, CL::pown);
case TargetOpcode::G_FEXP:
return selectExtInst(ResVReg, ResType, I, CL::exp, GL::Exp);
case TargetOpcode::G_FEXP2:
return selectExtInst(ResVReg, ResType, I, CL::exp2, GL::Exp2);
case TargetOpcode::G_FLOG:
return selectExtInst(ResVReg, ResType, I, CL::log, GL::Log);
case TargetOpcode::G_FLOG2:
return selectExtInst(ResVReg, ResType, I, CL::log2, GL::Log2);
case TargetOpcode::G_FLOG10:
return selectLog10(ResVReg, ResType, I);
case TargetOpcode::G_FABS:
return selectExtInst(ResVReg, ResType, I, CL::fabs, GL::FAbs);
case TargetOpcode::G_ABS:
return selectExtInst(ResVReg, ResType, I, CL::s_abs, GL::SAbs);
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMINIMUM:
return selectExtInst(ResVReg, ResType, I, CL::fmin, GL::NMin);
case TargetOpcode::G_FMAXNUM:
case TargetOpcode::G_FMAXIMUM:
return selectExtInst(ResVReg, ResType, I, CL::fmax, GL::NMax);
case TargetOpcode::G_FCOPYSIGN:
return selectExtInst(ResVReg, ResType, I, CL::copysign);
case TargetOpcode::G_FCEIL:
return selectExtInst(ResVReg, ResType, I, CL::ceil, GL::Ceil);
case TargetOpcode::G_FFLOOR:
return selectExtInst(ResVReg, ResType, I, CL::floor, GL::Floor);
case TargetOpcode::G_FCOS:
return selectExtInst(ResVReg, ResType, I, CL::cos, GL::Cos);
case TargetOpcode::G_FSIN:
return selectExtInst(ResVReg, ResType, I, CL::sin, GL::Sin);
case TargetOpcode::G_FTAN:
return selectExtInst(ResVReg, ResType, I, CL::tan, GL::Tan);
case TargetOpcode::G_FACOS:
return selectExtInst(ResVReg, ResType, I, CL::acos, GL::Acos);
case TargetOpcode::G_FASIN:
return selectExtInst(ResVReg, ResType, I, CL::asin, GL::Asin);
case TargetOpcode::G_FATAN:
return selectExtInst(ResVReg, ResType, I, CL::atan, GL::Atan);
case TargetOpcode::G_FATAN2:
return selectExtInst(ResVReg, ResType, I, CL::atan2, GL::Atan2);
case TargetOpcode::G_FCOSH:
return selectExtInst(ResVReg, ResType, I, CL::cosh, GL::Cosh);
case TargetOpcode::G_FSINH:
return selectExtInst(ResVReg, ResType, I, CL::sinh, GL::Sinh);
case TargetOpcode::G_FTANH:
return selectExtInst(ResVReg, ResType, I, CL::tanh, GL::Tanh);
case TargetOpcode::G_STRICT_FSQRT:
case TargetOpcode::G_FSQRT:
return selectExtInst(ResVReg, ResType, I, CL::sqrt, GL::Sqrt);
case TargetOpcode::G_CTTZ:
case TargetOpcode::G_CTTZ_ZERO_UNDEF:
return selectExtInst(ResVReg, ResType, I, CL::ctz);
case TargetOpcode::G_CTLZ:
case TargetOpcode::G_CTLZ_ZERO_UNDEF:
return selectExtInst(ResVReg, ResType, I, CL::clz);
case TargetOpcode::G_INTRINSIC_ROUND:
return selectExtInst(ResVReg, ResType, I, CL::round, GL::Round);
case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
case TargetOpcode::G_INTRINSIC_TRUNC:
return selectExtInst(ResVReg, ResType, I, CL::trunc, GL::Trunc);
case TargetOpcode::G_FRINT:
case TargetOpcode::G_FNEARBYINT:
return selectExtInst(ResVReg, ResType, I, CL::rint, GL::RoundEven);
case TargetOpcode::G_SMULH:
return selectExtInst(ResVReg, ResType, I, CL::s_mul_hi);
case TargetOpcode::G_UMULH:
return selectExtInst(ResVReg, ResType, I, CL::u_mul_hi);
case TargetOpcode::G_SADDSAT:
return selectExtInst(ResVReg, ResType, I, CL::s_add_sat);
case TargetOpcode::G_UADDSAT:
return selectExtInst(ResVReg, ResType, I, CL::u_add_sat);
case TargetOpcode::G_SSUBSAT:
return selectExtInst(ResVReg, ResType, I, CL::s_sub_sat);
case TargetOpcode::G_USUBSAT:
return selectExtInst(ResVReg, ResType, I, CL::u_sub_sat);
case TargetOpcode::G_UADDO:
return selectOverflowArith(ResVReg, ResType, I,
ResType->getOpcode() == SPIRV::OpTypeVector
? SPIRV::OpIAddCarryV
: SPIRV::OpIAddCarryS);
case TargetOpcode::G_USUBO:
return selectOverflowArith(ResVReg, ResType, I,
ResType->getOpcode() == SPIRV::OpTypeVector
? SPIRV::OpISubBorrowV
: SPIRV::OpISubBorrowS);
case TargetOpcode::G_UMULO:
return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpUMulExtended);
case TargetOpcode::G_SMULO:
return selectOverflowArith(ResVReg, ResType, I, SPIRV::OpSMulExtended);
case TargetOpcode::G_SEXT:
return selectExt(ResVReg, ResType, I, true);
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_ZEXT:
return selectExt(ResVReg, ResType, I, false);
case TargetOpcode::G_TRUNC:
return selectTrunc(ResVReg, ResType, I);
case TargetOpcode::G_FPTRUNC:
case TargetOpcode::G_FPEXT:
return selectUnOp(ResVReg, ResType, I, SPIRV::OpFConvert);
case TargetOpcode::G_PTRTOINT:
return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertPtrToU);
case TargetOpcode::G_INTTOPTR:
return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertUToPtr);
case TargetOpcode::G_BITCAST:
return selectBitcast(ResVReg, ResType, I);
case TargetOpcode::G_ADDRSPACE_CAST:
return selectAddrSpaceCast(ResVReg, ResType, I);
case TargetOpcode::G_PTR_ADD: {
// Currently, we get G_PTR_ADD only applied to global variables.
assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
Register GV = I.getOperand(1).getReg();
MachineRegisterInfo::def_instr_iterator II = MRI->def_instr_begin(GV);
(void)II;
assert(((*II).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
(*II).getOpcode() == TargetOpcode::COPY ||
(*II).getOpcode() == SPIRV::OpVariable) &&
getImm(I.getOperand(2), MRI));
// It may be the initialization of a global variable.
bool IsGVInit = false;
for (MachineRegisterInfo::use_instr_iterator
UseIt = MRI->use_instr_begin(I.getOperand(0).getReg()),
UseEnd = MRI->use_instr_end();
UseIt != UseEnd; UseIt = std::next(UseIt)) {
if ((*UseIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
(*UseIt).getOpcode() == SPIRV::OpVariable) {
IsGVInit = true;
break;
}
}
MachineBasicBlock &BB = *I.getParent();
if (!IsGVInit) {
SPIRVType *GVType = GR.getSPIRVTypeForVReg(GV);
SPIRVType *GVPointeeType = GR.getPointeeType(GVType);
SPIRVType *ResPointeeType = GR.getPointeeType(ResType);
if (GVPointeeType && ResPointeeType && GVPointeeType != ResPointeeType) {
// Build a new virtual register that is associated with the required
// data type.
Register NewVReg = MRI->createGenericVirtualRegister(MRI->getType(GV));
MRI->setRegClass(NewVReg, MRI->getRegClass(GV));
// Having a correctly typed base we are ready to build the actually
// required GEP. It may not be a constant though, because all Operands
// of OpSpecConstantOp is to originate from other const instructions,
// and only the AccessChain named opcodes accept a global OpVariable
// instruction. We can't use an AccessChain opcode because of the type
// mismatch between result and base types.
if (!GR.isBitcastCompatible(ResType, GVType))
report_fatal_error(
"incompatible result and operand types in a bitcast");
Register ResTypeReg = GR.getSPIRVTypeID(ResType);
MachineInstrBuilder MIB =
BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitcast))
.addDef(NewVReg)
.addUse(ResTypeReg)
.addUse(GV);
return MIB.constrainAllUses(TII, TRI, RBI) &&
BuildMI(BB, I, I.getDebugLoc(),
TII.get(STI.isLogicalSPIRV()
? SPIRV::OpInBoundsAccessChain
: SPIRV::OpInBoundsPtrAccessChain))
.addDef(ResVReg)
.addUse(ResTypeReg)
.addUse(NewVReg)
.addUse(I.getOperand(2).getReg())
.constrainAllUses(TII, TRI, RBI);
} else {
return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addImm(
static_cast<uint32_t>(SPIRV::Opcode::InBoundsPtrAccessChain))
.addUse(GV)
.addUse(I.getOperand(2).getReg())
.constrainAllUses(TII, TRI, RBI);
}
}
// It's possible to translate G_PTR_ADD to OpSpecConstantOp: either to
// initialize a global variable with a constant expression (e.g., the test
// case opencl/basic/progvar_prog_scope_init.ll), or for another use case
Register Idx = buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSpecConstantOp))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addImm(static_cast<uint32_t>(
SPIRV::Opcode::InBoundsPtrAccessChain))
.addUse(GV)
.addUse(Idx)
.addUse(I.getOperand(2).getReg());
return MIB.constrainAllUses(TII, TRI, RBI);
}
case TargetOpcode::G_ATOMICRMW_OR:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicOr);
case TargetOpcode::G_ATOMICRMW_ADD:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicIAdd);
case TargetOpcode::G_ATOMICRMW_AND:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicAnd);
case TargetOpcode::G_ATOMICRMW_MAX:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMax);
case TargetOpcode::G_ATOMICRMW_MIN:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMin);
case TargetOpcode::G_ATOMICRMW_SUB:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicISub);
case TargetOpcode::G_ATOMICRMW_XOR:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicXor);
case TargetOpcode::G_ATOMICRMW_UMAX:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMax);
case TargetOpcode::G_ATOMICRMW_UMIN:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMin);
case TargetOpcode::G_ATOMICRMW_XCHG:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicExchange);
case TargetOpcode::G_ATOMIC_CMPXCHG:
return selectAtomicCmpXchg(ResVReg, ResType, I);
case TargetOpcode::G_ATOMICRMW_FADD:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT);
case TargetOpcode::G_ATOMICRMW_FSUB:
// Translate G_ATOMICRMW_FSUB to OpAtomicFAddEXT with negative value operand
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFAddEXT,
SPIRV::OpFNegate);
case TargetOpcode::G_ATOMICRMW_FMIN:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMinEXT);
case TargetOpcode::G_ATOMICRMW_FMAX:
return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicFMaxEXT);
case TargetOpcode::G_FENCE:
return selectFence(I);
case TargetOpcode::G_STACKSAVE:
return selectStackSave(ResVReg, ResType, I);
case TargetOpcode::G_STACKRESTORE:
return selectStackRestore(I);
case TargetOpcode::G_UNMERGE_VALUES:
return selectUnmergeValues(I);
// Discard gen opcodes for intrinsics which we do not expect to actually
// represent code after lowering or intrinsics which are not implemented but
// should not crash when found in a customer's LLVM IR input.
case TargetOpcode::G_TRAP:
case TargetOpcode::G_DEBUGTRAP:
case TargetOpcode::G_UBSANTRAP:
case TargetOpcode::DBG_LABEL:
return true;
default:
return false;
}
}
bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
GL::GLSLExtInst GLInst) const {
if (!STI.canUseExtInstSet(
SPIRV::InstructionSet::InstructionSet::GLSL_std_450)) {
std::string DiagMsg;
raw_string_ostream OS(DiagMsg);
I.print(OS, true, false, false, false);
DiagMsg += " is only supported with the GLSL extended instruction set.\n";
report_fatal_error(DiagMsg.c_str(), false);
}
return selectExtInst(ResVReg, ResType, I,
{{SPIRV::InstructionSet::GLSL_std_450, GLInst}});
}
bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
CL::OpenCLExtInst CLInst) const {
return selectExtInst(ResVReg, ResType, I,
{{SPIRV::InstructionSet::OpenCL_std, CLInst}});
}
bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
CL::OpenCLExtInst CLInst,
GL::GLSLExtInst GLInst) const {
ExtInstList ExtInsts = {{SPIRV::InstructionSet::OpenCL_std, CLInst},
{SPIRV::InstructionSet::GLSL_std_450, GLInst}};
return selectExtInst(ResVReg, ResType, I, ExtInsts);
}
bool SPIRVInstructionSelector::selectExtInst(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
const ExtInstList &Insts) const {
for (const auto &Ex : Insts) {
SPIRV::InstructionSet::InstructionSet Set = Ex.first;
uint32_t Opcode = Ex.second;
if (STI.canUseExtInstSet(Set)) {
MachineBasicBlock &BB = *I.getParent();
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addImm(static_cast<uint32_t>(Set))
.addImm(Opcode);
const unsigned NumOps = I.getNumOperands();
unsigned Index = 1;
if (Index < NumOps &&
I.getOperand(Index).getType() ==
MachineOperand::MachineOperandType::MO_IntrinsicID)
Index = 2;
for (; Index < NumOps; ++Index)
MIB.add(I.getOperand(Index));
return MIB.constrainAllUses(TII, TRI, RBI);
}
}
return false;
}
bool SPIRVInstructionSelector::selectOpWithSrcs(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
std::vector<Register> Srcs,
unsigned Opcode) const {
auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType));
for (Register SReg : Srcs) {
MIB.addUse(SReg);
}
return MIB.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectUnOp(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
unsigned Opcode) const {
if (STI.isPhysicalSPIRV() && I.getOperand(1).isReg()) {
Register SrcReg = I.getOperand(1).getReg();
bool IsGV = false;
for (MachineRegisterInfo::def_instr_iterator DefIt =
MRI->def_instr_begin(SrcReg);
DefIt != MRI->def_instr_end(); DefIt = std::next(DefIt)) {
if ((*DefIt).getOpcode() == TargetOpcode::G_GLOBAL_VALUE ||
(*DefIt).getOpcode() == SPIRV::OpVariable) {
IsGV = true;
break;
}
}
if (IsGV) {
uint32_t SpecOpcode = 0;
switch (Opcode) {
case SPIRV::OpConvertPtrToU:
SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertPtrToU);
break;
case SPIRV::OpConvertUToPtr:
SpecOpcode = static_cast<uint32_t>(SPIRV::Opcode::ConvertUToPtr);
break;
}
if (SpecOpcode)
return BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(SPIRV::OpSpecConstantOp))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addImm(SpecOpcode)
.addUse(SrcReg)
.constrainAllUses(TII, TRI, RBI);
}
}
return selectOpWithSrcs(ResVReg, ResType, I, {I.getOperand(1).getReg()},
Opcode);
}
bool SPIRVInstructionSelector::selectBitcast(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
Register OpReg = I.getOperand(1).getReg();
SPIRVType *OpType = OpReg.isValid() ? GR.getSPIRVTypeForVReg(OpReg) : nullptr;
if (!GR.isBitcastCompatible(ResType, OpType))
report_fatal_error("incompatible result and operand types in a bitcast");
return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitcast);
}
static void addMemoryOperands(MachineMemOperand *MemOp,
MachineInstrBuilder &MIB,
MachineIRBuilder &MIRBuilder,
SPIRVGlobalRegistry &GR) {
uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
if (MemOp->isVolatile())
SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
if (MemOp->isNonTemporal())
SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
if (MemOp->getAlign().value())
SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned);
[[maybe_unused]] MachineInstr *AliasList = nullptr;
[[maybe_unused]] MachineInstr *NoAliasList = nullptr;
const SPIRVSubtarget *ST =
static_cast<const SPIRVSubtarget *>(&MIRBuilder.getMF().getSubtarget());
if (ST->canUseExtension(SPIRV::Extension::SPV_INTEL_memory_access_aliasing)) {
if (auto *MD = MemOp->getAAInfo().Scope) {
AliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
if (AliasList)
SpvMemOp |=
static_cast<uint32_t>(SPIRV::MemoryOperand::AliasScopeINTELMask);
}
if (auto *MD = MemOp->getAAInfo().NoAlias) {
NoAliasList = GR.getOrAddMemAliasingINTELInst(MIRBuilder, MD);
if (NoAliasList)
SpvMemOp |=
static_cast<uint32_t>(SPIRV::MemoryOperand::NoAliasINTELMask);
}
}
if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None)) {
MIB.addImm(SpvMemOp);
if (SpvMemOp & static_cast<uint32_t>(SPIRV::MemoryOperand::Aligned))
MIB.addImm(MemOp->getAlign().value());
if (AliasList)
MIB.addUse(AliasList->getOperand(0).getReg());
if (NoAliasList)
MIB.addUse(NoAliasList->getOperand(0).getReg());
}
}
static void addMemoryOperands(uint64_t Flags, MachineInstrBuilder &MIB) {
uint32_t SpvMemOp = static_cast<uint32_t>(SPIRV::MemoryOperand::None);
if (Flags & MachineMemOperand::Flags::MOVolatile)
SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Volatile);
if (Flags & MachineMemOperand::Flags::MONonTemporal)
