1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
|
//===-- SPIRVPreLegalizer.cpp - prepare IR for legalization -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The pass prepares IR for legalization: it assigns SPIR-V types to registers
// and removes intrinsics which holded these types during IR translation.
// Also it processes constants and registers them in GR to avoid duplication.
//
//===----------------------------------------------------------------------===//
#include "SPIRV.h"
#include "SPIRVSubtarget.h"
#include "SPIRVUtils.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#define DEBUG_TYPE "spirv-prelegalizer"
using namespace llvm;
namespace {
class SPIRVPreLegalizer : public MachineFunctionPass {
public:
static char ID;
SPIRVPreLegalizer() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
} // namespace
void SPIRVPreLegalizer::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<GISelValueTrackingAnalysisLegacy>();
MachineFunctionPass::getAnalysisUsage(AU);
}
static void
addConstantsToTrack(MachineFunction &MF, SPIRVGlobalRegistry *GR,
const SPIRVSubtarget &STI,
DenseMap<MachineInstr *, Type *> &TargetExtConstTypes) {
MachineRegisterInfo &MRI = MF.getRegInfo();
DenseMap<MachineInstr *, Register> RegsAlreadyAddedToDT;
SmallVector<MachineInstr *, 10> ToErase, ToEraseComposites;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (!isSpvIntrinsic(MI, Intrinsic::spv_track_constant))
continue;
ToErase.push_back(&MI);
Register SrcReg = MI.getOperand(2).getReg();
auto *Const =
cast<Constant>(cast<ConstantAsMetadata>(
MI.getOperand(3).getMetadata()->getOperand(0))
->getValue());
if (auto *GV = dyn_cast<GlobalValue>(Const)) {
Register Reg = GR->find(GV, &MF);
if (!Reg.isValid()) {
GR->add(GV, MRI.getVRegDef(SrcReg));
GR->addGlobalObject(GV, &MF, SrcReg);
} else
RegsAlreadyAddedToDT[&MI] = Reg;
} else {
Register Reg = GR->find(Const, &MF);
if (!Reg.isValid()) {
if (auto *ConstVec = dyn_cast<ConstantDataVector>(Const)) {
auto *BuildVec = MRI.getVRegDef(SrcReg);
assert(BuildVec &&
BuildVec->getOpcode() == TargetOpcode::G_BUILD_VECTOR);
GR->add(Const, BuildVec);
for (unsigned i = 0; i < ConstVec->getNumElements(); ++i) {
// Ensure that OpConstantComposite reuses a constant when it's
// already created and available in the same machine function.
Constant *ElemConst = ConstVec->getElementAsConstant(i);
Register ElemReg = GR->find(ElemConst, &MF);
if (!ElemReg.isValid())
GR->add(ElemConst,
MRI.getVRegDef(BuildVec->getOperand(1 + i).getReg()));
else
BuildVec->getOperand(1 + i).setReg(ElemReg);
}
}
if (Const->getType()->isTargetExtTy()) {
// remember association so that we can restore it when assign types
MachineInstr *SrcMI = MRI.getVRegDef(SrcReg);
if (SrcMI)
GR->add(Const, SrcMI);
if (SrcMI && (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT ||
SrcMI->getOpcode() == TargetOpcode::G_IMPLICIT_DEF))
TargetExtConstTypes[SrcMI] = Const->getType();
if (Const->isNullValue()) {
MachineBasicBlock &DepMBB = MF.front();
MachineIRBuilder MIB(DepMBB, DepMBB.getFirstNonPHI());
SPIRVType *ExtType = GR->getOrCreateSPIRVType(
Const->getType(), MIB, SPIRV::AccessQualifier::ReadWrite,
true);
SrcMI->setDesc(STI.getInstrInfo()->get(SPIRV::OpConstantNull));
SrcMI->addOperand(MachineOperand::CreateReg(
GR->getSPIRVTypeID(ExtType), false));
}
}
} else {
RegsAlreadyAddedToDT[&MI] = Reg;
// This MI is unused and will be removed. If the MI uses
// const_composite, it will be unused and should be removed too.
assert(MI.getOperand(2).isReg() && "Reg operand is expected");
MachineInstr *SrcMI = MRI.getVRegDef(MI.getOperand(2).getReg());
if (SrcMI && isSpvIntrinsic(*SrcMI, Intrinsic::spv_const_composite))
ToEraseComposites.push_back(SrcMI);
}
}
}
}
for (MachineInstr *MI : ToErase) {
Register Reg = MI->getOperand(2).getReg();
auto It = RegsAlreadyAddedToDT.find(MI);
if (It != RegsAlreadyAddedToDT.end())
Reg = It->second;
auto *RC = MRI.getRegClassOrNull(MI->getOperand(0).getReg());
if (!MRI.getRegClassOrNull(Reg) && RC)
MRI.setRegClass(Reg, RC);
MRI.replaceRegWith(MI->getOperand(0).getReg(), Reg);
GR->invalidateMachineInstr(MI);
MI->eraseFromParent();
}
for (MachineInstr *MI : ToEraseComposites) {
GR->invalidateMachineInstr(MI);
MI->eraseFromParent();
}
}
static void foldConstantsIntoIntrinsics(MachineFunction &MF,
SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB) {
SmallVector<MachineInstr *, 64> ToErase;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (!isSpvIntrinsic(MI, Intrinsic::spv_assign_name))
continue;
const MDNode *MD = MI.getOperand(2).getMetadata();
StringRef ValueName = cast<MDString>(MD->getOperand(0))->getString();
if (ValueName.size() > 0) {
MIB.setInsertPt(*MI.getParent(), MI);
buildOpName(MI.getOperand(1).getReg(), ValueName, MIB);
}
ToErase.push_back(&MI);
}
for (MachineInstr *MI : ToErase) {
GR->invalidateMachineInstr(MI);
MI->eraseFromParent();
}