SpvMemOp |= static_cast<uint32_t>(SPIRV::MemoryOperand::Nontemporal);
if (SpvMemOp != static_cast<uint32_t>(SPIRV::MemoryOperand::None))
MIB.addImm(SpvMemOp);
}
bool SPIRVInstructionSelector::selectLoad(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
Register Ptr = I.getOperand(1 + OpOffset).getReg();
auto *PtrDef = getVRegDef(*MRI, Ptr);
auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
if (IntPtrDef &&
IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
Register HandleReg = IntPtrDef->getOperand(2).getReg();
SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
Register NewHandleReg =
MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
return false;
}
Register IdxReg = IntPtrDef->getOperand(3).getReg();
return generateImageRead(ResVReg, ResType, NewHandleReg, IdxReg,
I.getDebugLoc(), I);
}
}
auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(Ptr);
if (!I.getNumMemOperands()) {
assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
I.getOpcode() ==
TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
} else {
MachineIRBuilder MIRBuilder(I);
addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
}
return MIB.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectStore(MachineInstr &I) const {
unsigned OpOffset = isa<GIntrinsic>(I) ? 1 : 0;
Register StoreVal = I.getOperand(0 + OpOffset).getReg();
Register Ptr = I.getOperand(1 + OpOffset).getReg();
auto *PtrDef = getVRegDef(*MRI, Ptr);
auto *IntPtrDef = dyn_cast<GIntrinsic>(PtrDef);
if (IntPtrDef &&
IntPtrDef->getIntrinsicID() == Intrinsic::spv_resource_getpointer) {
Register HandleReg = IntPtrDef->getOperand(2).getReg();
Register NewHandleReg =
MRI->createVirtualRegister(MRI->getRegClass(HandleReg));
auto *HandleDef = cast<GIntrinsic>(getVRegDef(*MRI, HandleReg));
SPIRVType *HandleType = GR.getSPIRVTypeForVReg(HandleReg);
if (!loadHandleBeforePosition(NewHandleReg, HandleType, *HandleDef, I)) {
return false;
}
Register IdxReg = IntPtrDef->getOperand(3).getReg();
if (HandleType->getOpcode() == SPIRV::OpTypeImage) {
auto BMI = BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(SPIRV::OpImageWrite))
.addUse(NewHandleReg)
.addUse(IdxReg)
.addUse(StoreVal);
const llvm::Type *LLVMHandleType = GR.getTypeForSPIRVType(HandleType);
if (sampledTypeIsSignedInteger(LLVMHandleType))
BMI.addImm(0x1000); // SignExtend
return BMI.constrainAllUses(TII, TRI, RBI);
}
}
MachineBasicBlock &BB = *I.getParent();
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpStore))
.addUse(Ptr)
.addUse(StoreVal);
if (!I.getNumMemOperands()) {
assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ||
I.getOpcode() ==
TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS);
addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB);
} else {
MachineIRBuilder MIRBuilder(I);
addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
}
return MIB.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectStackSave(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
report_fatal_error(
"llvm.stacksave intrinsic: this instruction requires the following "
"SPIR-V extension: SPV_INTEL_variable_length_array",
false);
MachineBasicBlock &BB = *I.getParent();
return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSaveMemoryINTEL))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectStackRestore(MachineInstr &I) const {
if (!STI.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array))
report_fatal_error(
"llvm.stackrestore intrinsic: this instruction requires the following "
"SPIR-V extension: SPV_INTEL_variable_length_array",
false);
if (!I.getOperand(0).isReg())
return false;
MachineBasicBlock &BB = *I.getParent();
return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpRestoreMemoryINTEL))
.addUse(I.getOperand(0).getReg())
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectMemOperation(Register ResVReg,
MachineInstr &I) const {
MachineBasicBlock &BB = *I.getParent();
Register SrcReg = I.getOperand(1).getReg();
bool Result = true;
if (I.getOpcode() == TargetOpcode::G_MEMSET) {
MachineIRBuilder MIRBuilder(I);
assert(I.getOperand(1).isReg() && I.getOperand(2).isReg());
unsigned Val = getIConstVal(I.getOperand(1).getReg(), MRI);
unsigned Num = getIConstVal(I.getOperand(2).getReg(), MRI);
Type *ValTy = Type::getInt8Ty(I.getMF()->getFunction().getContext());
Type *ArrTy = ArrayType::get(ValTy, Num);
SPIRVType *VarTy = GR.getOrCreateSPIRVPointerType(
ArrTy, MIRBuilder, SPIRV::StorageClass::UniformConstant);
SPIRVType *SpvArrTy = GR.getOrCreateSPIRVType(
ArrTy, MIRBuilder, SPIRV::AccessQualifier::None, false);
Register Const = GR.getOrCreateConstIntArray(Val, Num, I, SpvArrTy, TII);
// TODO: check if we have such GV, add init, use buildGlobalVariable.
Function &CurFunction = GR.CurMF->getFunction();
Type *LLVMArrTy =
ArrayType::get(IntegerType::get(CurFunction.getContext(), 8), Num);
// Module takes ownership of the global var.
GlobalVariable *GV = new GlobalVariable(*CurFunction.getParent(), LLVMArrTy,
true, GlobalValue::InternalLinkage,
Constant::getNullValue(LLVMArrTy));
Register VarReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
auto MIBVar =
BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVariable))
.addDef(VarReg)
.addUse(GR.getSPIRVTypeID(VarTy))
.addImm(SPIRV::StorageClass::UniformConstant)
.addUse(Const);
Result &= MIBVar.constrainAllUses(TII, TRI, RBI);
GR.add(GV, MIBVar);
GR.addGlobalObject(GV, GR.CurMF, VarReg);
buildOpDecorate(VarReg, I, TII, SPIRV::Decoration::Constant, {});
SPIRVType *SourceTy = GR.getOrCreateSPIRVPointerType(
ValTy, I, SPIRV::StorageClass::UniformConstant);
SrcReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
selectOpWithSrcs(SrcReg, SourceTy, I, {VarReg}, SPIRV::OpBitcast);
}
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemorySized))
.addUse(I.getOperand(0).getReg())
.addUse(SrcReg)
.addUse(I.getOperand(2).getReg());
if (I.getNumMemOperands()) {
MachineIRBuilder MIRBuilder(I);
addMemoryOperands(*I.memoperands_begin(), MIB, MIRBuilder, GR);
}
Result &= MIB.constrainAllUses(TII, TRI, RBI);
if (ResVReg.isValid() && ResVReg != MIB->getOperand(0).getReg())
Result &= BuildCOPY(ResVReg, MIB->getOperand(0).getReg(), I);
return Result;
}
bool SPIRVInstructionSelector::selectAtomicRMW(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
unsigned NewOpcode,
unsigned NegateOpcode) const {
bool Result = true;
assert(I.hasOneMemOperand());
const MachineMemOperand *MemOp = *I.memoperands_begin();
uint32_t Scope = static_cast<uint32_t>(getMemScope(
GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
auto ScopeConstant = buildI32Constant(Scope, I);
Register ScopeReg = ScopeConstant.first;
Result &= ScopeConstant.second;
Register Ptr = I.getOperand(1).getReg();
// TODO: Changed as it's implemented in the translator. See test/atomicrmw.ll
// auto ScSem =
// getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr));
AtomicOrdering AO = MemOp->getSuccessOrdering();
uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
auto MemSemConstant = buildI32Constant(MemSem /*| ScSem*/, I);
Register MemSemReg = MemSemConstant.first;
Result &= MemSemConstant.second;
Register ValueReg = I.getOperand(2).getReg();
if (NegateOpcode != 0) {
// Translation with negative value operand is requested
Register TmpReg = createVirtualRegister(ResType, &GR, MRI, MRI->getMF());
Result &= selectOpWithSrcs(TmpReg, ResType, I, {ValueReg}, NegateOpcode);
ValueReg = TmpReg;
}
return Result &&
BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(NewOpcode))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(Ptr)
.addUse(ScopeReg)
.addUse(MemSemReg)
.addUse(ValueReg)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectUnmergeValues(MachineInstr &I) const {
unsigned ArgI = I.getNumOperands() - 1;
Register SrcReg =
I.getOperand(ArgI).isReg() ? I.getOperand(ArgI).getReg() : Register(0);
SPIRVType *DefType =
SrcReg.isValid() ? GR.getSPIRVTypeForVReg(SrcReg) : nullptr;
if (!DefType || DefType->getOpcode() != SPIRV::OpTypeVector)
report_fatal_error(
"cannot select G_UNMERGE_VALUES with a non-vector argument");
SPIRVType *ScalarType =
GR.getSPIRVTypeForVReg(DefType->getOperand(1).getReg());
MachineBasicBlock &BB = *I.getParent();
bool Res = false;
for (unsigned i = 0; i < I.getNumDefs(); ++i) {
Register ResVReg = I.getOperand(i).getReg();
SPIRVType *ResType = GR.getSPIRVTypeForVReg(ResVReg);
if (!ResType) {
// There was no "assign type" actions, let's fix this now
ResType = ScalarType;
MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
MRI->setType(ResVReg, LLT::scalar(GR.getScalarOrVectorBitWidth(ResType)));
GR.assignSPIRVTypeToVReg(ResType, ResVReg, *GR.CurMF);
}
auto MIB =
BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(SrcReg)
.addImm(static_cast<int64_t>(i));
Res |= MIB.constrainAllUses(TII, TRI, RBI);
}
return Res;
}
bool SPIRVInstructionSelector::selectFence(MachineInstr &I) const {
AtomicOrdering AO = AtomicOrdering(I.getOperand(0).getImm());
uint32_t MemSem = static_cast<uint32_t>(getMemSemantics(AO));
auto MemSemConstant = buildI32Constant(MemSem, I);
Register MemSemReg = MemSemConstant.first;
bool Result = MemSemConstant.second;
SyncScope::ID Ord = SyncScope::ID(I.getOperand(1).getImm());
uint32_t Scope = static_cast<uint32_t>(
getMemScope(GR.CurMF->getFunction().getContext(), Ord));
auto ScopeConstant = buildI32Constant(Scope, I);
Register ScopeReg = ScopeConstant.first;
Result &= ScopeConstant.second;
MachineBasicBlock &BB = *I.getParent();
return Result &&
BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemoryBarrier))
.addUse(ScopeReg)
.addUse(MemSemReg)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectOverflowArith(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
unsigned Opcode) const {
Type *ResTy = nullptr;
StringRef ResName;
if (!GR.findValueAttrs(&I, ResTy, ResName))
report_fatal_error(
"Not enough info to select the arithmetic with overflow instruction");
if (!ResTy || !ResTy->isStructTy())
report_fatal_error("Expect struct type result for the arithmetic "
"with overflow instruction");
// "Result Type must be from OpTypeStruct. The struct must have two members,
// and the two members must be the same type."
Type *ResElemTy = cast<StructType>(ResTy)->getElementType(0);
ResTy = StructType::get(ResElemTy, ResElemTy);
// Build SPIR-V types and constant(s) if needed.
MachineIRBuilder MIRBuilder(I);
SPIRVType *StructType = GR.getOrCreateSPIRVType(
ResTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false);
assert(I.getNumDefs() > 1 && "Not enought operands");
SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
unsigned N = GR.getScalarOrVectorComponentCount(ResType);
if (N > 1)
BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
Register ZeroReg = buildZerosVal(ResType, I);
// A new virtual register to store the result struct.
Register StructVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
MRI->setRegClass(StructVReg, &SPIRV::IDRegClass);
// Build the result name if needed.
if (ResName.size() > 0)
buildOpName(StructVReg, ResName, MIRBuilder);
// Build the arithmetic with overflow instruction.
MachineBasicBlock &BB = *I.getParent();
auto MIB =
BuildMI(BB, MIRBuilder.getInsertPt(), I.getDebugLoc(), TII.get(Opcode))
.addDef(StructVReg)
.addUse(GR.getSPIRVTypeID(StructType));
for (unsigned i = I.getNumDefs(); i < I.getNumOperands(); ++i)
MIB.addUse(I.getOperand(i).getReg());
bool Result = MIB.constrainAllUses(TII, TRI, RBI);
// Build instructions to extract fields of the instruction's result.
// A new virtual register to store the higher part of the result struct.
Register HigherVReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
MRI->setRegClass(HigherVReg, &SPIRV::iIDRegClass);
for (unsigned i = 0; i < I.getNumDefs(); ++i) {
auto MIB =
BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
.addDef(i == 1 ? HigherVReg : I.getOperand(i).getReg())
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(StructVReg)
.addImm(i);
Result &= MIB.constrainAllUses(TII, TRI, RBI);
}
// Build boolean value from the higher part.
return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
.addDef(I.getOperand(1).getReg())
.addUse(BoolTypeReg)
.addUse(HigherVReg)
.addUse(ZeroReg)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectAtomicCmpXchg(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
bool Result = true;
Register ScopeReg;
Register MemSemEqReg;
Register MemSemNeqReg;
Register Ptr = I.getOperand(2).getReg();
if (!isa<GIntrinsic>(I)) {
assert(I.hasOneMemOperand());
const MachineMemOperand *MemOp = *I.memoperands_begin();
unsigned Scope = static_cast<uint32_t>(getMemScope(
GR.CurMF->getFunction().getContext(), MemOp->getSyncScopeID()));
auto ScopeConstant = buildI32Constant(Scope, I);
ScopeReg = ScopeConstant.first;
Result &= ScopeConstant.second;
unsigned ScSem = static_cast<uint32_t>(
getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr)));
AtomicOrdering AO = MemOp->getSuccessOrdering();
unsigned MemSemEq = static_cast<uint32_t>(getMemSemantics(AO)) | ScSem;
auto MemSemEqConstant = buildI32Constant(MemSemEq, I);
MemSemEqReg = MemSemEqConstant.first;
Result &= MemSemEqConstant.second;
AtomicOrdering FO = MemOp->getFailureOrdering();
unsigned MemSemNeq = static_cast<uint32_t>(getMemSemantics(FO)) | ScSem;
if (MemSemEq == MemSemNeq)
MemSemNeqReg = MemSemEqReg;
else {
auto MemSemNeqConstant = buildI32Constant(MemSemEq, I);
MemSemNeqReg = MemSemNeqConstant.first;
Result &= MemSemNeqConstant.second;
}
} else {
ScopeReg = I.getOperand(5).getReg();
MemSemEqReg = I.getOperand(6).getReg();
MemSemNeqReg = I.getOperand(7).getReg();
}
Register Cmp = I.getOperand(3).getReg();
Register Val = I.getOperand(4).getReg();
SPIRVType *SpvValTy = GR.getSPIRVTypeForVReg(Val);
Register ACmpRes = createVirtualRegister(SpvValTy, &GR, MRI, *I.getMF());
const DebugLoc &DL = I.getDebugLoc();
Result &=
BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpAtomicCompareExchange))
.addDef(ACmpRes)
.addUse(GR.getSPIRVTypeID(SpvValTy))
.addUse(Ptr)
.addUse(ScopeReg)
.addUse(MemSemEqReg)
.addUse(MemSemNeqReg)
.addUse(Val)
.addUse(Cmp)
.constrainAllUses(TII, TRI, RBI);
SPIRVType *BoolTy = GR.getOrCreateSPIRVBoolType(I, TII);
Register CmpSuccReg = createVirtualRegister(BoolTy, &GR, MRI, *I.getMF());
Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpIEqual))
.addDef(CmpSuccReg)
.addUse(GR.getSPIRVTypeID(BoolTy))
.addUse(ACmpRes)
.addUse(Cmp)
.constrainAllUses(TII, TRI, RBI);
Register TmpReg = createVirtualRegister(ResType, &GR, MRI, *I.getMF());
Result &= BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
.addDef(TmpReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(ACmpRes)
.addUse(GR.getOrCreateUndef(I, ResType, TII))
.addImm(0)
.constrainAllUses(TII, TRI, RBI);
return Result &&
BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpCompositeInsert))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(CmpSuccReg)
.addUse(TmpReg)
.addImm(1)
.constrainAllUses(TII, TRI, RBI);
}
static bool isUSMStorageClass(SPIRV::StorageClass::StorageClass SC) {
switch (SC) {
case SPIRV::StorageClass::DeviceOnlyINTEL:
case SPIRV::StorageClass::HostOnlyINTEL:
return true;
default:
return false;
}
}
// Returns true ResVReg is referred only from global vars and OpName's.
static bool isASCastInGVar(MachineRegisterInfo *MRI, Register ResVReg) {
bool IsGRef = false;
bool IsAllowedRefs =
llvm::all_of(MRI->use_instructions(ResVReg), [&IsGRef](auto const &It) {
unsigned Opcode = It.getOpcode();
if (Opcode == SPIRV::OpConstantComposite ||
Opcode == SPIRV::OpVariable ||
isSpvIntrinsic(It, Intrinsic::spv_init_global))
return IsGRef = true;
return Opcode == SPIRV::OpName;
});
return IsAllowedRefs && IsGRef;
}
Register SPIRVInstructionSelector::getUcharPtrTypeReg(
MachineInstr &I, SPIRV::StorageClass::StorageClass SC) const {
return GR.getSPIRVTypeID(GR.getOrCreateSPIRVPointerType(
Type::getInt8Ty(I.getMF()->getFunction().getContext()), I, SC));
}
MachineInstrBuilder
SPIRVInstructionSelector::buildSpecConstantOp(MachineInstr &I, Register Dest,
Register Src, Register DestType,
uint32_t Opcode) const {
return BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(SPIRV::OpSpecConstantOp))
.addDef(Dest)
.addUse(DestType)
.addImm(Opcode)
.addUse(Src);
}
MachineInstrBuilder
SPIRVInstructionSelector::buildConstGenericPtr(MachineInstr &I, Register SrcPtr,
SPIRVType *SrcPtrTy) const {
SPIRVType *GenericPtrTy =
GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
Register Tmp = MRI->createVirtualRegister(&SPIRV::pIDRegClass);
MRI->setType(Tmp, LLT::pointer(storageClassToAddressSpace(
SPIRV::StorageClass::Generic),
GR.getPointerSize()));
MachineFunction *MF = I.getParent()->getParent();
GR.assignSPIRVTypeToVReg(GenericPtrTy, Tmp, *MF);
MachineInstrBuilder MIB = buildSpecConstantOp(
I, Tmp, SrcPtr, GR.getSPIRVTypeID(GenericPtrTy),
static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric));
GR.add(MIB.getInstr(), MIB);
return MIB;
}
// In SPIR-V address space casting can only happen to and from the Generic
// storage class. We can also only cast Workgroup, CrossWorkgroup, or Function
// pointers to and from Generic pointers. As such, we can convert e.g. from
// Workgroup to Function by going via a Generic pointer as an intermediary. All
// other combinations can only be done by a bitcast, and are probably not safe.
bool SPIRVInstructionSelector::selectAddrSpaceCast(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
MachineBasicBlock &BB = *I.getParent();
const DebugLoc &DL = I.getDebugLoc();
Register SrcPtr = I.getOperand(1).getReg();
SPIRVType *SrcPtrTy = GR.getSPIRVTypeForVReg(SrcPtr);
// don't generate a cast for a null that may be represented by OpTypeInt
if (SrcPtrTy->getOpcode() != SPIRV::OpTypePointer ||
ResType->getOpcode() != SPIRV::OpTypePointer)
return BuildCOPY(ResVReg, SrcPtr, I);
SPIRV::StorageClass::StorageClass SrcSC = GR.getPointerStorageClass(SrcPtrTy);
SPIRV::StorageClass::StorageClass DstSC = GR.getPointerStorageClass(ResType);
if (isASCastInGVar(MRI, ResVReg)) {
// AddrSpaceCast uses within OpVariable and OpConstantComposite instructions
// are expressed by OpSpecConstantOp with an Opcode.
// TODO: maybe insert a check whether the Kernel capability was declared and
// so PtrCastToGeneric/GenericCastToPtr are available.
unsigned SpecOpcode =
DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC)
? static_cast<uint32_t>(SPIRV::Opcode::PtrCastToGeneric)
: (SrcSC == SPIRV::StorageClass::Generic &&
isGenericCastablePtr(DstSC)
? static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr)
: 0);
// TODO: OpConstantComposite expects i8*, so we are forced to forget a
// correct value of ResType and use general i8* instead. Maybe this should
// be addressed in the emit-intrinsic step to infer a correct
// OpConstantComposite type.
if (SpecOpcode) {
return buildSpecConstantOp(I, ResVReg, SrcPtr,
getUcharPtrTypeReg(I, DstSC), SpecOpcode)
.constrainAllUses(TII, TRI, RBI);
} else if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
MachineInstrBuilder MIB = buildConstGenericPtr(I, SrcPtr, SrcPtrTy);
return MIB.constrainAllUses(TII, TRI, RBI) &&
buildSpecConstantOp(
I, ResVReg, MIB->getOperand(0).getReg(),
getUcharPtrTypeReg(I, DstSC),
static_cast<uint32_t>(SPIRV::Opcode::GenericCastToPtr))
.constrainAllUses(TII, TRI, RBI);
}
}
// don't generate a cast between identical storage classes
if (SrcSC == DstSC)
return BuildCOPY(ResVReg, SrcPtr, I);
if ((SrcSC == SPIRV::StorageClass::Function &&
DstSC == SPIRV::StorageClass::Private) ||
(DstSC == SPIRV::StorageClass::Function &&
SrcSC == SPIRV::StorageClass::Private))
return BuildCOPY(ResVReg, SrcPtr, I);
// Casting from an eligible pointer to Generic.
if (DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC))
return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
// Casting from Generic to an eligible pointer.
if (SrcSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(DstSC))
return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
// Casting between 2 eligible pointers using Generic as an intermediary.
if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) {
SPIRVType *GenericPtrTy =
GR.changePointerStorageClass(SrcPtrTy, SPIRV::StorageClass::Generic, I);
Register Tmp = createVirtualRegister(GenericPtrTy, &GR, MRI, MRI->getMF());
bool Result = BuildMI(BB, I, DL, TII.get(SPIRV::OpPtrCastToGeneric))
.addDef(Tmp)
.addUse(GR.getSPIRVTypeID(GenericPtrTy))
.addUse(SrcPtr)
.constrainAllUses(TII, TRI, RBI);
return Result && BuildMI(BB, I, DL, TII.get(SPIRV::OpGenericCastToPtr))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(Tmp)
.constrainAllUses(TII, TRI, RBI);
}
// Check if instructions from the SPV_INTEL_usm_storage_classes extension may
// be applied
if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::CrossWorkgroup)
return selectUnOp(ResVReg, ResType, I,
SPIRV::OpPtrCastToCrossWorkgroupINTEL);
if (SrcSC == SPIRV::StorageClass::CrossWorkgroup && isUSMStorageClass(DstSC))
return selectUnOp(ResVReg, ResType, I,
SPIRV::OpCrossWorkgroupCastToPtrINTEL);
if (isUSMStorageClass(SrcSC) && DstSC == SPIRV::StorageClass::Generic)
return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric);
if (SrcSC == SPIRV::StorageClass::Generic && isUSMStorageClass(DstSC))
return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr);
// Bitcast for pointers requires that the address spaces must match
return false;
}
static unsigned getFCmpOpcode(unsigned PredNum) {
auto Pred = static_cast<CmpInst::Predicate>(PredNum);
switch (Pred) {
case CmpInst::FCMP_OEQ:
return SPIRV::OpFOrdEqual;
case CmpInst::FCMP_OGE:
return SPIRV::OpFOrdGreaterThanEqual;
case CmpInst::FCMP_OGT:
return SPIRV::OpFOrdGreaterThan;
case CmpInst::FCMP_OLE:
return SPIRV::OpFOrdLessThanEqual;
case CmpInst::FCMP_OLT:
return SPIRV::OpFOrdLessThan;
case CmpInst::FCMP_ONE:
return SPIRV::OpFOrdNotEqual;
case CmpInst::FCMP_ORD:
return SPIRV::OpOrdered;
case CmpInst::FCMP_UEQ:
return SPIRV::OpFUnordEqual;
case CmpInst::FCMP_UGE:
return SPIRV::OpFUnordGreaterThanEqual;
case CmpInst::FCMP_UGT:
return SPIRV::OpFUnordGreaterThan;
case CmpInst::FCMP_ULE:
return SPIRV::OpFUnordLessThanEqual;
case CmpInst::FCMP_ULT:
return SPIRV::OpFUnordLessThan;
case CmpInst::FCMP_UNE:
return SPIRV::OpFUnordNotEqual;
case CmpInst::FCMP_UNO:
return SPIRV::OpUnordered;
default:
llvm_unreachable("Unknown predicate type for FCmp");
}
}
static unsigned getICmpOpcode(unsigned PredNum) {
auto Pred = static_cast<CmpInst::Predicate>(PredNum);
switch (Pred) {
case CmpInst::ICMP_EQ:
return SPIRV::OpIEqual;
case CmpInst::ICMP_NE:
return SPIRV::OpINotEqual;
case CmpInst::ICMP_SGE:
return SPIRV::OpSGreaterThanEqual;
case CmpInst::ICMP_SGT:
return SPIRV::OpSGreaterThan;
case CmpInst::ICMP_SLE:
return SPIRV::OpSLessThanEqual;
case CmpInst::ICMP_SLT:
return SPIRV::OpSLessThan;
case CmpInst::ICMP_UGE:
return SPIRV::OpUGreaterThanEqual;
case CmpInst::ICMP_UGT:
return SPIRV::OpUGreaterThan;
case CmpInst::ICMP_ULE:
return SPIRV::OpULessThanEqual;
case CmpInst::ICMP_ULT:
return SPIRV::OpULessThan;
default:
llvm_unreachable("Unknown predicate type for ICmp");
}
}
static unsigned getPtrCmpOpcode(unsigned Pred) {
switch (static_cast<CmpInst::Predicate>(Pred)) {
case CmpInst::ICMP_EQ:
return SPIRV::OpPtrEqual;
case CmpInst::ICMP_NE:
return SPIRV::OpPtrNotEqual;
default:
llvm_unreachable("Unknown predicate type for pointer comparison");
}
}
// Return the logical operation, or abort if none exists.
static unsigned getBoolCmpOpcode(unsigned PredNum) {
auto Pred = static_cast<CmpInst::Predicate>(PredNum);
switch (Pred) {
case CmpInst::ICMP_EQ:
return SPIRV::OpLogicalEqual;
case CmpInst::ICMP_NE:
return SPIRV::OpLogicalNotEqual;
default:
llvm_unreachable("Unknown predicate type for Bool comparison");
}
}
static APFloat getZeroFP(const Type *LLVMFloatTy) {
if (!LLVMFloatTy)
return APFloat::getZero(APFloat::IEEEsingle());
switch (LLVMFloatTy->getScalarType()->getTypeID()) {
case Type::HalfTyID:
return APFloat::getZero(APFloat::IEEEhalf());
default:
case Type::FloatTyID:
return APFloat::getZero(APFloat::IEEEsingle());
case Type::DoubleTyID:
return APFloat::getZero(APFloat::IEEEdouble());
}
}
static APFloat getOneFP(const Type *LLVMFloatTy) {
if (!LLVMFloatTy)
return APFloat::getOne(APFloat::IEEEsingle());
switch (LLVMFloatTy->getScalarType()->getTypeID()) {
case Type::HalfTyID:
return APFloat::getOne(APFloat::IEEEhalf());
default:
case Type::FloatTyID:
return APFloat::getOne(APFloat::IEEEsingle());
case Type::DoubleTyID:
return APFloat::getOne(APFloat::IEEEdouble());
}
}
bool SPIRVInstructionSelector::selectAnyOrAll(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
unsigned OpAnyOrAll) const {
assert(I.getNumOperands() == 3);
assert(I.getOperand(2).isReg());
MachineBasicBlock &BB = *I.getParent();
Register InputRegister = I.getOperand(2).getReg();
SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
if (!InputType)
report_fatal_error("Input Type could not be determined.");
bool IsBoolTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeBool);
bool IsVectorTy = InputType->getOpcode() == SPIRV::OpTypeVector;
if (IsBoolTy && !IsVectorTy) {
assert(ResVReg == I.getOperand(0).getReg());
return BuildCOPY(ResVReg, InputRegister, I);
}
bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
unsigned SpirvNotEqualId =
IsFloatTy ? SPIRV::OpFOrdNotEqual : SPIRV::OpINotEqual;
SPIRVType *SpvBoolScalarTy = GR.getOrCreateSPIRVBoolType(I, TII);
SPIRVType *SpvBoolTy = SpvBoolScalarTy;
Register NotEqualReg = ResVReg;
if (IsVectorTy) {
NotEqualReg =
IsBoolTy ? InputRegister
: createVirtualRegister(SpvBoolTy, &GR, MRI, MRI->getMF());
const unsigned NumElts = InputType->getOperand(2).getImm();
SpvBoolTy = GR.getOrCreateSPIRVVectorType(SpvBoolTy, NumElts, I, TII);
}
bool Result = true;
if (!IsBoolTy) {
Register ConstZeroReg =
IsFloatTy ? buildZerosValF(InputType, I) : buildZerosVal(InputType, I);
Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SpirvNotEqualId))
.addDef(NotEqualReg)
.addUse(GR.getSPIRVTypeID(SpvBoolTy))
.addUse(InputRegister)
.addUse(ConstZeroReg)
.constrainAllUses(TII, TRI, RBI);
}
if (!IsVectorTy)
return Result;
return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(OpAnyOrAll))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(SpvBoolScalarTy))
.addUse(NotEqualReg)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectAll(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAll);
}
bool SPIRVInstructionSelector::selectAny(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
return selectAnyOrAll(ResVReg, ResType, I, SPIRV::OpAny);
}
// Select the OpDot instruction for the given float dot
bool SPIRVInstructionSelector::selectFloatDot(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
assert(I.getNumOperands() == 4);
assert(I.getOperand(2).isReg());
assert(I.getOperand(3).isReg());
[[maybe_unused]] SPIRVType *VecType =
GR.getSPIRVTypeForVReg(I.getOperand(2).getReg());
assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
GR.getScalarOrVectorComponentCount(VecType) > 1 &&
"dot product requires a vector of at least 2 components");
[[maybe_unused]] SPIRVType *EltType =
GR.getSPIRVTypeForVReg(VecType->getOperand(1).getReg());
assert(EltType->getOpcode() == SPIRV::OpTypeFloat);
MachineBasicBlock &BB = *I.getParent();
return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpDot))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(I.getOperand(2).getReg())
.addUse(I.getOperand(3).getReg())
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectIntegerDot(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
bool Signed) const {
assert(I.getNumOperands() == 4);
assert(I.getOperand(2).isReg());
assert(I.getOperand(3).isReg());
MachineBasicBlock &BB = *I.getParent();
auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
return BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(I.getOperand(2).getReg())
.addUse(I.getOperand(3).getReg())
.constrainAllUses(TII, TRI, RBI);
}
// Since pre-1.6 SPIRV has no integer dot implementation,
// expand by piecewise multiplying and adding the results
bool SPIRVInstructionSelector::selectIntegerDotExpansion(
Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
assert(I.getNumOperands() == 4);
assert(I.getOperand(2).isReg());
assert(I.getOperand(3).isReg());
MachineBasicBlock &BB = *I.getParent();
// Multiply the vectors, then sum the results
Register Vec0 = I.getOperand(2).getReg();
Register Vec1 = I.getOperand(3).getReg();
Register TmpVec = MRI->createVirtualRegister(GR.getRegClass(ResType));
SPIRVType *VecType = GR.getSPIRVTypeForVReg(Vec0);
bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulV))
.addDef(TmpVec)
.addUse(GR.getSPIRVTypeID(VecType))
.addUse(Vec0)
.addUse(Vec1)
.constrainAllUses(TII, TRI, RBI);
assert(VecType->getOpcode() == SPIRV::OpTypeVector &&
GR.getScalarOrVectorComponentCount(VecType) > 1 &&
"dot product requires a vector of at least 2 components");
Register Res = MRI->createVirtualRegister(GR.getRegClass(ResType));
Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
.addDef(Res)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(TmpVec)
.addImm(0)
.constrainAllUses(TII, TRI, RBI);
for (unsigned i = 1; i < GR.getScalarOrVectorComponentCount(VecType); i++) {
Register Elt = MRI->createVirtualRegister(GR.getRegClass(ResType));
Result &=
BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
.addDef(Elt)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(TmpVec)
.addImm(i)
.constrainAllUses(TII, TRI, RBI);
Register Sum = i < GR.getScalarOrVectorComponentCount(VecType) - 1
? MRI->createVirtualRegister(GR.getRegClass(ResType))
: ResVReg;
Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
.addDef(Sum)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(Res)
.addUse(Elt)
.constrainAllUses(TII, TRI, RBI);
Res = Sum;
}
return Result;
}
template <bool Signed>
bool SPIRVInstructionSelector::selectDot4AddPacked(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
assert(I.getNumOperands() == 5);
assert(I.getOperand(2).isReg());
assert(I.getOperand(3).isReg());
assert(I.getOperand(4).isReg());
MachineBasicBlock &BB = *I.getParent();
Register Acc = I.getOperand(2).getReg();
Register X = I.getOperand(3).getReg();
Register Y = I.getOperand(4).getReg();
auto DotOp = Signed ? SPIRV::OpSDot : SPIRV::OpUDot;
Register Dot = MRI->createVirtualRegister(GR.getRegClass(ResType));
bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(DotOp))
.addDef(Dot)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(X)
.addUse(Y)
.constrainAllUses(TII, TRI, RBI);
return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(Dot)
.addUse(Acc)
.constrainAllUses(TII, TRI, RBI);
}
// Since pre-1.6 SPIRV has no DotProductInput4x8BitPacked implementation,
// extract the elements of the packed inputs, multiply them and add the result
// to the accumulator.