ToErase.clear();
}
}
static MachineInstr *findAssignTypeInstr(Register Reg,
MachineRegisterInfo *MRI) {
for (MachineRegisterInfo::use_instr_iterator I = MRI->use_instr_begin(Reg),
IE = MRI->use_instr_end();
I != IE; ++I) {
MachineInstr *UseMI = &*I;
if ((isSpvIntrinsic(*UseMI, Intrinsic::spv_assign_ptr_type) ||
isSpvIntrinsic(*UseMI, Intrinsic::spv_assign_type)) &&
UseMI->getOperand(1).getReg() == Reg)
return UseMI;
}
return nullptr;
}
static void buildOpBitcast(SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB,
Register ResVReg, Register OpReg) {
SPIRVType *ResType = GR->getSPIRVTypeForVReg(ResVReg);
SPIRVType *OpType = GR->getSPIRVTypeForVReg(OpReg);
assert(ResType && OpType && "Operand types are expected");
if (!GR->isBitcastCompatible(ResType, OpType))
report_fatal_error("incompatible result and operand types in a bitcast");
MachineRegisterInfo *MRI = MIB.getMRI();
if (!MRI->getRegClassOrNull(ResVReg))
MRI->setRegClass(ResVReg, GR->getRegClass(ResType));
if (ResType == OpType)
MIB.buildInstr(TargetOpcode::COPY).addDef(ResVReg).addUse(OpReg);
else
MIB.buildInstr(SPIRV::OpBitcast)
.addDef(ResVReg)
.addUse(GR->getSPIRVTypeID(ResType))
.addUse(OpReg);
}
// We do instruction selections early instead of calling MIB.buildBitcast()
// generating the general op code G_BITCAST. When MachineVerifier validates
// G_BITCAST we see a check of a kind: if Source Type is equal to Destination
// Type then report error "bitcast must change the type". This doesn't take into
// account the notion of a typed pointer that is important for SPIR-V where a
// user may and should use bitcast between pointers with different pointee types
// (https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#OpBitcast).
// It's important for correct lowering in SPIR-V, because interpretation of the
// data type is not left to instructions that utilize the pointer, but encoded
// by the pointer declaration, and the SPIRV target can and must handle the
// declaration and use of pointers that specify the type of data they point to.
// It's not feasible to improve validation of G_BITCAST using just information
// provided by low level types of source and destination. Therefore we don't
// produce G_BITCAST as the general op code with semantics different from
// OpBitcast, but rather lower to OpBitcast immediately. As for now, the only
// difference would be that CombinerHelper couldn't transform known patterns
// around G_BUILD_VECTOR. See discussion
// in https://github.com/llvm/llvm-project/pull/110270 for even more context.
static void selectOpBitcasts(MachineFunction &MF, SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB) {
SmallVector<MachineInstr *, 16> ToErase;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (MI.getOpcode() != TargetOpcode::G_BITCAST)
continue;
MIB.setInsertPt(*MI.getParent(), MI);
buildOpBitcast(GR, MIB, MI.getOperand(0).getReg(),
MI.getOperand(1).getReg());
ToErase.push_back(&MI);
}
}
for (MachineInstr *MI : ToErase) {
GR->invalidateMachineInstr(MI);
MI->eraseFromParent();
}
}
static void insertBitcasts(MachineFunction &MF, SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB) {
// Get access to information about available extensions
const SPIRVSubtarget *ST =
static_cast<const SPIRVSubtarget *>(&MIB.getMF().getSubtarget());
SmallVector<MachineInstr *, 10> ToErase;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (!isSpvIntrinsic(MI, Intrinsic::spv_bitcast) &&
!isSpvIntrinsic(MI, Intrinsic::spv_ptrcast))
continue;
assert(MI.getOperand(2).isReg());
MIB.setInsertPt(*MI.getParent(), MI);
ToErase.push_back(&MI);
if (isSpvIntrinsic(MI, Intrinsic::spv_bitcast)) {
MIB.buildBitcast(MI.getOperand(0).getReg(), MI.getOperand(2).getReg());
continue;
}
Register Def = MI.getOperand(0).getReg();
Register Source = MI.getOperand(2).getReg();
Type *ElemTy = getMDOperandAsType(MI.getOperand(3).getMetadata(), 0);
SPIRVType *AssignedPtrType = GR->getOrCreateSPIRVPointerType(
ElemTy, MI,
addressSpaceToStorageClass(MI.getOperand(4).getImm(), *ST));
// If the ptrcast would be redundant, replace all uses with the source
// register.
MachineRegisterInfo *MRI = MIB.getMRI();
if (GR->getSPIRVTypeForVReg(Source) == AssignedPtrType) {
// Erase Def's assign type instruction if we are going to replace Def.
if (MachineInstr *AssignMI = findAssignTypeInstr(Def, MRI))
ToErase.push_back(AssignMI);
MRI->replaceRegWith(Def, Source);
} else {
if (!GR->getSPIRVTypeForVReg(Def, &MF))
GR->assignSPIRVTypeToVReg(AssignedPtrType, Def, MF);
MIB.buildBitcast(Def, Source);
}
}
}
for (MachineInstr *MI : ToErase) {
GR->invalidateMachineInstr(MI);
MI->eraseFromParent();
}
}
// Translating GV, IRTranslator sometimes generates following IR:
// %1 = G_GLOBAL_VALUE
// %2 = COPY %1
// %3 = G_ADDRSPACE_CAST %2
//
// or
//
// %1 = G_ZEXT %2
// G_MEMCPY ... %2 ...
//
// New registers have no SPIRVType and no register class info.
//
// Set SPIRVType for GV, propagate it from GV to other instructions,
// also set register classes.
static SPIRVType *propagateSPIRVType(MachineInstr *MI, SPIRVGlobalRegistry *GR,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIB) {
SPIRVType *SpvType = nullptr;
assert(MI && "Machine instr is expected");
if (MI->getOperand(0).isReg()) {
Register Reg = MI->getOperand(0).getReg();
SpvType = GR->getSPIRVTypeForVReg(Reg);
if (!SpvType) {
switch (MI->getOpcode()) {
case TargetOpcode::G_FCONSTANT:
case TargetOpcode::G_CONSTANT: {
MIB.setInsertPt(*MI->getParent(), MI);
Type *Ty = MI->getOperand(1).getCImm()->getType();
SpvType = GR->getOrCreateSPIRVType(
Ty, MIB, SPIRV::AccessQualifier::ReadWrite, true);
break;
}
case TargetOpcode::G_GLOBAL_VALUE: {
MIB.setInsertPt(*MI->getParent(), MI);
const GlobalValue *Global = MI->getOperand(1).getGlobal();
Type *ElementTy = toTypedPointer(GR->getDeducedGlobalValueType(Global));
auto *Ty = TypedPointerType::get(ElementTy,
Global->getType()->getAddressSpace());
SpvType = GR->getOrCreateSPIRVType(
Ty, MIB, SPIRV::AccessQualifier::ReadWrite, true);
break;
}
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT: {
if (MI->getOperand(1).isReg()) {
if (MachineInstr *DefInstr =
MRI.getVRegDef(MI->getOperand(1).getReg())) {
if (SPIRVType *Def = propagateSPIRVType(DefInstr, GR, MRI, MIB)) {
unsigned CurrentBW = GR->getScalarOrVectorBitWidth(Def);
unsigned ExpectedBW =
std::max(MRI.getType(Reg).getScalarSizeInBits(), CurrentBW);
unsigned NumElements = GR->getScalarOrVectorComponentCount(Def);
SpvType = GR->getOrCreateSPIRVIntegerType(ExpectedBW, MIB);
if (NumElements > 1)
SpvType = GR->getOrCreateSPIRVVectorType(SpvType, NumElements,
MIB, true);
}
}
}
break;
}
case TargetOpcode::G_PTRTOINT:
SpvType = GR->getOrCreateSPIRVIntegerType(
MRI.getType(Reg).getScalarSizeInBits(), MIB);
break;
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_ADDRSPACE_CAST:
case TargetOpcode::G_PTR_ADD:
case TargetOpcode::COPY: {
MachineOperand &Op = MI->getOperand(1);
MachineInstr *Def = Op.isReg() ? MRI.getVRegDef(Op.getReg()) : nullptr;
if (Def)
SpvType = propagateSPIRVType(Def, GR, MRI, MIB);
break;
}
default:
break;
}
if (SpvType) {
// check if the address space needs correction
LLT RegType = MRI.getType(Reg);
if (SpvType->getOpcode() == SPIRV::OpTypePointer &&
RegType.isPointer() &&
storageClassToAddressSpace(GR->getPointerStorageClass(SpvType)) !=
RegType.getAddressSpace()) {
const SPIRVSubtarget &ST =
MI->getParent()->getParent()->getSubtarget<SPIRVSubtarget>();
auto TSC = addressSpaceToStorageClass(RegType.getAddressSpace(), ST);
SpvType = GR->changePointerStorageClass(SpvType, TSC, *MI);
}
GR->assignSPIRVTypeToVReg(SpvType, Reg, MIB.getMF());
}
if (!MRI.getRegClassOrNull(Reg))
MRI.setRegClass(Reg, SpvType ? GR->getRegClass(SpvType)
: &SPIRV::iIDRegClass);
}
}
return SpvType;
}
// To support current approach and limitations wrt. bit width here we widen a
// scalar register with a bit width greater than 1 to valid sizes and cap it to
// 64 width.
static unsigned widenBitWidthToNextPow2(unsigned BitWidth) {
if (BitWidth == 1)
return 1; // No need to widen 1-bit values
return std::min(std::max(1u << Log2_32_Ceil(BitWidth), 8u), 64u);
}
static void widenScalarType(Register Reg, MachineRegisterInfo &MRI) {
LLT RegType = MRI.getType(Reg);
if (!RegType.isScalar())
return;
unsigned CurrentWidth = RegType.getScalarSizeInBits();
unsigned NewWidth = widenBitWidthToNextPow2(CurrentWidth);
if (NewWidth != CurrentWidth)
MRI.setType(Reg, LLT::scalar(NewWidth));
}
static void widenCImmType(MachineOperand &MOP) {
const ConstantInt *CImmVal = MOP.getCImm();
unsigned CurrentWidth = CImmVal->getBitWidth();
unsigned NewWidth = widenBitWidthToNextPow2(CurrentWidth);
if (NewWidth != CurrentWidth) {
// Replace the immediate value with the widened version
MOP.setCImm(ConstantInt::get(CImmVal->getType()->getContext(),
CImmVal->getValue().zextOrTrunc(NewWidth)));
}
}
static void setInsertPtAfterDef(MachineIRBuilder &MIB, MachineInstr *Def) {
MachineBasicBlock &MBB = *Def->getParent();
MachineBasicBlock::iterator DefIt =
Def->getNextNode() ? Def->getNextNode()->getIterator() : MBB.end();
// Skip all the PHI and debug instructions.
while (DefIt != MBB.end() &&
(DefIt->isPHI() || DefIt->isDebugOrPseudoInstr()))
DefIt = std::next(DefIt);
MIB.setInsertPt(MBB, DefIt);
}
namespace llvm {
void insertAssignInstr(Register Reg, Type *Ty, SPIRVType *SpvType,
SPIRVGlobalRegistry *GR, MachineIRBuilder &MIB,
MachineRegisterInfo &MRI) {
assert((Ty || SpvType) && "Either LLVM or SPIRV type is expected.");
MachineInstr *Def = MRI.getVRegDef(Reg);
setInsertPtAfterDef(MIB, Def);
if (!SpvType)
SpvType = GR->getOrCreateSPIRVType(Ty, MIB,
SPIRV::AccessQualifier::ReadWrite, true);
if (!isTypeFoldingSupported(Def->getOpcode())) {
// No need to generate SPIRV::ASSIGN_TYPE pseudo-instruction
if (!MRI.getRegClassOrNull(Reg))
MRI.setRegClass(Reg, GR->getRegClass(SpvType));
if (!MRI.getType(Reg).isValid())
MRI.setType(Reg, GR->getRegType(SpvType));
GR->assignSPIRVTypeToVReg(SpvType, Reg, MIB.getMF());
return;
}
// Tablegen definition assumes SPIRV::ASSIGN_TYPE pseudo-instruction is
// present after each auto-folded instruction to take a type reference from.