template <bool Signed>
bool SPIRVInstructionSelector::selectDot4AddPackedExpansion(
Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
assert(I.getNumOperands() == 5);
assert(I.getOperand(2).isReg());
assert(I.getOperand(3).isReg());
assert(I.getOperand(4).isReg());
MachineBasicBlock &BB = *I.getParent();
bool Result = true;
Register Acc = I.getOperand(2).getReg();
Register X = I.getOperand(3).getReg();
Register Y = I.getOperand(4).getReg();
SPIRVType *EltType = GR.getOrCreateSPIRVIntegerType(8, I, TII);
auto ExtractOp =
Signed ? SPIRV::OpBitFieldSExtract : SPIRV::OpBitFieldUExtract;
bool ZeroAsNull = !STI.isShader();
// Extract the i8 element, multiply and add it to the accumulator
for (unsigned i = 0; i < 4; i++) {
// A[i]
Register AElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
Result &=
BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
.addDef(AElt)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(X)
.addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
.addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
.constrainAllUses(TII, TRI, RBI);
// B[i]
Register BElt = MRI->createVirtualRegister(&SPIRV::IDRegClass);
Result &=
BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
.addDef(BElt)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(Y)
.addUse(GR.getOrCreateConstInt(i * 8, I, EltType, TII, ZeroAsNull))
.addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
.constrainAllUses(TII, TRI, RBI);
// A[i] * B[i]
Register Mul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIMulS))
.addDef(Mul)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(AElt)
.addUse(BElt)
.constrainAllUses(TII, TRI, RBI);
// Discard 24 highest-bits so that stored i32 register is i8 equivalent
Register MaskMul = MRI->createVirtualRegister(&SPIRV::IDRegClass);
Result &=
BuildMI(BB, I, I.getDebugLoc(), TII.get(ExtractOp))
.addDef(MaskMul)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(Mul)
.addUse(GR.getOrCreateConstInt(0, I, EltType, TII, ZeroAsNull))
.addUse(GR.getOrCreateConstInt(8, I, EltType, TII, ZeroAsNull))
.constrainAllUses(TII, TRI, RBI);
// Acc = Acc + A[i] * B[i]
Register Sum =
i < 3 ? MRI->createVirtualRegister(&SPIRV::IDRegClass) : ResVReg;
Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpIAddS))
.addDef(Sum)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(Acc)
.addUse(MaskMul)
.constrainAllUses(TII, TRI, RBI);
Acc = Sum;
}
return Result;
}
/// Transform saturate(x) to clamp(x, 0.0f, 1.0f) as SPIRV
/// does not have a saturate builtin.
bool SPIRVInstructionSelector::selectSaturate(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
assert(I.getNumOperands() == 3);
assert(I.getOperand(2).isReg());
MachineBasicBlock &BB = *I.getParent();
Register VZero = buildZerosValF(ResType, I);
Register VOne = buildOnesValF(ResType, I);
return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
.addImm(GL::FClamp)
.addUse(I.getOperand(2).getReg())
.addUse(VZero)
.addUse(VOne)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectSign(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
assert(I.getNumOperands() == 3);
assert(I.getOperand(2).isReg());
MachineBasicBlock &BB = *I.getParent();
Register InputRegister = I.getOperand(2).getReg();
SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
auto &DL = I.getDebugLoc();
if (!InputType)
report_fatal_error("Input Type could not be determined.");
bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
unsigned SignBitWidth = GR.getScalarOrVectorBitWidth(InputType);
unsigned ResBitWidth = GR.getScalarOrVectorBitWidth(ResType);
bool NeedsConversion = IsFloatTy || SignBitWidth != ResBitWidth;
auto SignOpcode = IsFloatTy ? GL::FSign : GL::SSign;
Register SignReg = NeedsConversion
? MRI->createVirtualRegister(&SPIRV::IDRegClass)
: ResVReg;
bool Result =
BuildMI(BB, I, DL, TII.get(SPIRV::OpExtInst))
.addDef(SignReg)
.addUse(GR.getSPIRVTypeID(InputType))
.addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
.addImm(SignOpcode)
.addUse(InputRegister)
.constrainAllUses(TII, TRI, RBI);
if (NeedsConversion) {
auto ConvertOpcode = IsFloatTy ? SPIRV::OpConvertFToS : SPIRV::OpSConvert;
Result &= BuildMI(*I.getParent(), I, DL, TII.get(ConvertOpcode))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(SignReg)
.constrainAllUses(TII, TRI, RBI);
}
return Result;
}
bool SPIRVInstructionSelector::selectWaveOpInst(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
unsigned Opcode) const {
MachineBasicBlock &BB = *I.getParent();
SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
auto BMI = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I,
IntTy, TII, !STI.isShader()));
for (unsigned J = 2; J < I.getNumOperands(); J++) {
BMI.addUse(I.getOperand(J).getReg());
}
return BMI.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectWaveActiveCountBits(
Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
SPIRVType *BallotType = GR.getOrCreateSPIRVVectorType(IntTy, 4, I, TII);
Register BallotReg = MRI->createVirtualRegister(GR.getRegClass(BallotType));
bool Result = selectWaveOpInst(BallotReg, BallotType, I,
SPIRV::OpGroupNonUniformBallot);
MachineBasicBlock &BB = *I.getParent();
Result &= BuildMI(BB, I, I.getDebugLoc(),
TII.get(SPIRV::OpGroupNonUniformBallotBitCount))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy,
TII, !STI.isShader()))
.addImm(SPIRV::GroupOperation::Reduce)
.addUse(BallotReg)
.constrainAllUses(TII, TRI, RBI);
return Result;
}
bool SPIRVInstructionSelector::selectWaveReduceMax(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
bool IsUnsigned) const {
assert(I.getNumOperands() == 3);
assert(I.getOperand(2).isReg());
MachineBasicBlock &BB = *I.getParent();
Register InputRegister = I.getOperand(2).getReg();
SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
if (!InputType)
report_fatal_error("Input Type could not be determined.");
SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
// Retreive the operation to use based on input type
bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
auto IntegerOpcodeType =
IsUnsigned ? SPIRV::OpGroupNonUniformUMax : SPIRV::OpGroupNonUniformSMax;
auto Opcode = IsFloatTy ? SPIRV::OpGroupNonUniformFMax : IntegerOpcodeType;
return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
!STI.isShader()))
.addImm(SPIRV::GroupOperation::Reduce)
.addUse(I.getOperand(2).getReg())
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectWaveReduceSum(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
assert(I.getNumOperands() == 3);
assert(I.getOperand(2).isReg());
MachineBasicBlock &BB = *I.getParent();
Register InputRegister = I.getOperand(2).getReg();
SPIRVType *InputType = GR.getSPIRVTypeForVReg(InputRegister);
if (!InputType)
report_fatal_error("Input Type could not be determined.");
SPIRVType *IntTy = GR.getOrCreateSPIRVIntegerType(32, I, TII);
// Retreive the operation to use based on input type
bool IsFloatTy = GR.isScalarOrVectorOfType(InputRegister, SPIRV::OpTypeFloat);
auto Opcode =
IsFloatTy ? SPIRV::OpGroupNonUniformFAdd : SPIRV::OpGroupNonUniformIAdd;
return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(GR.getOrCreateConstInt(SPIRV::Scope::Subgroup, I, IntTy, TII,
!STI.isShader()))
.addImm(SPIRV::GroupOperation::Reduce)
.addUse(I.getOperand(2).getReg());
}
bool SPIRVInstructionSelector::selectBitreverse(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
MachineBasicBlock &BB = *I.getParent();
return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitReverse))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(I.getOperand(1).getReg())
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectFreeze(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
// There is no way to implement `freeze` correctly without support on SPIR-V
// standard side, but we may at least address a simple (static) case when
// undef/poison value presence is obvious. The main benefit of even
// incomplete `freeze` support is preventing of translation from crashing due
// to lack of support on legalization and instruction selection steps.
if (!I.getOperand(0).isReg() || !I.getOperand(1).isReg())
return false;
Register OpReg = I.getOperand(1).getReg();
if (MachineInstr *Def = MRI->getVRegDef(OpReg)) {
if (Def->getOpcode() == TargetOpcode::COPY)
Def = MRI->getVRegDef(Def->getOperand(1).getReg());
Register Reg;
switch (Def->getOpcode()) {
case SPIRV::ASSIGN_TYPE:
if (MachineInstr *AssignToDef =
MRI->getVRegDef(Def->getOperand(1).getReg())) {
if (AssignToDef->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
Reg = Def->getOperand(2).getReg();
}
break;
case SPIRV::OpUndef:
Reg = Def->getOperand(1).getReg();
break;
}
unsigned DestOpCode;
if (Reg.isValid()) {
DestOpCode = SPIRV::OpConstantNull;
} else {
DestOpCode = TargetOpcode::COPY;
Reg = OpReg;
}
return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(DestOpCode))
.addDef(I.getOperand(0).getReg())
.addUse(Reg)
.constrainAllUses(TII, TRI, RBI);
}
return false;
}
bool SPIRVInstructionSelector::selectBuildVector(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
unsigned N = 0;
if (ResType->getOpcode() == SPIRV::OpTypeVector)
N = GR.getScalarOrVectorComponentCount(ResType);
else if (ResType->getOpcode() == SPIRV::OpTypeArray)
N = getArrayComponentCount(MRI, ResType);
else
report_fatal_error("Cannot select G_BUILD_VECTOR with a non-vector result");
if (I.getNumExplicitOperands() - I.getNumExplicitDefs() != N)
report_fatal_error("G_BUILD_VECTOR and the result type are inconsistent");
// check if we may construct a constant vector
bool IsConst = true;
for (unsigned i = I.getNumExplicitDefs();
i < I.getNumExplicitOperands() && IsConst; ++i)
if (!isConstReg(MRI, I.getOperand(i).getReg()))
IsConst = false;
if (!IsConst && N < 2)
report_fatal_error(
"There must be at least two constituent operands in a vector");
MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(IsConst ? SPIRV::OpConstantComposite
: SPIRV::OpCompositeConstruct))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType));
for (unsigned i = I.getNumExplicitDefs(); i < I.getNumExplicitOperands(); ++i)
MIB.addUse(I.getOperand(i).getReg());
return MIB.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectSplatVector(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
unsigned N = 0;
if (ResType->getOpcode() == SPIRV::OpTypeVector)
N = GR.getScalarOrVectorComponentCount(ResType);
else if (ResType->getOpcode() == SPIRV::OpTypeArray)
N = getArrayComponentCount(MRI, ResType);
else
report_fatal_error("Cannot select G_SPLAT_VECTOR with a non-vector result");
unsigned OpIdx = I.getNumExplicitDefs();
if (!I.getOperand(OpIdx).isReg())
report_fatal_error("Unexpected argument in G_SPLAT_VECTOR");
// check if we may construct a constant vector
Register OpReg = I.getOperand(OpIdx).getReg();
bool IsConst = isConstReg(MRI, OpReg);
if (!IsConst && N < 2)
report_fatal_error(
"There must be at least two constituent operands in a vector");
MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(IsConst ? SPIRV::OpConstantComposite
: SPIRV::OpCompositeConstruct))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType));
for (unsigned i = 0; i < N; ++i)
MIB.addUse(OpReg);
return MIB.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectDiscard(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
unsigned Opcode;
if (STI.canUseExtension(
SPIRV::Extension::SPV_EXT_demote_to_helper_invocation) ||
STI.isAtLeastSPIRVVer(llvm::VersionTuple(1, 6))) {
Opcode = SPIRV::OpDemoteToHelperInvocation;
} else {
Opcode = SPIRV::OpKill;
// OpKill must be the last operation of any basic block.
if (MachineInstr *NextI = I.getNextNode()) {
GR.invalidateMachineInstr(NextI);
NextI->removeFromParent();
}
}
MachineBasicBlock &BB = *I.getParent();
return BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectCmp(Register ResVReg,
const SPIRVType *ResType,
unsigned CmpOpc,
MachineInstr &I) const {
Register Cmp0 = I.getOperand(2).getReg();
Register Cmp1 = I.getOperand(3).getReg();
assert(GR.getSPIRVTypeForVReg(Cmp0)->getOpcode() ==
GR.getSPIRVTypeForVReg(Cmp1)->getOpcode() &&
"CMP operands should have the same type");
return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CmpOpc))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(Cmp0)
.addUse(Cmp1)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectICmp(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
auto Pred = I.getOperand(1).getPredicate();
unsigned CmpOpc;
Register CmpOperand = I.getOperand(2).getReg();
if (GR.isScalarOfType(CmpOperand, SPIRV::OpTypePointer))
CmpOpc = getPtrCmpOpcode(Pred);
else if (GR.isScalarOrVectorOfType(CmpOperand, SPIRV::OpTypeBool))
CmpOpc = getBoolCmpOpcode(Pred);
else
CmpOpc = getICmpOpcode(Pred);
return selectCmp(ResVReg, ResType, CmpOpc, I);
}
std::pair<Register, bool>
SPIRVInstructionSelector::buildI32Constant(uint32_t Val, MachineInstr &I,
const SPIRVType *ResType) const {
Type *LLVMTy = IntegerType::get(GR.CurMF->getFunction().getContext(), 32);
const SPIRVType *SpvI32Ty =
ResType ? ResType : GR.getOrCreateSPIRVIntegerType(32, I, TII);
// Find a constant in DT or build a new one.
auto ConstInt = ConstantInt::get(LLVMTy, Val);
Register NewReg = GR.find(ConstInt, GR.CurMF);
bool Result = true;
if (!NewReg.isValid()) {
NewReg = MRI->createGenericVirtualRegister(LLT::scalar(64));
MachineBasicBlock &BB = *I.getParent();
MachineInstr *MI =
Val == 0
? BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
.addDef(NewReg)
.addUse(GR.getSPIRVTypeID(SpvI32Ty))
: BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI))
.addDef(NewReg)
.addUse(GR.getSPIRVTypeID(SpvI32Ty))
.addImm(APInt(32, Val).getZExtValue());
Result &= constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
GR.add(ConstInt, MI);
}
return {NewReg, Result};
}
bool SPIRVInstructionSelector::selectFCmp(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
unsigned CmpOp = getFCmpOpcode(I.getOperand(1).getPredicate());
return selectCmp(ResVReg, ResType, CmpOp, I);
}
Register SPIRVInstructionSelector::buildZerosVal(const SPIRVType *ResType,
MachineInstr &I) const {
// OpenCL uses nulls for Zero. In HLSL we don't use null constants.
bool ZeroAsNull = !STI.isShader();
if (ResType->getOpcode() == SPIRV::OpTypeVector)
return GR.getOrCreateConstVector(0UL, I, ResType, TII, ZeroAsNull);
return GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
}
Register SPIRVInstructionSelector::buildZerosValF(const SPIRVType *ResType,
MachineInstr &I) const {
// OpenCL uses nulls for Zero. In HLSL we don't use null constants.
bool ZeroAsNull = !STI.isShader();
APFloat VZero = getZeroFP(GR.getTypeForSPIRVType(ResType));
if (ResType->getOpcode() == SPIRV::OpTypeVector)
return GR.getOrCreateConstVector(VZero, I, ResType, TII, ZeroAsNull);
return GR.getOrCreateConstFP(VZero, I, ResType, TII, ZeroAsNull);
}
Register SPIRVInstructionSelector::buildOnesValF(const SPIRVType *ResType,
MachineInstr &I) const {
// OpenCL uses nulls for Zero. In HLSL we don't use null constants.
bool ZeroAsNull = !STI.isShader();
APFloat VOne = getOneFP(GR.getTypeForSPIRVType(ResType));
if (ResType->getOpcode() == SPIRV::OpTypeVector)
return GR.getOrCreateConstVector(VOne, I, ResType, TII, ZeroAsNull);
return GR.getOrCreateConstFP(VOne, I, ResType, TII, ZeroAsNull);
}
Register SPIRVInstructionSelector::buildOnesVal(bool AllOnes,
const SPIRVType *ResType,
MachineInstr &I) const {
unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
APInt One =
AllOnes ? APInt::getAllOnes(BitWidth) : APInt::getOneBitSet(BitWidth, 0);
if (ResType->getOpcode() == SPIRV::OpTypeVector)
return GR.getOrCreateConstVector(One.getZExtValue(), I, ResType, TII);
return GR.getOrCreateConstInt(One.getZExtValue(), I, ResType, TII);
}
bool SPIRVInstructionSelector::selectSelect(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
bool IsSigned) const {
// To extend a bool, we need to use OpSelect between constants.