Register NewReg = MRI.createGenericVirtualRegister(MRI.getType(Reg));
if (auto *RC = MRI.getRegClassOrNull(Reg)) {
MRI.setRegClass(NewReg, RC);
} else {
auto RegClass = GR->getRegClass(SpvType);
MRI.setRegClass(NewReg, RegClass);
MRI.setRegClass(Reg, RegClass);
}
GR->assignSPIRVTypeToVReg(SpvType, Reg, MIB.getMF());
// This is to make it convenient for Legalizer to get the SPIRVType
// when processing the actual MI (i.e. not pseudo one).
GR->assignSPIRVTypeToVReg(SpvType, NewReg, MIB.getMF());
// Copy MIFlags from Def to ASSIGN_TYPE instruction. It's required to keep
// the flags after instruction selection.
const uint32_t Flags = Def->getFlags();
MIB.buildInstr(SPIRV::ASSIGN_TYPE)
.addDef(Reg)
.addUse(NewReg)
.addUse(GR->getSPIRVTypeID(SpvType))
.setMIFlags(Flags);
for (unsigned I = 0, E = Def->getNumDefs(); I != E; ++I) {
MachineOperand &MO = Def->getOperand(I);
if (MO.getReg() == Reg) {
MO.setReg(NewReg);
break;
}
}
}
void processInstr(MachineInstr &MI, MachineIRBuilder &MIB,
MachineRegisterInfo &MRI, SPIRVGlobalRegistry *GR,
SPIRVType *KnownResType) {
MIB.setInsertPt(*MI.getParent(), MI.getIterator());
for (auto &Op : MI.operands()) {
if (!Op.isReg() || Op.isDef())
continue;
Register OpReg = Op.getReg();
SPIRVType *SpvType = GR->getSPIRVTypeForVReg(OpReg);
if (!SpvType && KnownResType) {
SpvType = KnownResType;
GR->assignSPIRVTypeToVReg(KnownResType, OpReg, *MI.getMF());
}
assert(SpvType);
if (!MRI.getRegClassOrNull(OpReg))
MRI.setRegClass(OpReg, GR->getRegClass(SpvType));
if (!MRI.getType(OpReg).isValid())
MRI.setType(OpReg, GR->getRegType(SpvType));
}
}
} // namespace llvm
static void
generateAssignInstrs(MachineFunction &MF, SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB,
DenseMap<MachineInstr *, Type *> &TargetExtConstTypes) {
// Get access to information about available extensions
const SPIRVSubtarget *ST =
static_cast<const SPIRVSubtarget *>(&MIB.getMF().getSubtarget());
MachineRegisterInfo &MRI = MF.getRegInfo();
SmallVector<MachineInstr *, 10> ToErase;
DenseMap<MachineInstr *, Register> RegsAlreadyAddedToDT;
bool IsExtendedInts =
ST->canUseExtension(
SPIRV::Extension::SPV_INTEL_arbitrary_precision_integers) ||
ST->canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions) ||
ST->canUseExtension(SPIRV::Extension::SPV_INTEL_int4);
for (MachineBasicBlock *MBB : post_order(&MF)) {
if (MBB->empty())
continue;
bool ReachedBegin = false;
for (auto MII = std::prev(MBB->end()), Begin = MBB->begin();
!ReachedBegin;) {
MachineInstr &MI = *MII;
unsigned MIOp = MI.getOpcode();
if (!IsExtendedInts) {
// validate bit width of scalar registers and constant immediates
for (auto &MOP : MI.operands()) {
if (MOP.isReg())
widenScalarType(MOP.getReg(), MRI);
else if (MOP.isCImm())
widenCImmType(MOP);
}
}
if (isSpvIntrinsic(MI, Intrinsic::spv_assign_ptr_type)) {
Register Reg = MI.getOperand(1).getReg();
MIB.setInsertPt(*MI.getParent(), MI.getIterator());
Type *ElementTy = getMDOperandAsType(MI.getOperand(2).getMetadata(), 0);
SPIRVType *AssignedPtrType = GR->getOrCreateSPIRVPointerType(
ElementTy, MI,
addressSpaceToStorageClass(MI.getOperand(3).getImm(), *ST));
MachineInstr *Def = MRI.getVRegDef(Reg);
assert(Def && "Expecting an instruction that defines the register");
// G_GLOBAL_VALUE already has type info.
if (Def->getOpcode() != TargetOpcode::G_GLOBAL_VALUE &&
Def->getOpcode() != SPIRV::ASSIGN_TYPE)
insertAssignInstr(Reg, nullptr, AssignedPtrType, GR, MIB,
MF.getRegInfo());
ToErase.push_back(&MI);
} else if (isSpvIntrinsic(MI, Intrinsic::spv_assign_type)) {
Register Reg = MI.getOperand(1).getReg();
Type *Ty = getMDOperandAsType(MI.getOperand(2).getMetadata(), 0);
MachineInstr *Def = MRI.getVRegDef(Reg);
assert(Def && "Expecting an instruction that defines the register");
// G_GLOBAL_VALUE already has type info.
if (Def->getOpcode() != TargetOpcode::G_GLOBAL_VALUE &&
Def->getOpcode() != SPIRV::ASSIGN_TYPE)
insertAssignInstr(Reg, Ty, nullptr, GR, MIB, MF.getRegInfo());
ToErase.push_back(&MI);
} else if (MIOp == TargetOpcode::FAKE_USE && MI.getNumOperands() > 0) {
MachineInstr *MdMI = MI.getPrevNode();
if (MdMI && isSpvIntrinsic(*MdMI, Intrinsic::spv_value_md)) {
// It's an internal service info from before IRTranslator passes.