Register ZeroReg = buildZerosVal(ResType, I);
Register OneReg = buildOnesVal(IsSigned, ResType, I);
bool IsScalarBool =
GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool);
unsigned Opcode =
IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectVIVCond;
return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(I.getOperand(1).getReg())
.addUse(OneReg)
.addUse(ZeroReg)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectIToF(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I, bool IsSigned,
unsigned Opcode) const {
Register SrcReg = I.getOperand(1).getReg();
// We can convert bool value directly to float type without OpConvert*ToF,
// however the translator generates OpSelect+OpConvert*ToF, so we do the same.
if (GR.isScalarOrVectorOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool)) {
unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType);
SPIRVType *TmpType = GR.getOrCreateSPIRVIntegerType(BitWidth, I, TII);
if (ResType->getOpcode() == SPIRV::OpTypeVector) {
const unsigned NumElts = ResType->getOperand(2).getImm();
TmpType = GR.getOrCreateSPIRVVectorType(TmpType, NumElts, I, TII);
}
SrcReg = createVirtualRegister(TmpType, &GR, MRI, MRI->getMF());
selectSelect(SrcReg, TmpType, I, false);
}
return selectOpWithSrcs(ResVReg, ResType, I, {SrcReg}, Opcode);
}
bool SPIRVInstructionSelector::selectExt(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I, bool IsSigned) const {
Register SrcReg = I.getOperand(1).getReg();
if (GR.isScalarOrVectorOfType(SrcReg, SPIRV::OpTypeBool))
return selectSelect(ResVReg, ResType, I, IsSigned);
SPIRVType *SrcType = GR.getSPIRVTypeForVReg(SrcReg);
if (SrcType == ResType)
return BuildCOPY(ResVReg, SrcReg, I);
unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
return selectUnOp(ResVReg, ResType, I, Opcode);
}
bool SPIRVInstructionSelector::selectSUCmp(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
bool IsSigned) const {
MachineIRBuilder MIRBuilder(I);
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
MachineBasicBlock &BB = *I.getParent();
// Ensure we have bool.
SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
unsigned N = GR.getScalarOrVectorComponentCount(ResType);
if (N > 1)
BoolType = GR.getOrCreateSPIRVVectorType(BoolType, N, I, TII);
Register BoolTypeReg = GR.getSPIRVTypeID(BoolType);
// Build less-than-equal and less-than.
// TODO: replace with one-liner createVirtualRegister() from
// llvm/lib/Target/SPIRV/SPIRVUtils.cpp when PR #116609 is merged.
Register IsLessEqReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
MRI->setType(IsLessEqReg, LLT::scalar(64));
GR.assignSPIRVTypeToVReg(ResType, IsLessEqReg, MIRBuilder.getMF());
bool Result = BuildMI(BB, I, I.getDebugLoc(),
TII.get(IsSigned ? SPIRV::OpSLessThanEqual
: SPIRV::OpULessThanEqual))
.addDef(IsLessEqReg)
.addUse(BoolTypeReg)
.addUse(I.getOperand(1).getReg())
.addUse(I.getOperand(2).getReg())
.constrainAllUses(TII, TRI, RBI);
Register IsLessReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
MRI->setType(IsLessReg, LLT::scalar(64));
GR.assignSPIRVTypeToVReg(ResType, IsLessReg, MIRBuilder.getMF());
Result &= BuildMI(BB, I, I.getDebugLoc(),
TII.get(IsSigned ? SPIRV::OpSLessThan : SPIRV::OpULessThan))
.addDef(IsLessReg)
.addUse(BoolTypeReg)
.addUse(I.getOperand(1).getReg())
.addUse(I.getOperand(2).getReg())
.constrainAllUses(TII, TRI, RBI);
// Build selects.
Register ResTypeReg = GR.getSPIRVTypeID(ResType);
Register NegOneOrZeroReg =
MRI->createVirtualRegister(GR.getRegClass(ResType));
MRI->setType(NegOneOrZeroReg, LLT::scalar(64));
GR.assignSPIRVTypeToVReg(ResType, NegOneOrZeroReg, MIRBuilder.getMF());
unsigned SelectOpcode =
N > 1 ? SPIRV::OpSelectVIVCond : SPIRV::OpSelectSISCond;
Result &= BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
.addDef(NegOneOrZeroReg)
.addUse(ResTypeReg)
.addUse(IsLessReg)
.addUse(buildOnesVal(true, ResType, I)) // -1
.addUse(buildZerosVal(ResType, I))
.constrainAllUses(TII, TRI, RBI);
return Result & BuildMI(BB, I, I.getDebugLoc(), TII.get(SelectOpcode))
.addDef(ResVReg)
.addUse(ResTypeReg)
.addUse(IsLessEqReg)
.addUse(NegOneOrZeroReg) // -1 or 0
.addUse(buildOnesVal(false, ResType, I))
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectIntToBool(Register IntReg,
Register ResVReg,
MachineInstr &I,
const SPIRVType *IntTy,
const SPIRVType *BoolTy) const {
// To truncate to a bool, we use OpBitwiseAnd 1 and OpINotEqual to zero.
Register BitIntReg = createVirtualRegister(IntTy, &GR, MRI, MRI->getMF());
bool IsVectorTy = IntTy->getOpcode() == SPIRV::OpTypeVector;
unsigned Opcode = IsVectorTy ? SPIRV::OpBitwiseAndV : SPIRV::OpBitwiseAndS;
Register Zero = buildZerosVal(IntTy, I);
Register One = buildOnesVal(false, IntTy, I);
MachineBasicBlock &BB = *I.getParent();
bool Result = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
.addDef(BitIntReg)
.addUse(GR.getSPIRVTypeID(IntTy))
.addUse(IntReg)
.addUse(One)
.constrainAllUses(TII, TRI, RBI);
return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(BoolTy))
.addUse(BitIntReg)
.addUse(Zero)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectTrunc(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
Register IntReg = I.getOperand(1).getReg();
const SPIRVType *ArgType = GR.getSPIRVTypeForVReg(IntReg);
if (GR.isScalarOrVectorOfType(ResVReg, SPIRV::OpTypeBool))
return selectIntToBool(IntReg, ResVReg, I, ArgType, ResType);
if (ArgType == ResType)
return BuildCOPY(ResVReg, IntReg, I);
bool IsSigned = GR.isScalarOrVectorSigned(ResType);
unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
return selectUnOp(ResVReg, ResType, I, Opcode);
}
bool SPIRVInstructionSelector::selectConst(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
unsigned Opcode = I.getOpcode();
unsigned TpOpcode = ResType->getOpcode();
Register Reg;
if (TpOpcode == SPIRV::OpTypePointer || TpOpcode == SPIRV::OpTypeEvent) {
assert(Opcode == TargetOpcode::G_CONSTANT &&
I.getOperand(1).getCImm()->isZero());
MachineBasicBlock &DepMBB = I.getMF()->front();
MachineIRBuilder MIRBuilder(DepMBB, DepMBB.getFirstNonPHI());
Reg = GR.getOrCreateConstNullPtr(MIRBuilder, ResType);
} else if (Opcode == TargetOpcode::G_FCONSTANT) {
Reg = GR.getOrCreateConstFP(I.getOperand(1).getFPImm()->getValue(), I,
ResType, TII, !STI.isShader());
} else {
Reg = GR.getOrCreateConstInt(I.getOperand(1).getCImm()->getZExtValue(), I,
ResType, TII, !STI.isShader());
}
return Reg == ResVReg ? true : BuildCOPY(ResVReg, Reg, I);
}
bool SPIRVInstructionSelector::selectOpUndef(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectInsertVal(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
MachineBasicBlock &BB = *I.getParent();
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeInsert))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
// object to insert
.addUse(I.getOperand(3).getReg())
// composite to insert into
.addUse(I.getOperand(2).getReg());
for (unsigned i = 4; i < I.getNumOperands(); i++)
MIB.addImm(foldImm(I.getOperand(i), MRI));
return MIB.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectExtractVal(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
MachineBasicBlock &BB = *I.getParent();
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(I.getOperand(2).getReg());
for (unsigned i = 3; i < I.getNumOperands(); i++)
MIB.addImm(foldImm(I.getOperand(i), MRI));
return MIB.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectInsertElt(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
if (getImm(I.getOperand(4), MRI))
return selectInsertVal(ResVReg, ResType, I);
MachineBasicBlock &BB = *I.getParent();
return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorInsertDynamic))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(I.getOperand(2).getReg())
.addUse(I.getOperand(3).getReg())
.addUse(I.getOperand(4).getReg())
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectExtractElt(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
if (getImm(I.getOperand(3), MRI))
return selectExtractVal(ResVReg, ResType, I);
MachineBasicBlock &BB = *I.getParent();
return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorExtractDynamic))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(I.getOperand(2).getReg())
.addUse(I.getOperand(3).getReg())
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectGEP(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
const bool IsGEPInBounds = I.getOperand(2).getImm();
// OpAccessChain could be used for OpenCL, but the SPIRV-LLVM Translator only
// relies on PtrAccessChain, so we'll try not to deviate. For Vulkan however,
// we have to use Op[InBounds]AccessChain.
const unsigned Opcode = STI.isLogicalSPIRV()
? (IsGEPInBounds ? SPIRV::OpInBoundsAccessChain
: SPIRV::OpAccessChain)
: (IsGEPInBounds ? SPIRV::OpInBoundsPtrAccessChain
: SPIRV::OpPtrAccessChain);
auto Res = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
// Object to get a pointer to.
.addUse(I.getOperand(3).getReg());
// Adding indices.
const unsigned StartingIndex =
(Opcode == SPIRV::OpAccessChain || Opcode == SPIRV::OpInBoundsAccessChain)
? 5
: 4;
for (unsigned i = StartingIndex; i < I.getNumExplicitOperands(); ++i)
Res.addUse(I.getOperand(i).getReg());
return Res.constrainAllUses(TII, TRI, RBI);
}
// Maybe wrap a value into OpSpecConstantOp
bool SPIRVInstructionSelector::wrapIntoSpecConstantOp(
MachineInstr &I, SmallVector<Register> &CompositeArgs) const {
bool Result = true;
unsigned Lim = I.getNumExplicitOperands();
for (unsigned i = I.getNumExplicitDefs() + 1; i < Lim; ++i) {
Register OpReg = I.getOperand(i).getReg();
MachineInstr *OpDefine = MRI->getVRegDef(OpReg);
SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
SmallPtrSet<SPIRVType *, 4> Visited;
if (!OpDefine || !OpType || isConstReg(MRI, OpDefine, Visited) ||
OpDefine->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST ||
GR.isAggregateType(OpType)) {
// The case of G_ADDRSPACE_CAST inside spv_const_composite() is processed
// by selectAddrSpaceCast()
CompositeArgs.push_back(OpReg);
continue;
}
MachineFunction *MF = I.getMF();
Register WrapReg = GR.find(OpDefine, MF);
if (WrapReg.isValid()) {
CompositeArgs.push_back(WrapReg);
continue;
}
// Create a new register for the wrapper
WrapReg = MRI->createVirtualRegister(GR.getRegClass(OpType));
CompositeArgs.push_back(WrapReg);
// Decorate the wrapper register and generate a new instruction
MRI->setType(WrapReg, LLT::pointer(0, 64));
GR.assignSPIRVTypeToVReg(OpType, WrapReg, *MF);
auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(SPIRV::OpSpecConstantOp))
.addDef(WrapReg)
.addUse(GR.getSPIRVTypeID(OpType))
.addImm(static_cast<uint32_t>(SPIRV::Opcode::Bitcast))
.addUse(OpReg);
GR.add(OpDefine, MIB);
Result = MIB.constrainAllUses(TII, TRI, RBI);
if (!Result)
break;
}
return Result;
}
bool SPIRVInstructionSelector::selectIntrinsic(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
MachineBasicBlock &BB = *I.getParent();
Intrinsic::ID IID = cast<GIntrinsic>(I).getIntrinsicID();
switch (IID) {
case Intrinsic::spv_load:
return selectLoad(ResVReg, ResType, I);
case Intrinsic::spv_store:
return selectStore(I);
case Intrinsic::spv_extractv:
return selectExtractVal(ResVReg, ResType, I);
case Intrinsic::spv_insertv:
return selectInsertVal(ResVReg, ResType, I);
case Intrinsic::spv_extractelt:
return selectExtractElt(ResVReg, ResType, I);
case Intrinsic::spv_insertelt:
return selectInsertElt(ResVReg, ResType, I);
case Intrinsic::spv_gep:
return selectGEP(ResVReg, ResType, I);
case Intrinsic::spv_unref_global:
case Intrinsic::spv_init_global: {
MachineInstr *MI = MRI->getVRegDef(I.getOperand(1).getReg());
MachineInstr *Init = I.getNumExplicitOperands() > 2
? MRI->getVRegDef(I.getOperand(2).getReg())
: nullptr;
assert(MI);
Register GVarVReg = MI->getOperand(0).getReg();
bool Res = selectGlobalValue(GVarVReg, *MI, Init);
// We violate SSA form by inserting OpVariable and still having a gMIR
// instruction %vreg = G_GLOBAL_VALUE @gvar. We need to fix this by erasing
// the duplicated definition.
if (MI->getOpcode() == TargetOpcode::G_GLOBAL_VALUE) {
GR.invalidateMachineInstr(MI);
MI->removeFromParent();
}
return Res;
}
case Intrinsic::spv_undef: {
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType));
return MIB.constrainAllUses(TII, TRI, RBI);
}
case Intrinsic::spv_const_composite: {
// If no values are attached, the composite is null constant.
bool IsNull = I.getNumExplicitDefs() + 1 == I.getNumExplicitOperands();
SmallVector<Register> CompositeArgs;
MRI->setRegClass(ResVReg, GR.getRegClass(ResType));
// skip type MD node we already used when generated assign.type for this
if (!IsNull) {
if (!wrapIntoSpecConstantOp(I, CompositeArgs))
return false;
MachineIRBuilder MIR(I);
SmallVector<MachineInstr *, 4> Instructions = createContinuedInstructions(
MIR, SPIRV::OpConstantComposite, 3,
SPIRV::OpConstantCompositeContinuedINTEL, CompositeArgs, ResVReg,
GR.getSPIRVTypeID(ResType));
for (auto *Instr : Instructions) {
Instr->setDebugLoc(I.getDebugLoc());
if (!constrainSelectedInstRegOperands(*Instr, TII, TRI, RBI))
return false;
}
return true;
} else {
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType));
return MIB.constrainAllUses(TII, TRI, RBI);
}
}
case Intrinsic::spv_assign_name: {
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpName));
MIB.addUse(I.getOperand(I.getNumExplicitDefs() + 1).getReg());
for (unsigned i = I.getNumExplicitDefs() + 2;
i < I.getNumExplicitOperands(); ++i) {
MIB.addImm(I.getOperand(i).getImm());
}
return MIB.constrainAllUses(TII, TRI, RBI);
}
case Intrinsic::spv_switch: {
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSwitch));
for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
if (I.getOperand(i).isReg())
MIB.addReg(I.getOperand(i).getReg());
else if (I.getOperand(i).isCImm())
addNumImm(I.getOperand(i).getCImm()->getValue(), MIB);
else if (I.getOperand(i).isMBB())
MIB.addMBB(I.getOperand(i).getMBB());
else
llvm_unreachable("Unexpected OpSwitch operand");
}
return MIB.constrainAllUses(TII, TRI, RBI);
}
case Intrinsic::spv_loop_merge: {
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpLoopMerge));
for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) {
if (I.getOperand(i).isMBB())
MIB.addMBB(I.getOperand(i).getMBB());
else
MIB.addImm(foldImm(I.getOperand(i), MRI));
}
return MIB.constrainAllUses(TII, TRI, RBI);
}
case Intrinsic::spv_selection_merge: {
auto MIB =
BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSelectionMerge));
assert(I.getOperand(1).isMBB() &&
"operand 1 to spv_selection_merge must be a basic block");
MIB.addMBB(I.getOperand(1).getMBB());
MIB.addImm(getSelectionOperandForImm(I.getOperand(2).getImm()));
return MIB.constrainAllUses(TII, TRI, RBI);
}
case Intrinsic::spv_cmpxchg:
return selectAtomicCmpXchg(ResVReg, ResType, I);
case Intrinsic::spv_unreachable:
return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUnreachable))
.constrainAllUses(TII, TRI, RBI);
case Intrinsic::spv_alloca:
return selectFrameIndex(ResVReg, ResType, I);
case Intrinsic::spv_alloca_array:
return selectAllocaArray(ResVReg, ResType, I);
case Intrinsic::spv_assume:
if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpAssumeTrueKHR))
.addUse(I.getOperand(1).getReg())
.constrainAllUses(TII, TRI, RBI);
break;
case Intrinsic::spv_expect:
if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume))
return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExpectKHR))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(I.getOperand(2).getReg())
.addUse(I.getOperand(3).getReg())
.constrainAllUses(TII, TRI, RBI);
break;
case Intrinsic::arithmetic_fence:
if (STI.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence))
return BuildMI(BB, I, I.getDebugLoc(),
TII.get(SPIRV::OpArithmeticFenceEXT))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(I.getOperand(2).getReg())
.constrainAllUses(TII, TRI, RBI);
else
return BuildCOPY(ResVReg, I.getOperand(2).getReg(), I);
break;
case Intrinsic::spv_thread_id:
// The HLSL SV_DispatchThreadID semantic is lowered to llvm.spv.thread.id
// intrinsic in LLVM IR for SPIR-V backend.