MachineInstr *Def = getVRegDef(MRI, MI.getOperand(0).getReg());
for (unsigned I = 1, E = MI.getNumOperands(); I != E && Def; ++I)
if (getVRegDef(MRI, MI.getOperand(I).getReg()) != Def)
Def = nullptr;
if (Def) {
const MDNode *MD = MdMI->getOperand(1).getMetadata();
StringRef ValueName =
cast<MDString>(MD->getOperand(1))->getString();
const MDNode *TypeMD = cast<MDNode>(MD->getOperand(0));
Type *ValueTy = getMDOperandAsType(TypeMD, 0);
GR->addValueAttrs(Def, std::make_pair(ValueTy, ValueName.str()));
}
ToErase.push_back(MdMI);
}
ToErase.push_back(&MI);
} else if (MIOp == TargetOpcode::G_CONSTANT ||
MIOp == TargetOpcode::G_FCONSTANT ||
MIOp == TargetOpcode::G_BUILD_VECTOR) {
// %rc = G_CONSTANT ty Val
// ===>
// %cty = OpType* ty
// %rctmp = G_CONSTANT ty Val
// %rc = ASSIGN_TYPE %rctmp, %cty
Register Reg = MI.getOperand(0).getReg();
bool NeedAssignType = true;
if (MRI.hasOneUse(Reg)) {
MachineInstr &UseMI = *MRI.use_instr_begin(Reg);
if (isSpvIntrinsic(UseMI, Intrinsic::spv_assign_type) ||
isSpvIntrinsic(UseMI, Intrinsic::spv_assign_name))
continue;
if (UseMI.getOpcode() == SPIRV::ASSIGN_TYPE)
NeedAssignType = false;
}
Type *Ty = nullptr;
if (MIOp == TargetOpcode::G_CONSTANT) {
auto TargetExtIt = TargetExtConstTypes.find(&MI);
Ty = TargetExtIt == TargetExtConstTypes.end()
? MI.getOperand(1).getCImm()->getType()
: TargetExtIt->second;
const ConstantInt *OpCI = MI.getOperand(1).getCImm();
// TODO: we may wish to analyze here if OpCI is zero and LLT RegType =
// MRI.getType(Reg); RegType.isPointer() is true, so that we observe
// at this point not i64/i32 constant but null pointer in the
// corresponding address space of RegType.getAddressSpace(). This may
// help to successfully validate the case when a OpConstantComposite's
// constituent has type that does not match Result Type of
// OpConstantComposite (see, for example,
// pointers/PtrCast-null-in-OpSpecConstantOp.ll).
Register PrimaryReg = GR->find(OpCI, &MF);
if (!PrimaryReg.isValid()) {
GR->add(OpCI, &MI);
} else if (PrimaryReg != Reg &&
MRI.getType(Reg) == MRI.getType(PrimaryReg)) {
auto *RCReg = MRI.getRegClassOrNull(Reg);
auto *RCPrimary = MRI.getRegClassOrNull(PrimaryReg);
if (!RCReg || RCPrimary == RCReg) {
RegsAlreadyAddedToDT[&MI] = PrimaryReg;
ToErase.push_back(&MI);
NeedAssignType = false;
}
}
} else if (MIOp == TargetOpcode::G_FCONSTANT) {
Ty = MI.getOperand(1).getFPImm()->getType();
} else {
assert(MIOp == TargetOpcode::G_BUILD_VECTOR);
Type *ElemTy = nullptr;
MachineInstr *ElemMI = MRI.getVRegDef(MI.getOperand(1).getReg());
assert(ElemMI);
if (ElemMI->getOpcode() == TargetOpcode::G_CONSTANT) {
ElemTy = ElemMI->getOperand(1).getCImm()->getType();
} else if (ElemMI->getOpcode() == TargetOpcode::G_FCONSTANT) {
ElemTy = ElemMI->getOperand(1).getFPImm()->getType();
} else {
if (const SPIRVType *ElemSpvType =
GR->getSPIRVTypeForVReg(MI.getOperand(1).getReg(), &MF))
ElemTy = const_cast<Type *>(GR->getTypeForSPIRVType(ElemSpvType));
if (!ElemTy) {
// There may be a case when we already know Reg's type.
MachineInstr *NextMI = MI.getNextNode();
if (!NextMI || NextMI->getOpcode() != SPIRV::ASSIGN_TYPE ||
NextMI->getOperand(1).getReg() != Reg)
llvm_unreachable("Unexpected opcode");
}
}
if (ElemTy)
Ty = VectorType::get(
ElemTy, MI.getNumExplicitOperands() - MI.getNumExplicitDefs(),
false);
else
NeedAssignType = false;
}
if (NeedAssignType)
insertAssignInstr(Reg, Ty, nullptr, GR, MIB, MRI);
} else if (MIOp == TargetOpcode::G_GLOBAL_VALUE) {
propagateSPIRVType(&MI, GR, MRI, MIB);
}
if (MII == Begin)
ReachedBegin = true;
else
--MII;
}
}
for (MachineInstr *MI : ToErase) {
auto It = RegsAlreadyAddedToDT.find(MI);
if (It != RegsAlreadyAddedToDT.end())
MRI.replaceRegWith(MI->getOperand(0).getReg(), It->second);
GR->invalidateMachineInstr(MI);
MI->eraseFromParent();
}
// Address the case when IRTranslator introduces instructions with new
// registers without SPIRVType associated.
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
switch (MI.getOpcode()) {
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_PTRTOINT:
case TargetOpcode::COPY:
case TargetOpcode::G_ADDRSPACE_CAST:
propagateSPIRVType(&MI, GR, MRI, MIB);
break;
}
}
}
}
static void processInstrsWithTypeFolding(MachineFunction &MF,
SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB) {
MachineRegisterInfo &MRI = MF.getRegInfo();
for (MachineBasicBlock &MBB : MF)
for (MachineInstr &MI : MBB)
if (isTypeFoldingSupported(MI.getOpcode()))
processInstr(MI, MIB, MRI, GR, nullptr);
}
static Register
collectInlineAsmInstrOperands(MachineInstr *MI,
SmallVector<unsigned, 4> *Ops = nullptr) {
Register DefReg;
unsigned StartOp = InlineAsm::MIOp_FirstOperand,
AsmDescOp = InlineAsm::MIOp_FirstOperand;
for (unsigned Idx = StartOp, MISz = MI->getNumOperands(); Idx != MISz;
++Idx) {
const MachineOperand &MO = MI->getOperand(Idx);
if (MO.isMetadata())
continue;
if (Idx == AsmDescOp && MO.isImm()) {
// compute the index of the next operand descriptor
const InlineAsm::Flag F(MO.getImm());
AsmDescOp += 1 + F.getNumOperandRegisters();
continue;
}
if (MO.isReg() && MO.isDef()) {
if (!Ops)
return MO.getReg();
else
DefReg = MO.getReg();
} else if (Ops) {
Ops->push_back(Idx);
}
}
return DefReg;
}
static void
insertInlineAsmProcess(MachineFunction &MF, SPIRVGlobalRegistry *GR,
const SPIRVSubtarget &ST, MachineIRBuilder MIRBuilder,
const SmallVector<MachineInstr *> &ToProcess) {
MachineRegisterInfo &MRI = MF.getRegInfo();
Register AsmTargetReg;
for (unsigned i = 0, Sz = ToProcess.size(); i + 1 < Sz; i += 2) {
MachineInstr *I1 = ToProcess[i], *I2 = ToProcess[i + 1];
assert(isSpvIntrinsic(*I1, Intrinsic::spv_inline_asm) && I2->isInlineAsm());
MIRBuilder.setInsertPt(*I2->getParent(), *I2);
if (!AsmTargetReg.isValid()) {
// define vendor specific assembly target or dialect
AsmTargetReg = MRI.createGenericVirtualRegister(LLT::scalar(32));
MRI.setRegClass(AsmTargetReg, &SPIRV::iIDRegClass);
auto AsmTargetMIB =
MIRBuilder.buildInstr(SPIRV::OpAsmTargetINTEL).addDef(AsmTargetReg);
addStringImm(ST.getTargetTripleAsStr(), AsmTargetMIB);
GR->add(AsmTargetMIB.getInstr(), AsmTargetMIB);
}
// create types
const MDNode *IAMD = I1->getOperand(1).getMetadata();
FunctionType *FTy = cast<FunctionType>(getMDOperandAsType(IAMD, 0));
SmallVector<SPIRVType *, 4> ArgTypes;
for (const auto &ArgTy : FTy->params())
ArgTypes.push_back(GR->getOrCreateSPIRVType(
ArgTy, MIRBuilder, SPIRV::AccessQualifier::ReadWrite, true));
SPIRVType *RetType =
GR->getOrCreateSPIRVType(FTy->getReturnType(), MIRBuilder,
SPIRV::AccessQualifier::ReadWrite, true);
SPIRVType *FuncType = GR->getOrCreateOpTypeFunctionWithArgs(
FTy, RetType, ArgTypes, MIRBuilder);
// define vendor specific assembly instructions string
Register AsmReg = MRI.createGenericVirtualRegister(LLT::scalar(32));
MRI.setRegClass(AsmReg, &SPIRV::iIDRegClass);
auto AsmMIB = MIRBuilder.buildInstr(SPIRV::OpAsmINTEL)
.addDef(AsmReg)
.addUse(GR->getSPIRVTypeID(RetType))
.addUse(GR->getSPIRVTypeID(FuncType))
.addUse(AsmTargetReg);
// inline asm string:
addStringImm(I2->getOperand(InlineAsm::MIOp_AsmString).getSymbolName(),
AsmMIB);
// inline asm constraint string:
addStringImm(cast<MDString>(I1->getOperand(2).getMetadata()->getOperand(0))
->getString(),
AsmMIB);
GR->add(AsmMIB.getInstr(), AsmMIB);
// calls the inline assembly instruction
unsigned ExtraInfo = I2->getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
MIRBuilder.buildInstr(SPIRV::OpDecorate)
.addUse(AsmReg)
.addImm(static_cast<uint32_t>(SPIRV::Decoration::SideEffectsINTEL));
Register DefReg = collectInlineAsmInstrOperands(I2);
if (!DefReg.isValid()) {
DefReg = MRI.createGenericVirtualRegister(LLT::scalar(32));
MRI.setRegClass(DefReg, &SPIRV::iIDRegClass);
SPIRVType *VoidType = GR->getOrCreateSPIRVType(
Type::getVoidTy(MF.getFunction().getContext()), MIRBuilder,
SPIRV::AccessQualifier::ReadWrite, true);
GR->assignSPIRVTypeToVReg(VoidType, DefReg, MF);
}
auto AsmCall = MIRBuilder.buildInstr(SPIRV::OpAsmCallINTEL)
.addDef(DefReg)
.addUse(GR->getSPIRVTypeID(RetType))
.addUse(AsmReg);
for (unsigned IntrIdx = 3; IntrIdx < I1->getNumOperands(); ++IntrIdx)
AsmCall.addUse(I1->getOperand(IntrIdx).getReg());
}
for (MachineInstr *MI : ToProcess) {
GR->invalidateMachineInstr(MI);
MI->eraseFromParent();
}
}
static void insertInlineAsm(MachineFunction &MF, SPIRVGlobalRegistry *GR,
const SPIRVSubtarget &ST,
MachineIRBuilder MIRBuilder) {