//
// In SPIR-V backend, llvm.spv.thread.id is now correctly translated to a
// `GlobalInvocationId` builtin variable
return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalInvocationId, ResVReg,
ResType, I);
case Intrinsic::spv_thread_id_in_group:
// The HLSL SV_GroupThreadId semantic is lowered to
// llvm.spv.thread.id.in.group intrinsic in LLVM IR for SPIR-V backend.
//
// In SPIR-V backend, llvm.spv.thread.id.in.group is now correctly
// translated to a `LocalInvocationId` builtin variable
return loadVec3BuiltinInputID(SPIRV::BuiltIn::LocalInvocationId, ResVReg,
ResType, I);
case Intrinsic::spv_group_id:
// The HLSL SV_GroupId semantic is lowered to
// llvm.spv.group.id intrinsic in LLVM IR for SPIR-V backend.
//
// In SPIR-V backend, llvm.spv.group.id is now translated to a `WorkgroupId`
// builtin variable
return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupId, ResVReg, ResType,
I);
case Intrinsic::spv_flattened_thread_id_in_group:
// The HLSL SV_GroupIndex semantic is lowered to
// llvm.spv.flattened.thread.id.in.group() intrinsic in LLVM IR for SPIR-V
// backend.
//
// In SPIR-V backend, llvm.spv.flattened.thread.id.in.group is translated to
// a `LocalInvocationIndex` builtin variable
return loadBuiltinInputID(SPIRV::BuiltIn::LocalInvocationIndex, ResVReg,
ResType, I);
case Intrinsic::spv_workgroup_size:
return loadVec3BuiltinInputID(SPIRV::BuiltIn::WorkgroupSize, ResVReg,
ResType, I);
case Intrinsic::spv_global_size:
return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalSize, ResVReg, ResType,
I);
case Intrinsic::spv_global_offset:
return loadVec3BuiltinInputID(SPIRV::BuiltIn::GlobalOffset, ResVReg,
ResType, I);
case Intrinsic::spv_num_workgroups:
return loadVec3BuiltinInputID(SPIRV::BuiltIn::NumWorkgroups, ResVReg,
ResType, I);
case Intrinsic::spv_subgroup_size:
return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupSize, ResVReg, ResType,
I);
case Intrinsic::spv_num_subgroups:
return loadBuiltinInputID(SPIRV::BuiltIn::NumSubgroups, ResVReg, ResType,
I);
case Intrinsic::spv_subgroup_id:
return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupId, ResVReg, ResType, I);
case Intrinsic::spv_subgroup_local_invocation_id:
return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupLocalInvocationId,
ResVReg, ResType, I);
case Intrinsic::spv_subgroup_max_size:
return loadBuiltinInputID(SPIRV::BuiltIn::SubgroupMaxSize, ResVReg, ResType,
I);
case Intrinsic::spv_fdot:
return selectFloatDot(ResVReg, ResType, I);
case Intrinsic::spv_udot:
case Intrinsic::spv_sdot:
if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
return selectIntegerDot(ResVReg, ResType, I,
/*Signed=*/IID == Intrinsic::spv_sdot);
return selectIntegerDotExpansion(ResVReg, ResType, I);
case Intrinsic::spv_dot4add_i8packed:
if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
return selectDot4AddPacked<true>(ResVReg, ResType, I);
return selectDot4AddPackedExpansion<true>(ResVReg, ResType, I);
case Intrinsic::spv_dot4add_u8packed:
if (STI.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product) ||
STI.isAtLeastSPIRVVer(VersionTuple(1, 6)))
return selectDot4AddPacked<false>(ResVReg, ResType, I);
return selectDot4AddPackedExpansion<false>(ResVReg, ResType, I);
case Intrinsic::spv_all:
return selectAll(ResVReg, ResType, I);
case Intrinsic::spv_any:
return selectAny(ResVReg, ResType, I);
case Intrinsic::spv_cross:
return selectExtInst(ResVReg, ResType, I, CL::cross, GL::Cross);
case Intrinsic::spv_distance:
return selectExtInst(ResVReg, ResType, I, CL::distance, GL::Distance);
case Intrinsic::spv_lerp:
return selectExtInst(ResVReg, ResType, I, CL::mix, GL::FMix);
case Intrinsic::spv_length:
return selectExtInst(ResVReg, ResType, I, CL::length, GL::Length);
case Intrinsic::spv_degrees:
return selectExtInst(ResVReg, ResType, I, CL::degrees, GL::Degrees);
case Intrinsic::spv_faceforward:
return selectExtInst(ResVReg, ResType, I, GL::FaceForward);
case Intrinsic::spv_frac:
return selectExtInst(ResVReg, ResType, I, CL::fract, GL::Fract);
case Intrinsic::spv_normalize:
return selectExtInst(ResVReg, ResType, I, CL::normalize, GL::Normalize);
case Intrinsic::spv_reflect:
return selectExtInst(ResVReg, ResType, I, GL::Reflect);
case Intrinsic::spv_rsqrt:
return selectExtInst(ResVReg, ResType, I, CL::rsqrt, GL::InverseSqrt);
case Intrinsic::spv_sign:
return selectSign(ResVReg, ResType, I);
case Intrinsic::spv_smoothstep:
return selectExtInst(ResVReg, ResType, I, CL::smoothstep, GL::SmoothStep);
case Intrinsic::spv_firstbituhigh: // There is no CL equivalent of FindUMsb
return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/false);
case Intrinsic::spv_firstbitshigh: // There is no CL equivalent of FindSMsb
return selectFirstBitHigh(ResVReg, ResType, I, /*IsSigned=*/true);
case Intrinsic::spv_firstbitlow: // There is no CL equivlent of FindILsb
return selectFirstBitLow(ResVReg, ResType, I);
case Intrinsic::spv_group_memory_barrier_with_group_sync: {
bool Result = true;
auto MemSemConstant =
buildI32Constant(SPIRV::MemorySemantics::SequentiallyConsistent, I);
Register MemSemReg = MemSemConstant.first;
Result &= MemSemConstant.second;
auto ScopeConstant = buildI32Constant(SPIRV::Scope::Workgroup, I);
Register ScopeReg = ScopeConstant.first;
Result &= ScopeConstant.second;
MachineBasicBlock &BB = *I.getParent();
return Result &&
BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpControlBarrier))
.addUse(ScopeReg)
.addUse(ScopeReg)
.addUse(MemSemReg)
.constrainAllUses(TII, TRI, RBI);
}
case Intrinsic::spv_generic_cast_to_ptr_explicit: {
Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 1).getReg();
SPIRV::StorageClass::StorageClass ResSC =
GR.getPointerStorageClass(ResType);
if (!isGenericCastablePtr(ResSC))
report_fatal_error("The target storage class is not castable from the "
"Generic storage class");
return BuildMI(BB, I, I.getDebugLoc(),
TII.get(SPIRV::OpGenericCastToPtrExplicit))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(PtrReg)
.addImm(ResSC)
.constrainAllUses(TII, TRI, RBI);
}
case Intrinsic::spv_lifetime_start:
case Intrinsic::spv_lifetime_end: {
unsigned Op = IID == Intrinsic::spv_lifetime_start ? SPIRV::OpLifetimeStart
: SPIRV::OpLifetimeStop;
int64_t Size = I.getOperand(I.getNumExplicitDefs() + 1).getImm();
Register PtrReg = I.getOperand(I.getNumExplicitDefs() + 2).getReg();
if (Size == -1)
Size = 0;
return BuildMI(BB, I, I.getDebugLoc(), TII.get(Op))
.addUse(PtrReg)
.addImm(Size)
.constrainAllUses(TII, TRI, RBI);
}
case Intrinsic::spv_saturate:
return selectSaturate(ResVReg, ResType, I);
case Intrinsic::spv_nclamp:
return selectExtInst(ResVReg, ResType, I, CL::fclamp, GL::NClamp);
case Intrinsic::spv_uclamp:
return selectExtInst(ResVReg, ResType, I, CL::u_clamp, GL::UClamp);
case Intrinsic::spv_sclamp:
return selectExtInst(ResVReg, ResType, I, CL::s_clamp, GL::SClamp);
case Intrinsic::spv_wave_active_countbits:
return selectWaveActiveCountBits(ResVReg, ResType, I);
case Intrinsic::spv_wave_all:
return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAll);
case Intrinsic::spv_wave_any:
return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformAny);
case Intrinsic::spv_wave_is_first_lane:
return selectWaveOpInst(ResVReg, ResType, I, SPIRV::OpGroupNonUniformElect);
case Intrinsic::spv_wave_reduce_umax:
return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ true);
case Intrinsic::spv_wave_reduce_max:
return selectWaveReduceMax(ResVReg, ResType, I, /*IsUnsigned*/ false);
case Intrinsic::spv_wave_reduce_sum:
return selectWaveReduceSum(ResVReg, ResType, I);
case Intrinsic::spv_wave_readlane:
return selectWaveOpInst(ResVReg, ResType, I,
SPIRV::OpGroupNonUniformShuffle);
case Intrinsic::spv_step:
return selectExtInst(ResVReg, ResType, I, CL::step, GL::Step);
case Intrinsic::spv_radians:
return selectExtInst(ResVReg, ResType, I, CL::radians, GL::Radians);
// Discard intrinsics which we do not expect to actually represent code after
// lowering or intrinsics which are not implemented but should not crash when
// found in a customer's LLVM IR input.
case Intrinsic::instrprof_increment:
case Intrinsic::instrprof_increment_step:
case Intrinsic::instrprof_value_profile:
break;
// Discard internal intrinsics.
case Intrinsic::spv_value_md:
break;
case Intrinsic::spv_resource_handlefrombinding: {
return selectHandleFromBinding(ResVReg, ResType, I);
}
case Intrinsic::spv_resource_store_typedbuffer: {
return selectImageWriteIntrinsic(I);
}
case Intrinsic::spv_resource_load_typedbuffer: {
return selectReadImageIntrinsic(ResVReg, ResType, I);
}
case Intrinsic::spv_resource_getpointer: {
return selectResourceGetPointer(ResVReg, ResType, I);
}
case Intrinsic::spv_discard: {
return selectDiscard(ResVReg, ResType, I);
}
default: {
std::string DiagMsg;
raw_string_ostream OS(DiagMsg);
I.print(OS);
DiagMsg = "Intrinsic selection not implemented: " + DiagMsg;
report_fatal_error(DiagMsg.c_str(), false);
}
}
return true;
}
bool SPIRVInstructionSelector::selectHandleFromBinding(Register &ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
// The images need to be loaded in the same basic block as their use. We defer
// loading the image to the intrinsic that uses it.
if (ResType->getOpcode() == SPIRV::OpTypeImage)
return true;
return loadHandleBeforePosition(ResVReg, GR.getSPIRVTypeForVReg(ResVReg),
*cast<GIntrinsic>(&I), I);
}
bool SPIRVInstructionSelector::selectReadImageIntrinsic(
Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
// If the load of the image is in a different basic block, then
// this will generate invalid code. A proper solution is to move
// the OpLoad from selectHandleFromBinding here. However, to do
// that we will need to change the return type of the intrinsic.
// We will do that when we can, but for now trying to move forward with other
// issues.
Register ImageReg = I.getOperand(2).getReg();
auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
*ImageDef, I)) {
return false;
}
Register IdxReg = I.getOperand(3).getReg();
DebugLoc Loc = I.getDebugLoc();
MachineInstr &Pos = I;
return generateImageRead(ResVReg, ResType, NewImageReg, IdxReg, Loc, Pos);
}
bool SPIRVInstructionSelector::generateImageRead(Register &ResVReg,
const SPIRVType *ResType,
Register ImageReg,
Register IdxReg, DebugLoc Loc,
MachineInstr &Pos) const {
SPIRVType *ImageType = GR.getSPIRVTypeForVReg(ImageReg);
assert(ImageType && ImageType->getOpcode() == SPIRV::OpTypeImage &&
"ImageReg is not an image type.");
bool IsSignedInteger =
sampledTypeIsSignedInteger(GR.getTypeForSPIRVType(ImageType));
uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
if (ResultSize == 4) {
auto BMI = BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(ImageReg)
.addUse(IdxReg);
if (IsSignedInteger)
BMI.addImm(0x1000); // SignExtend
return BMI.constrainAllUses(TII, TRI, RBI);
}
SPIRVType *ReadType = widenTypeToVec4(ResType, Pos);
Register ReadReg = MRI->createVirtualRegister(GR.getRegClass(ReadType));
auto BMI = BuildMI(*Pos.getParent(), Pos, Loc, TII.get(SPIRV::OpImageRead))
.addDef(ReadReg)
.addUse(GR.getSPIRVTypeID(ReadType))
.addUse(ImageReg)
.addUse(IdxReg);
if (IsSignedInteger)
BMI.addImm(0x1000); // SignExtend
bool Succeed = BMI.constrainAllUses(TII, TRI, RBI);
if (!Succeed)
return false;
if (ResultSize == 1) {
return BuildMI(*Pos.getParent(), Pos, Loc,
TII.get(SPIRV::OpCompositeExtract))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(ReadReg)
.addImm(0)
.constrainAllUses(TII, TRI, RBI);
}
return extractSubvector(ResVReg, ResType, ReadReg, Pos);
}
bool SPIRVInstructionSelector::selectResourceGetPointer(
Register &ResVReg, const SPIRVType *ResType, MachineInstr &I) const {
Register ResourcePtr = I.getOperand(2).getReg();
SPIRVType *RegType = GR.getSPIRVTypeForVReg(ResourcePtr, I.getMF());
if (RegType->getOpcode() == SPIRV::OpTypeImage) {
// For texel buffers, the index into the image is part of the OpImageRead or
// OpImageWrite instructions. So we will do nothing in this case. This
// intrinsic will be combined with the load or store when selecting the load
// or store.
return true;
}
assert(ResType->getOpcode() == SPIRV::OpTypePointer);
MachineIRBuilder MIRBuilder(I);
Register IndexReg = I.getOperand(3).getReg();
Register ZeroReg =
buildZerosVal(GR.getOrCreateSPIRVIntegerType(32, I, TII), I);
return BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(SPIRV::OpAccessChain))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(ResourcePtr)
.addUse(ZeroReg)
.addUse(IndexReg)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::extractSubvector(
Register &ResVReg, const SPIRVType *ResType, Register &ReadReg,
MachineInstr &InsertionPoint) const {
SPIRVType *InputType = GR.getResultType(ReadReg);
[[maybe_unused]] uint64_t InputSize =
GR.getScalarOrVectorComponentCount(InputType);
uint64_t ResultSize = GR.getScalarOrVectorComponentCount(ResType);
assert(InputSize > 1 && "The input must be a vector.");
assert(ResultSize > 1 && "The result must be a vector.");
assert(ResultSize < InputSize &&
"Cannot extract more element than there are in the input.");
SmallVector<Register> ComponentRegisters;
SPIRVType *ScalarType = GR.getScalarOrVectorComponentType(ResType);
const TargetRegisterClass *ScalarRegClass = GR.getRegClass(ScalarType);
for (uint64_t I = 0; I < ResultSize; I++) {
Register ComponentReg = MRI->createVirtualRegister(ScalarRegClass);
bool Succeed = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
InsertionPoint.getDebugLoc(),
TII.get(SPIRV::OpCompositeExtract))
.addDef(ComponentReg)
.addUse(ScalarType->getOperand(0).getReg())
.addUse(ReadReg)
.addImm(I)
.constrainAllUses(TII, TRI, RBI);
if (!Succeed)
return false;
ComponentRegisters.emplace_back(ComponentReg);
}
MachineInstrBuilder MIB = BuildMI(*InsertionPoint.getParent(), InsertionPoint,
InsertionPoint.getDebugLoc(),
TII.get(SPIRV::OpCompositeConstruct))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType));
for (Register ComponentReg : ComponentRegisters)
MIB.addUse(ComponentReg);
return MIB.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectImageWriteIntrinsic(
MachineInstr &I) const {
// If the load of the image is in a different basic block, then
// this will generate invalid code. A proper solution is to move
// the OpLoad from selectHandleFromBinding here. However, to do
// that we will need to change the return type of the intrinsic.