SmallVector<MachineInstr *> ToProcess;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (isSpvIntrinsic(MI, Intrinsic::spv_inline_asm) ||
MI.getOpcode() == TargetOpcode::INLINEASM)
ToProcess.push_back(&MI);
}
}
if (ToProcess.size() == 0)
return;
if (!ST.canUseExtension(SPIRV::Extension::SPV_INTEL_inline_assembly))
report_fatal_error("Inline assembly instructions require the "
"following SPIR-V extension: SPV_INTEL_inline_assembly",
false);
insertInlineAsmProcess(MF, GR, ST, MIRBuilder, ToProcess);
}
static uint32_t convertFloatToSPIRVWord(float F) {
union {
float F;
uint32_t Spir;
} FPMaxError;
FPMaxError.F = F;
return FPMaxError.Spir;
}
static void insertSpirvDecorations(MachineFunction &MF, SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB) {
SmallVector<MachineInstr *, 10> ToErase;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (!isSpvIntrinsic(MI, Intrinsic::spv_assign_decoration) &&
!isSpvIntrinsic(MI, Intrinsic::spv_assign_aliasing_decoration) &&
!isSpvIntrinsic(MI, Intrinsic::spv_assign_fpmaxerror_decoration))
continue;
MIB.setInsertPt(*MI.getParent(), MI.getNextNode());
if (isSpvIntrinsic(MI, Intrinsic::spv_assign_decoration)) {
buildOpSpirvDecorations(MI.getOperand(1).getReg(), MIB,
MI.getOperand(2).getMetadata());
} else if (isSpvIntrinsic(MI,
Intrinsic::spv_assign_fpmaxerror_decoration)) {
ConstantFP *OpV = mdconst::dyn_extract<ConstantFP>(
MI.getOperand(2).getMetadata()->getOperand(0));
uint32_t OpValue =
convertFloatToSPIRVWord(OpV->getValueAPF().convertToFloat());
buildOpDecorate(MI.getOperand(1).getReg(), MIB,
SPIRV::Decoration::FPMaxErrorDecorationINTEL,
{OpValue});
} else {
GR->buildMemAliasingOpDecorate(MI.getOperand(1).getReg(), MIB,
MI.getOperand(2).getImm(),
MI.getOperand(3).getMetadata());
}
ToErase.push_back(&MI);
}
}
for (MachineInstr *MI : ToErase) {
GR->invalidateMachineInstr(MI);
MI->eraseFromParent();
}
}
// LLVM allows the switches to use registers as cases, while SPIR-V required
// those to be immediate values. This function replaces such operands with the
// equivalent immediate constant.
static void processSwitchesConstants(MachineFunction &MF,
SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB) {
MachineRegisterInfo &MRI = MF.getRegInfo();
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (!isSpvIntrinsic(MI, Intrinsic::spv_switch))
continue;
SmallVector<MachineOperand, 8> NewOperands;
NewOperands.push_back(MI.getOperand(0)); // Opcode
NewOperands.push_back(MI.getOperand(1)); // Condition
NewOperands.push_back(MI.getOperand(2)); // Default
for (unsigned i = 3; i < MI.getNumOperands(); i += 2) {
Register Reg = MI.getOperand(i).getReg();
MachineInstr *ConstInstr = getDefInstrMaybeConstant(Reg, &MRI);
NewOperands.push_back(
MachineOperand::CreateCImm(ConstInstr->getOperand(1).getCImm()));
NewOperands.push_back(MI.getOperand(i + 1));
}
assert(MI.getNumOperands() == NewOperands.size());
while (MI.getNumOperands() > 0)
MI.removeOperand(0);
for (auto &MO : NewOperands)
MI.addOperand(MO);
}
}
}
// Some instructions are used during CodeGen but should never be emitted.
// Cleaning up those.
static void cleanupHelperInstructions(MachineFunction &MF,
SPIRVGlobalRegistry *GR) {
SmallVector<MachineInstr *, 8> ToEraseMI;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (isSpvIntrinsic(MI, Intrinsic::spv_track_constant) ||
MI.getOpcode() == TargetOpcode::G_BRINDIRECT)
ToEraseMI.push_back(&MI);
}
}
for (MachineInstr *MI : ToEraseMI) {
GR->invalidateMachineInstr(MI);
MI->eraseFromParent();
}
}
// Find all usages of G_BLOCK_ADDR in our intrinsics and replace those
// operands/registers by the actual MBB it references.
static void processBlockAddr(MachineFunction &MF, SPIRVGlobalRegistry *GR,
MachineIRBuilder MIB) {
// Gather the reverse-mapping BB -> MBB.
DenseMap<const BasicBlock *, MachineBasicBlock *> BB2MBB;
for (MachineBasicBlock &MBB : MF)
BB2MBB[MBB.getBasicBlock()] = &MBB;
// Gather instructions requiring patching. For now, only those can use
// G_BLOCK_ADDR.
SmallVector<MachineInstr *, 8> InstructionsToPatch;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (isSpvIntrinsic(MI, Intrinsic::spv_switch) ||
isSpvIntrinsic(MI, Intrinsic::spv_loop_merge) ||
isSpvIntrinsic(MI, Intrinsic::spv_selection_merge))
InstructionsToPatch.push_back(&MI);
}
}
// For each instruction to fix, we replace all the G_BLOCK_ADDR operands by
// the actual MBB it references. Once those references have been updated, we
// can cleanup remaining G_BLOCK_ADDR references.
SmallPtrSet<MachineBasicBlock *, 8> ClearAddressTaken;
SmallPtrSet<MachineInstr *, 8> ToEraseMI;
MachineRegisterInfo &MRI = MF.getRegInfo();
for (MachineInstr *MI : InstructionsToPatch) {
SmallVector<MachineOperand, 8> NewOps;
for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
// The operand is not a register, keep as-is.
if (!MI->getOperand(i).isReg()) {
NewOps.push_back(MI->getOperand(i));
continue;
}
Register Reg = MI->getOperand(i).getReg();
MachineInstr *BuildMBB = MRI.getVRegDef(Reg);
// The register is not the result of G_BLOCK_ADDR, keep as-is.
if (!BuildMBB || BuildMBB->getOpcode() != TargetOpcode::G_BLOCK_ADDR) {
NewOps.push_back(MI->getOperand(i));
continue;
}
assert(BuildMBB && BuildMBB->getOpcode() == TargetOpcode::G_BLOCK_ADDR &&
BuildMBB->getOperand(1).isBlockAddress() &&
BuildMBB->getOperand(1).getBlockAddress());
BasicBlock *BB =
BuildMBB->getOperand(1).getBlockAddress()->getBasicBlock();
auto It = BB2MBB.find(BB);
if (It == BB2MBB.end())
report_fatal_error("cannot find a machine basic block by a basic block "
"in a switch statement");
MachineBasicBlock *ReferencedBlock = It->second;
NewOps.push_back(MachineOperand::CreateMBB(ReferencedBlock));
ClearAddressTaken.insert(ReferencedBlock);
ToEraseMI.insert(BuildMBB);
}
// Replace the operands.
assert(MI->getNumOperands() == NewOps.size());
while (MI->getNumOperands() > 0)
MI->removeOperand(0);
for (auto &MO : NewOps)
MI->addOperand(MO);
if (MachineInstr *Next = MI->getNextNode()) {
if (isSpvIntrinsic(*Next, Intrinsic::spv_track_constant)) {
ToEraseMI.insert(Next);
Next = MI->getNextNode();
}
if (Next && Next->getOpcode() == TargetOpcode::G_BRINDIRECT)
ToEraseMI.insert(Next);
}
}
// BlockAddress operands were used to keep information between passes,
// let's undo the "address taken" status to reflect that Succ doesn't
// actually correspond to an IR-level basic block.
for (MachineBasicBlock *Succ : ClearAddressTaken)
Succ->setAddressTakenIRBlock(nullptr);
// If we just delete G_BLOCK_ADDR instructions with BlockAddress operands,
// this leaves their BasicBlock counterparts in a "address taken" status. This
// would make AsmPrinter to generate a series of unneeded labels of a "Address
// of block that was removed by CodeGen" kind. Let's first ensure that we
// don't have a dangling BlockAddress constants by zapping the BlockAddress
// nodes, and only after that proceed with erasing G_BLOCK_ADDR instructions.
Constant *Replacement =
ConstantInt::get(Type::getInt32Ty(MF.getFunction().getContext()), 1);
for (MachineInstr *BlockAddrI : ToEraseMI) {
if (BlockAddrI->getOpcode() == TargetOpcode::G_BLOCK_ADDR) {
BlockAddress *BA = const_cast<BlockAddress *>(
BlockAddrI->getOperand(1).getBlockAddress());
BA->replaceAllUsesWith(
ConstantExpr::getIntToPtr(Replacement, BA->getType()));
BA->destroyConstant();
}
GR->invalidateMachineInstr(BlockAddrI);
BlockAddrI->eraseFromParent();
}
}
static bool isImplicitFallthrough(MachineBasicBlock &MBB) {
if (MBB.empty())
return true;
// Branching SPIR-V intrinsics are not detected by this generic method.
// Thus, we can only trust negative result.
if (!MBB.canFallThrough())
return false;
// Otherwise, we must manually check if we have a SPIR-V intrinsic which
// prevent an implicit fallthrough.
for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
It != E; ++It) {
if (isSpvIntrinsic(*It, Intrinsic::spv_switch))
return false;
}
return true;
}
static void removeImplicitFallthroughs(MachineFunction &MF,
MachineIRBuilder MIB) {
// It is valid for MachineBasicBlocks to not finish with a branch instruction.
// In such cases, they will simply fallthrough their immediate successor.
for (MachineBasicBlock &MBB : MF) {
if (!isImplicitFallthrough(MBB))
continue;
assert(std::distance(MBB.successors().begin(), MBB.successors().end()) ==
1);
MIB.setInsertPt(MBB, MBB.end());
MIB.buildBr(**MBB.successors().begin());
}
}
bool SPIRVPreLegalizer::runOnMachineFunction(MachineFunction &MF) {
// Initialize the type registry.
const SPIRVSubtarget &ST = MF.getSubtarget<SPIRVSubtarget>();
SPIRVGlobalRegistry *GR = ST.getSPIRVGlobalRegistry();
GR->setCurrentFunc(MF);
MachineIRBuilder MIB(MF);
// a registry of target extension constants
DenseMap<MachineInstr *, Type *> TargetExtConstTypes;
// to keep record of tracked constants
addConstantsToTrack(MF, GR, ST, TargetExtConstTypes);
foldConstantsIntoIntrinsics(MF, GR, MIB);
insertBitcasts(MF, GR, MIB);
generateAssignInstrs(MF, GR, MIB, TargetExtConstTypes);
processSwitchesConstants(MF, GR, MIB);
processBlockAddr(MF, GR, MIB);
cleanupHelperInstructions(MF, GR);
processInstrsWithTypeFolding(MF, GR, MIB);
removeImplicitFallthroughs(MF, MIB);
insertSpirvDecorations(MF, GR, MIB);
insertInlineAsm(MF, GR, ST, MIB);
selectOpBitcasts(MF, GR, MIB);
return true;
}
INITIALIZE_PASS(SPIRVPreLegalizer, DEBUG_TYPE, "SPIRV pre legalizer", false,
false)
char SPIRVPreLegalizer::ID = 0;
FunctionPass *llvm::createSPIRVPreLegalizerPass() {
return new SPIRVPreLegalizer();
}
|