// We will do that when we can, but for now trying to move forward with other
// issues.
Register ImageReg = I.getOperand(1).getReg();
auto *ImageDef = cast<GIntrinsic>(getVRegDef(*MRI, ImageReg));
Register NewImageReg = MRI->createVirtualRegister(MRI->getRegClass(ImageReg));
if (!loadHandleBeforePosition(NewImageReg, GR.getSPIRVTypeForVReg(ImageReg),
*ImageDef, I)) {
return false;
}
Register CoordinateReg = I.getOperand(2).getReg();
Register DataReg = I.getOperand(3).getReg();
assert(GR.getResultType(DataReg)->getOpcode() == SPIRV::OpTypeVector);
assert(GR.getScalarOrVectorComponentCount(GR.getResultType(DataReg)) == 4);
return BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(SPIRV::OpImageWrite))
.addUse(NewImageReg)
.addUse(CoordinateReg)
.addUse(DataReg)
.constrainAllUses(TII, TRI, RBI);
}
Register SPIRVInstructionSelector::buildPointerToResource(
const SPIRVType *SpirvResType, SPIRV::StorageClass::StorageClass SC,
uint32_t Set, uint32_t Binding, uint32_t ArraySize, Register IndexReg,
bool IsNonUniform, StringRef Name, MachineIRBuilder MIRBuilder) const {
const Type *ResType = GR.getTypeForSPIRVType(SpirvResType);
if (ArraySize == 1) {
SPIRVType *PtrType =
GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
assert(GR.getPointeeType(PtrType) == SpirvResType &&
"SpirvResType did not have an explicit layout.");
return GR.getOrCreateGlobalVariableWithBinding(PtrType, Set, Binding, Name,
MIRBuilder);
}
const Type *VarType = ArrayType::get(const_cast<Type *>(ResType), ArraySize);
SPIRVType *VarPointerType =
GR.getOrCreateSPIRVPointerType(VarType, MIRBuilder, SC);
Register VarReg = GR.getOrCreateGlobalVariableWithBinding(
VarPointerType, Set, Binding, Name, MIRBuilder);
SPIRVType *ResPointerType =
GR.getOrCreateSPIRVPointerType(ResType, MIRBuilder, SC);
Register AcReg = MRI->createVirtualRegister(GR.getRegClass(ResPointerType));
if (IsNonUniform) {
// It is unclear which value needs to be marked an non-uniform, so both
// the index and the access changed are decorated as non-uniform.
buildOpDecorate(IndexReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
buildOpDecorate(AcReg, MIRBuilder, SPIRV::Decoration::NonUniformEXT, {});
}
MIRBuilder.buildInstr(SPIRV::OpAccessChain)
.addDef(AcReg)
.addUse(GR.getSPIRVTypeID(ResPointerType))
.addUse(VarReg)
.addUse(IndexReg);
return AcReg;
}
bool SPIRVInstructionSelector::selectFirstBitSet16(
Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
unsigned ExtendOpcode, unsigned BitSetOpcode) const {
Register ExtReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
bool Result = selectOpWithSrcs(ExtReg, ResType, I, {I.getOperand(2).getReg()},
ExtendOpcode);
return Result &&
selectFirstBitSet32(ResVReg, ResType, I, ExtReg, BitSetOpcode);
}
bool SPIRVInstructionSelector::selectFirstBitSet32(
Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
Register SrcReg, unsigned BitSetOpcode) const {
return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
.addImm(BitSetOpcode)
.addUse(SrcReg)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectFirstBitSet64Overflow(
Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
// SPIR-V allow vectors of size 2,3,4 only. Calling with a larger vectors
// requires creating a param register and return register with an invalid
// vector size. If that is resolved, then this function can be used for
// vectors of any component size.
unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
assert(ComponentCount < 5 && "Vec 5+ will generate invalid SPIR-V ops");
MachineIRBuilder MIRBuilder(I);
SPIRVType *BaseType = GR.retrieveScalarOrVectorIntType(ResType);
SPIRVType *I64Type = GR.getOrCreateSPIRVIntegerType(64, MIRBuilder);
SPIRVType *I64x2Type =
GR.getOrCreateSPIRVVectorType(I64Type, 2, MIRBuilder, false);
SPIRVType *Vec2ResType =
GR.getOrCreateSPIRVVectorType(BaseType, 2, MIRBuilder, false);
std::vector<Register> PartialRegs;
// Loops 0, 2, 4, ... but stops one loop early when ComponentCount is odd
unsigned CurrentComponent = 0;
for (; CurrentComponent + 1 < ComponentCount; CurrentComponent += 2) {
// This register holds the firstbitX result for each of the i64x2 vectors
// extracted from SrcReg
Register BitSetResult =
MRI->createVirtualRegister(GR.getRegClass(I64x2Type));
auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(SPIRV::OpVectorShuffle))
.addDef(BitSetResult)
.addUse(GR.getSPIRVTypeID(I64x2Type))
.addUse(SrcReg)
.addUse(SrcReg)
.addImm(CurrentComponent)
.addImm(CurrentComponent + 1);
if (!MIB.constrainAllUses(TII, TRI, RBI))
return false;
Register SubVecBitSetReg =
MRI->createVirtualRegister(GR.getRegClass(Vec2ResType));
if (!selectFirstBitSet64(SubVecBitSetReg, Vec2ResType, I, BitSetResult,
BitSetOpcode, SwapPrimarySide))
return false;
PartialRegs.push_back(SubVecBitSetReg);
}
// On odd component counts we need to handle one more component
if (CurrentComponent != ComponentCount) {
bool ZeroAsNull = !STI.isShader();
Register FinalElemReg = MRI->createVirtualRegister(GR.getRegClass(I64Type));
Register ConstIntLastIdx = GR.getOrCreateConstInt(
ComponentCount - 1, I, BaseType, TII, ZeroAsNull);
if (!selectOpWithSrcs(FinalElemReg, I64Type, I, {SrcReg, ConstIntLastIdx},
SPIRV::OpVectorExtractDynamic))
return false;
Register FinalElemBitSetReg =
MRI->createVirtualRegister(GR.getRegClass(BaseType));
if (!selectFirstBitSet64(FinalElemBitSetReg, BaseType, I, FinalElemReg,
BitSetOpcode, SwapPrimarySide))
return false;
PartialRegs.push_back(FinalElemBitSetReg);
}
// Join all the resulting registers back into the return type in order
// (ie i32x2, i32x2, i32x1 -> i32x5)
return selectOpWithSrcs(ResVReg, ResType, I, PartialRegs,
SPIRV::OpCompositeConstruct);
}
bool SPIRVInstructionSelector::selectFirstBitSet64(
Register ResVReg, const SPIRVType *ResType, MachineInstr &I,
Register SrcReg, unsigned BitSetOpcode, bool SwapPrimarySide) const {
unsigned ComponentCount = GR.getScalarOrVectorComponentCount(ResType);
SPIRVType *BaseType = GR.retrieveScalarOrVectorIntType(ResType);
bool ZeroAsNull = !STI.isShader();
Register ConstIntZero =
GR.getOrCreateConstInt(0, I, BaseType, TII, ZeroAsNull);
Register ConstIntOne =
GR.getOrCreateConstInt(1, I, BaseType, TII, ZeroAsNull);
// SPIRV doesn't support vectors with more than 4 components. Since the
// algoritm below converts i64 -> i32x2 and i64x4 -> i32x8 it can only
// operate on vectors with 2 or less components. When largers vectors are
// seen. Split them, recurse, then recombine them.
if (ComponentCount > 2) {
return selectFirstBitSet64Overflow(ResVReg, ResType, I, SrcReg,
BitSetOpcode, SwapPrimarySide);
}
// 1. Split int64 into 2 pieces using a bitcast
MachineIRBuilder MIRBuilder(I);
SPIRVType *PostCastType = GR.getOrCreateSPIRVVectorType(
BaseType, 2 * ComponentCount, MIRBuilder, false);
Register BitcastReg =
MRI->createVirtualRegister(GR.getRegClass(PostCastType));
if (!selectOpWithSrcs(BitcastReg, PostCastType, I, {SrcReg},
SPIRV::OpBitcast))
return false;
// 2. Find the first set bit from the primary side for all the pieces in #1
Register FBSReg = MRI->createVirtualRegister(GR.getRegClass(PostCastType));
if (!selectFirstBitSet32(FBSReg, PostCastType, I, BitcastReg, BitSetOpcode))
return false;
// 3. Split result vector into high bits and low bits
Register HighReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
Register LowReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
bool IsScalarRes = ResType->getOpcode() != SPIRV::OpTypeVector;
if (IsScalarRes) {
// if scalar do a vector extract
if (!selectOpWithSrcs(HighReg, ResType, I, {FBSReg, ConstIntZero},
SPIRV::OpVectorExtractDynamic))
return false;
if (!selectOpWithSrcs(LowReg, ResType, I, {FBSReg, ConstIntOne},
SPIRV::OpVectorExtractDynamic))
return false;
} else {
// if vector do a shufflevector
auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(SPIRV::OpVectorShuffle))
.addDef(HighReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(FBSReg)
// Per the spec, repeat the vector if only one vec is needed
.addUse(FBSReg);
// high bits are stored in even indexes. Extract them from FBSReg
for (unsigned J = 0; J < ComponentCount * 2; J += 2) {
MIB.addImm(J);
}
if (!MIB.constrainAllUses(TII, TRI, RBI))
return false;
MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(),
TII.get(SPIRV::OpVectorShuffle))
.addDef(LowReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(FBSReg)
// Per the spec, repeat the vector if only one vec is needed
.addUse(FBSReg);
// low bits are stored in odd indexes. Extract them from FBSReg
for (unsigned J = 1; J < ComponentCount * 2; J += 2) {
MIB.addImm(J);
}
if (!MIB.constrainAllUses(TII, TRI, RBI))
return false;
}
// 4. Check the result. When primary bits == -1 use secondary, otherwise use
// primary
SPIRVType *BoolType = GR.getOrCreateSPIRVBoolType(I, TII);
Register NegOneReg;
Register Reg0;
Register Reg32;
unsigned SelectOp;
unsigned AddOp;
if (IsScalarRes) {
NegOneReg =
GR.getOrCreateConstInt((unsigned)-1, I, ResType, TII, ZeroAsNull);
Reg0 = GR.getOrCreateConstInt(0, I, ResType, TII, ZeroAsNull);
Reg32 = GR.getOrCreateConstInt(32, I, ResType, TII, ZeroAsNull);
SelectOp = SPIRV::OpSelectSISCond;
AddOp = SPIRV::OpIAddS;
} else {
BoolType = GR.getOrCreateSPIRVVectorType(BoolType, ComponentCount,
MIRBuilder, false);
NegOneReg =
GR.getOrCreateConstVector((unsigned)-1, I, ResType, TII, ZeroAsNull);
Reg0 = GR.getOrCreateConstVector(0, I, ResType, TII, ZeroAsNull);
Reg32 = GR.getOrCreateConstVector(32, I, ResType, TII, ZeroAsNull);
SelectOp = SPIRV::OpSelectVIVCond;
AddOp = SPIRV::OpIAddV;
}
Register PrimaryReg = HighReg;
Register SecondaryReg = LowReg;
Register PrimaryShiftReg = Reg32;
Register SecondaryShiftReg = Reg0;
// By default the emitted opcodes check for the set bit from the MSB side.
// Setting SwapPrimarySide checks the set bit from the LSB side
if (SwapPrimarySide) {
PrimaryReg = LowReg;
SecondaryReg = HighReg;
PrimaryShiftReg = Reg0;
SecondaryShiftReg = Reg32;
}
// Check if the primary bits are == -1
Register BReg = MRI->createVirtualRegister(GR.getRegClass(BoolType));
if (!selectOpWithSrcs(BReg, BoolType, I, {PrimaryReg, NegOneReg},
SPIRV::OpIEqual))
return false;
// Select secondary bits if true in BReg, otherwise primary bits
Register TmpReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
if (!selectOpWithSrcs(TmpReg, ResType, I, {BReg, SecondaryReg, PrimaryReg},
SelectOp))
return false;
// 5. Add 32 when high bits are used, otherwise 0 for low bits
Register ValReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
if (!selectOpWithSrcs(ValReg, ResType, I,
{BReg, SecondaryShiftReg, PrimaryShiftReg}, SelectOp))
return false;
return selectOpWithSrcs(ResVReg, ResType, I, {ValReg, TmpReg}, AddOp);
}
bool SPIRVInstructionSelector::selectFirstBitHigh(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I,
bool IsSigned) const {
// FindUMsb and FindSMsb intrinsics only support 32 bit integers
Register OpReg = I.getOperand(2).getReg();
SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
// zero or sign extend
unsigned ExtendOpcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert;
unsigned BitSetOpcode = IsSigned ? GL::FindSMsb : GL::FindUMsb;
switch (GR.getScalarOrVectorBitWidth(OpType)) {
case 16:
return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
case 32:
return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
case 64:
return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
/*SwapPrimarySide=*/false);
default:
report_fatal_error(
"spv_firstbituhigh and spv_firstbitshigh only support 16,32,64 bits.");
}
}
bool SPIRVInstructionSelector::selectFirstBitLow(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
// FindILsb intrinsic only supports 32 bit integers
Register OpReg = I.getOperand(2).getReg();
SPIRVType *OpType = GR.getSPIRVTypeForVReg(OpReg);
// OpUConvert treats the operand bits as an unsigned i16 and zero extends it
// to an unsigned i32. As this leaves all the least significant bits unchanged
// so the first set bit from the LSB side doesn't change.
unsigned ExtendOpcode = SPIRV::OpUConvert;
unsigned BitSetOpcode = GL::FindILsb;
switch (GR.getScalarOrVectorBitWidth(OpType)) {
case 16:
return selectFirstBitSet16(ResVReg, ResType, I, ExtendOpcode, BitSetOpcode);
case 32:
return selectFirstBitSet32(ResVReg, ResType, I, OpReg, BitSetOpcode);
case 64:
return selectFirstBitSet64(ResVReg, ResType, I, OpReg, BitSetOpcode,
/*SwapPrimarySide=*/true);
default:
report_fatal_error("spv_firstbitlow only supports 16,32,64 bits.");
}
}
bool SPIRVInstructionSelector::selectAllocaArray(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
// there was an allocation size parameter to the allocation instruction
// that is not 1
MachineBasicBlock &BB = *I.getParent();
bool Res = BuildMI(BB, I, I.getDebugLoc(),
TII.get(SPIRV::OpVariableLengthArrayINTEL))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(I.getOperand(2).getReg())
.constrainAllUses(TII, TRI, RBI);
if (!STI.isShader()) {
unsigned Alignment = I.getOperand(3).getImm();
buildOpDecorate(ResVReg, I, TII, SPIRV::Decoration::Alignment, {Alignment});
}
return Res;
}
bool SPIRVInstructionSelector::selectFrameIndex(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
// Change order of instructions if needed: all OpVariable instructions in a
// function must be the first instructions in the first block
auto It = getOpVariableMBBIt(I);
bool Res = BuildMI(*It->getParent(), It, It->getDebugLoc(),
TII.get(SPIRV::OpVariable))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addImm(static_cast<uint32_t>(SPIRV::StorageClass::Function))
.constrainAllUses(TII, TRI, RBI);
if (!STI.isShader()) {
unsigned Alignment = I.getOperand(2).getImm();
buildOpDecorate(ResVReg, *It, TII, SPIRV::Decoration::Alignment,
{Alignment});
}
return Res;
}
bool SPIRVInstructionSelector::selectBranch(MachineInstr &I) const {
// InstructionSelector walks backwards through the instructions. We can use
// both a G_BR and a G_BRCOND to create an OpBranchConditional. We hit G_BR
// first, so can generate an OpBranchConditional here. If there is no
// G_BRCOND, we just use OpBranch for a regular unconditional branch.
const MachineInstr *PrevI = I.getPrevNode();
MachineBasicBlock &MBB = *I.getParent();
if (PrevI != nullptr && PrevI->getOpcode() == TargetOpcode::G_BRCOND) {
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
.addUse(PrevI->getOperand(0).getReg())
.addMBB(PrevI->getOperand(1).getMBB())
.addMBB(I.getOperand(0).getMBB())
.constrainAllUses(TII, TRI, RBI);
}
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranch))
.addMBB(I.getOperand(0).getMBB())
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectBranchCond(MachineInstr &I) const {
// InstructionSelector walks backwards through the instructions. For an
// explicit conditional branch with no fallthrough, we use both a G_BR and a
// G_BRCOND to create an OpBranchConditional. We should hit G_BR first, and
// generate the OpBranchConditional in selectBranch above.
//
// If an OpBranchConditional has been generated, we simply return, as the work
// is alread done. If there is no OpBranchConditional, LLVM must be relying on
// implicit fallthrough to the next basic block, so we need to create an
// OpBranchConditional with an explicit "false" argument pointing to the next
// basic block that LLVM would fall through to.
const MachineInstr *NextI = I.getNextNode();
// Check if this has already been successfully selected.
if (NextI != nullptr && NextI->getOpcode() == SPIRV::OpBranchConditional)
return true;
// Must be relying on implicit block fallthrough, so generate an
// OpBranchConditional with the "next" basic block as the "false" target.
MachineBasicBlock &MBB = *I.getParent();
unsigned NextMBBNum = MBB.getNextNode()->getNumber();
MachineBasicBlock *NextMBB = I.getMF()->getBlockNumbered(NextMBBNum);
return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional))
.addUse(I.getOperand(0).getReg())
.addMBB(I.getOperand(1).getMBB())
.addMBB(NextMBB)
.constrainAllUses(TII, TRI, RBI);
}
bool SPIRVInstructionSelector::selectPhi(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpPhi))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType));
const unsigned NumOps = I.getNumOperands();
for (unsigned i = 1; i < NumOps; i += 2) {
MIB.addUse(I.getOperand(i + 0).getReg());
MIB.addMBB(I.getOperand(i + 1).getMBB());
}
bool Res = MIB.constrainAllUses(TII, TRI, RBI);
MIB->setDesc(TII.get(TargetOpcode::PHI));
MIB->removeOperand(1);
return Res;
}
bool SPIRVInstructionSelector::selectGlobalValue(
Register ResVReg, MachineInstr &I, const MachineInstr *Init) const {
// FIXME: don't use MachineIRBuilder here, replace it with BuildMI.
MachineIRBuilder MIRBuilder(I);
const GlobalValue *GV = I.getOperand(1).getGlobal();
Type *GVType = toTypedPointer(GR.getDeducedGlobalValueType(GV));
std::string GlobalIdent;
if (!GV->hasName()) {
unsigned &ID = UnnamedGlobalIDs[GV];
if (ID == 0)
ID = UnnamedGlobalIDs.size();
GlobalIdent = "__unnamed_" + Twine(ID).str();
} else {
GlobalIdent = GV->getName();
}
// Behaviour of functions as operands depends on availability of the
// corresponding extension (SPV_INTEL_function_pointers):
// - If there is an extension to operate with functions as operands:
// We create a proper constant operand and evaluate a correct type for a
// function pointer.
// - Without the required extension:
// We have functions as operands in tests with blocks of instruction e.g. in
// transcoding/global_block.ll. These operands are not used and should be
// substituted by zero constants. Their type is expected to be always
// OpTypePointer Function %uchar.
if (isa<Function>(GV)) {
const Constant *ConstVal = GV;
MachineBasicBlock &BB = *I.getParent();
Register NewReg = GR.find(ConstVal, GR.CurMF);
if (!NewReg.isValid()) {
Register NewReg = ResVReg;
const Function *GVFun =
STI.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)
? dyn_cast<Function>(GV)
: nullptr;
SPIRVType *ResType = GR.getOrCreateSPIRVPointerType(
GVType, I,
GVFun ? SPIRV::StorageClass::CodeSectionINTEL
: addressSpaceToStorageClass(GV->getAddressSpace(), STI));
if (GVFun) {
// References to a function via function pointers generate virtual
// registers without a definition. We will resolve it later, during
// module analysis stage.
Register ResTypeReg = GR.getSPIRVTypeID(ResType);
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
Register FuncVReg =
MRI->createGenericVirtualRegister(GR.getRegType(ResType));
MRI->setRegClass(FuncVReg, &SPIRV::pIDRegClass);
MachineInstrBuilder MIB1 =
BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpUndef))
.addDef(FuncVReg)
.addUse(ResTypeReg);
MachineInstrBuilder MIB2 =
BuildMI(BB, I, I.getDebugLoc(),
TII.get(SPIRV::OpConstantFunctionPointerINTEL))
.addDef(NewReg)
.addUse(ResTypeReg)
.addUse(FuncVReg);
GR.add(ConstVal, MIB2);
// mapping the function pointer to the used Function
GR.recordFunctionPointer(&MIB2.getInstr()->getOperand(2), GVFun);
return MIB1.constrainAllUses(TII, TRI, RBI) &&
MIB2.constrainAllUses(TII, TRI, RBI);
}
MachineInstrBuilder MIB3 =
BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull))
.addDef(NewReg)
.addUse(GR.getSPIRVTypeID(ResType));
GR.add(ConstVal, MIB3);
return MIB3.constrainAllUses(TII, TRI, RBI);
}
assert(NewReg != ResVReg);
return BuildCOPY(ResVReg, NewReg, I);
}
auto GlobalVar = cast<GlobalVariable>(GV);
assert(GlobalVar->getName() != "llvm.global.annotations");
// Skip empty declaration for GVs with initializers till we get the decl with
// passed initializer.
if (hasInitializer(GlobalVar) && !Init)
return true;
bool HasLnkTy = !GV->hasInternalLinkage() && !GV->hasPrivateLinkage() &&
!GV->hasHiddenVisibility();
SPIRV::LinkageType::LinkageType LnkType =
GV->isDeclarationForLinker()
? SPIRV::LinkageType::Import
: (GV->hasLinkOnceODRLinkage() &&
STI.canUseExtension(SPIRV::Extension::SPV_KHR_linkonce_odr)
? SPIRV::LinkageType::LinkOnceODR
: SPIRV::LinkageType::Export);
const unsigned AddrSpace = GV->getAddressSpace();
SPIRV::StorageClass::StorageClass StorageClass =
addressSpaceToStorageClass(AddrSpace, STI);
SPIRVType *ResType = GR.getOrCreateSPIRVPointerType(GVType, I, StorageClass);
Register Reg = GR.buildGlobalVariable(
ResVReg, ResType, GlobalIdent, GV, StorageClass, Init,
GlobalVar->isConstant(), HasLnkTy, LnkType, MIRBuilder, true);
return Reg.isValid();
}
bool SPIRVInstructionSelector::selectLog10(Register ResVReg,
const SPIRVType *ResType,
MachineInstr &I) const {
if (STI.canUseExtInstSet(SPIRV::InstructionSet::OpenCL_std)) {
return selectExtInst(ResVReg, ResType, I, CL::log10);
}
// There is no log10 instruction in the GLSL Extended Instruction set, so it
// is implemented as:
// log10(x) = log2(x) * (1 / log2(10))
// = log2(x) * 0.30103
MachineIRBuilder MIRBuilder(I);
MachineBasicBlock &BB = *I.getParent();
// Build log2(x).
Register VarReg = MRI->createVirtualRegister(GR.getRegClass(ResType));
bool Result =
BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpExtInst))
.addDef(VarReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addImm(static_cast<uint32_t>(SPIRV::InstructionSet::GLSL_std_450))
.addImm(GL::Log2)
.add(I.getOperand(1))
.constrainAllUses(TII, TRI, RBI);
// Build 0.30103.
assert(ResType->getOpcode() == SPIRV::OpTypeVector ||
ResType->getOpcode() == SPIRV::OpTypeFloat);
// TODO: Add matrix implementation once supported by the HLSL frontend.
const SPIRVType *SpirvScalarType =
ResType->getOpcode() == SPIRV::OpTypeVector
? GR.getSPIRVTypeForVReg(ResType->getOperand(1).getReg())
: ResType;
Register ScaleReg =
GR.buildConstantFP(APFloat(0.30103f), MIRBuilder, SpirvScalarType);
// Multiply log2(x) by 0.30103 to get log10(x) result.
auto Opcode = ResType->getOpcode() == SPIRV::OpTypeVector
? SPIRV::OpVectorTimesScalar
: SPIRV::OpFMulS;
return Result && BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(VarReg)
.addUse(ScaleReg)
.constrainAllUses(TII, TRI, RBI);
}
// Generate the instructions to load 3-element vector builtin input
// IDs/Indices.
// Like: GlobalInvocationId, LocalInvocationId, etc....
bool SPIRVInstructionSelector::loadVec3BuiltinInputID(
SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
const SPIRVType *ResType, MachineInstr &I) const {
MachineIRBuilder MIRBuilder(I);
const SPIRVType *Vec3Ty =
GR.getOrCreateSPIRVVectorType(ResType, 3, MIRBuilder, false);
const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
Vec3Ty, MIRBuilder, SPIRV::StorageClass::Input);
// Create new register for the input ID builtin variable.
Register NewRegister =
MIRBuilder.getMRI()->createVirtualRegister(&SPIRV::iIDRegClass);
MIRBuilder.getMRI()->setType(NewRegister, LLT::pointer(0, 64));
GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
// Build global variable with the necessary decorations for the input ID
// builtin variable.
Register Variable = GR.buildGlobalVariable(
NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
SPIRV::StorageClass::Input, nullptr, true, false,
SPIRV::LinkageType::Import, MIRBuilder, false);
// Create new register for loading value.
MachineRegisterInfo *MRI = MIRBuilder.getMRI();
Register LoadedRegister = MRI->createVirtualRegister(&SPIRV::iIDRegClass);
MIRBuilder.getMRI()->setType(LoadedRegister, LLT::pointer(0, 64));
GR.assignSPIRVTypeToVReg(Vec3Ty, LoadedRegister, MIRBuilder.getMF());
// Load v3uint value from the global variable.
bool Result =
BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
.addDef(LoadedRegister)
.addUse(GR.getSPIRVTypeID(Vec3Ty))
.addUse(Variable);
// Get the input ID index. Expecting operand is a constant immediate value,
// wrapped in a type assignment.
assert(I.getOperand(2).isReg());
const uint32_t ThreadId = foldImm(I.getOperand(2), MRI);
// Extract the input ID from the loaded vector value.
MachineBasicBlock &BB = *I.getParent();
auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(LoadedRegister)
.addImm(ThreadId);
return Result && MIB.constrainAllUses(TII, TRI, RBI);
}
// Generate the instructions to load 32-bit integer builtin input IDs/Indices.
// Like LocalInvocationIndex
bool SPIRVInstructionSelector::loadBuiltinInputID(
SPIRV::BuiltIn::BuiltIn BuiltInValue, Register ResVReg,
const SPIRVType *ResType, MachineInstr &I) const {
MachineIRBuilder MIRBuilder(I);
const SPIRVType *PtrType = GR.getOrCreateSPIRVPointerType(
ResType, MIRBuilder, SPIRV::StorageClass::Input);
// Create new register for the input ID builtin variable.
Register NewRegister =
MIRBuilder.getMRI()->createVirtualRegister(GR.getRegClass(PtrType));
MIRBuilder.getMRI()->setType(
NewRegister,
LLT::pointer(storageClassToAddressSpace(SPIRV::StorageClass::Input),
GR.getPointerSize()));
GR.assignSPIRVTypeToVReg(PtrType, NewRegister, MIRBuilder.getMF());
// Build global variable with the necessary decorations for the input ID
// builtin variable.
Register Variable = GR.buildGlobalVariable(
NewRegister, PtrType, getLinkStringForBuiltIn(BuiltInValue), nullptr,
SPIRV::StorageClass::Input, nullptr, true, false,
SPIRV::LinkageType::Import, MIRBuilder, false);
// Load uint value from the global variable.
auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad))
.addDef(ResVReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(Variable);
return MIB.constrainAllUses(TII, TRI, RBI);
}
SPIRVType *SPIRVInstructionSelector::widenTypeToVec4(const SPIRVType *Type,
MachineInstr &I) const {
MachineIRBuilder MIRBuilder(I);
if (Type->getOpcode() != SPIRV::OpTypeVector)
return GR.getOrCreateSPIRVVectorType(Type, 4, MIRBuilder, false);
uint64_t VectorSize = Type->getOperand(2).getImm();
if (VectorSize == 4)
return Type;
Register ScalarTypeReg = Type->getOperand(1).getReg();
const SPIRVType *ScalarType = GR.getSPIRVTypeForVReg(ScalarTypeReg);
return GR.getOrCreateSPIRVVectorType(ScalarType, 4, MIRBuilder, false);
}
bool SPIRVInstructionSelector::loadHandleBeforePosition(
Register &HandleReg, const SPIRVType *ResType, GIntrinsic &HandleDef,
MachineInstr &Pos) const {
assert(HandleDef.getIntrinsicID() ==
Intrinsic::spv_resource_handlefrombinding);
uint32_t Set = foldImm(HandleDef.getOperand(2), MRI);
uint32_t Binding = foldImm(HandleDef.getOperand(3), MRI);
uint32_t ArraySize = foldImm(HandleDef.getOperand(4), MRI);
Register IndexReg = HandleDef.getOperand(5).getReg();
bool IsNonUniform = ArraySize > 1 && foldImm(HandleDef.getOperand(6), MRI);
std::string Name =
getStringValueFromReg(HandleDef.getOperand(7).getReg(), *MRI);
bool IsStructuredBuffer = ResType->getOpcode() == SPIRV::OpTypePointer;
MachineIRBuilder MIRBuilder(HandleDef);
SPIRVType *VarType = ResType;
SPIRV::StorageClass::StorageClass SC = SPIRV::StorageClass::UniformConstant;
if (IsStructuredBuffer) {
VarType = GR.getPointeeType(ResType);
SC = GR.getPointerStorageClass(ResType);
}
Register VarReg =
buildPointerToResource(VarType, SC, Set, Binding, ArraySize, IndexReg,
IsNonUniform, Name, MIRBuilder);
if (IsNonUniform)
buildOpDecorate(HandleReg, HandleDef, TII, SPIRV::Decoration::NonUniformEXT,
{});
// The handle for the buffer is the pointer to the resource. For an image, the
// handle is the image object. So images get an extra load.
uint32_t LoadOpcode =
IsStructuredBuffer ? SPIRV::OpCopyObject : SPIRV::OpLoad;
GR.assignSPIRVTypeToVReg(ResType, HandleReg, *Pos.getMF());
return BuildMI(*Pos.getParent(), Pos, HandleDef.getDebugLoc(),
TII.get(LoadOpcode))
.addDef(HandleReg)
.addUse(GR.getSPIRVTypeID(ResType))
.addUse(VarReg)
.constrainAllUses(TII, TRI, RBI);
}
namespace llvm {
InstructionSelector *
createSPIRVInstructionSelector(const SPIRVTargetMachine &TM,
const SPIRVSubtarget &Subtarget,
const RegisterBankInfo &RBI) {
return new SPIRVInstructionSelector(TM, Subtarget, RBI);
}
} // namespace llvm
|