1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
|
//===-- SPIRVStructurizer.cpp ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "Analysis/SPIRVConvergenceRegionAnalysis.h"
#include "SPIRV.h"
#include "SPIRVStructurizerWrapper.h"
#include "SPIRVSubtarget.h"
#include "SPIRVUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
#include <stack>
#include <unordered_set>
using namespace llvm;
using namespace SPIRV;
using BlockSet = std::unordered_set<BasicBlock *>;
using Edge = std::pair<BasicBlock *, BasicBlock *>;
// Helper function to do a partial order visit from the block |Start|, calling
// |Op| on each visited node.
static void partialOrderVisit(BasicBlock &Start,
std::function<bool(BasicBlock *)> Op) {
PartialOrderingVisitor V(*Start.getParent());
V.partialOrderVisit(Start, Op);
}
// Returns the exact convergence region in the tree defined by `Node` for which
// `BB` is the header, nullptr otherwise.
static const ConvergenceRegion *
getRegionForHeader(const ConvergenceRegion *Node, BasicBlock *BB) {
if (Node->Entry == BB)
return Node;
for (auto *Child : Node->Children) {
const auto *CR = getRegionForHeader(Child, BB);
if (CR != nullptr)
return CR;
}
return nullptr;
}
// Returns the single BasicBlock exiting the convergence region `CR`,
// nullptr if no such exit exists.
static BasicBlock *getExitFor(const ConvergenceRegion *CR) {
std::unordered_set<BasicBlock *> ExitTargets;
for (BasicBlock *Exit : CR->Exits) {
for (BasicBlock *Successor : successors(Exit)) {
if (CR->Blocks.count(Successor) == 0)
ExitTargets.insert(Successor);
}
}
assert(ExitTargets.size() <= 1);
if (ExitTargets.size() == 0)
return nullptr;
return *ExitTargets.begin();
}
// Returns the merge block designated by I if I is a merge instruction, nullptr
// otherwise.
static BasicBlock *getDesignatedMergeBlock(Instruction *I) {
IntrinsicInst *II = dyn_cast_or_null<IntrinsicInst>(I);
if (II == nullptr)
return nullptr;
if (II->getIntrinsicID() != Intrinsic::spv_loop_merge &&
II->getIntrinsicID() != Intrinsic::spv_selection_merge)
return nullptr;
BlockAddress *BA = cast<BlockAddress>(II->getOperand(0));
return BA->getBasicBlock();
}
// Returns the continue block designated by I if I is an OpLoopMerge, nullptr
// otherwise.
static BasicBlock *getDesignatedContinueBlock(Instruction *I) {
IntrinsicInst *II = dyn_cast_or_null<IntrinsicInst>(I);
if (II == nullptr)
return nullptr;
if (II->getIntrinsicID() != Intrinsic::spv_loop_merge)
return nullptr;
BlockAddress *BA = cast<BlockAddress>(II->getOperand(1));
return BA->getBasicBlock();
}
// Returns true if Header has one merge instruction which designated Merge as
// merge block.
static bool isDefinedAsSelectionMergeBy(BasicBlock &Header, BasicBlock &Merge) {
for (auto &I : Header) {
BasicBlock *MB = getDesignatedMergeBlock(&I);
if (MB == &Merge)
return true;
}
return false;
}
// Returns true if the BB has one OpLoopMerge instruction.
static bool hasLoopMergeInstruction(BasicBlock &BB) {
for (auto &I : BB)
if (getDesignatedContinueBlock(&I))
return true;
return false;
}
// Returns true is I is an OpSelectionMerge or OpLoopMerge instruction, false
// otherwise.
static bool isMergeInstruction(Instruction *I) {
return getDesignatedMergeBlock(I) != nullptr;
}
// Returns all blocks in F having at least one OpLoopMerge or OpSelectionMerge
// instruction.
static SmallPtrSet<BasicBlock *, 2> getHeaderBlocks(Function &F) {
SmallPtrSet<BasicBlock *, 2> Output;
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
if (getDesignatedMergeBlock(&I) != nullptr)
Output.insert(&BB);
}
}
return Output;
}
// Returns all basic blocks in |F| referenced by at least 1
// OpSelectionMerge/OpLoopMerge instruction.
static SmallPtrSet<BasicBlock *, 2> getMergeBlocks(Function &F) {
SmallPtrSet<BasicBlock *, 2> Output;
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
BasicBlock *MB = getDesignatedMergeBlock(&I);
if (MB != nullptr)
Output.insert(MB);
}
}
return Output;
}
// Return all the merge instructions contained in BB.
// Note: the SPIR-V spec doesn't allow a single BB to contain more than 1 merge
// instruction, but this can happen while we structurize the CFG.
static std::vector<Instruction *> getMergeInstructions(BasicBlock &BB) {
std::vector<Instruction *> Output;
for (Instruction &I : BB)
if (isMergeInstruction(&I))
Output.push_back(&I);
return Output;
}
// Returns all basic blocks in |F| referenced as continue target by at least 1
// OpLoopMerge instruction.
static SmallPtrSet<BasicBlock *, 2> getContinueBlocks(Function &F) {
SmallPtrSet<BasicBlock *, 2> Output;
for (BasicBlock &BB : F) {
for (Instruction &I : BB) {
BasicBlock *MB = getDesignatedContinueBlock(&I);
if (MB != nullptr)
Output.insert(MB);
}
}
return Output;
}
// Do a preorder traversal of the CFG starting from the BB |Start|.
// point. Calls |op| on each basic block encountered during the traversal.
static void visit(BasicBlock &Start, std::function<bool(BasicBlock *)> op) {
std::stack<BasicBlock *> ToVisit;
SmallPtrSet<BasicBlock *, 8> Seen;
ToVisit.push(&Start);
Seen.insert(ToVisit.top());
while (ToVisit.size() != 0) {
BasicBlock *BB = ToVisit.top();
ToVisit.pop();
if (!op(BB))
continue;
for (auto Succ : successors(BB)) {
if (Seen.contains(Succ))
continue;
ToVisit.push(Succ);
Seen.insert(Succ);
}
}
}
// Replaces the conditional and unconditional branch targets of |BB| by
// |NewTarget| if the target was |OldTarget|. This function also makes sure the
// associated merge instruction gets updated accordingly.
static void replaceIfBranchTargets(BasicBlock *BB, BasicBlock *OldTarget,
BasicBlock *NewTarget) {
auto *BI = cast<BranchInst>(BB->getTerminator());
// 1. Replace all matching successors.
for (size_t i = 0; i < BI->getNumSuccessors(); i++) {
if (BI->getSuccessor(i) == OldTarget)
BI->setSuccessor(i, NewTarget);
}
// Branch was unconditional, no fixup required.
if (BI->isUnconditional())
return;
// Branch had 2 successors, maybe now both are the same?
if (BI->getSuccessor(0) != BI->getSuccessor(1))
return;
// Note: we may end up here because the original IR had such branches.
// This means Target is not necessarily equal to NewTarget.
IRBuilder<> Builder(BB);
Builder.SetInsertPoint(BI);
Builder.CreateBr(BI->getSuccessor(0));
BI->eraseFromParent();
// The branch was the only instruction, nothing else to do.
if (BB->size() == 1)
return;
// Otherwise, we need to check: was there an OpSelectionMerge before this
// branch? If we removed the OpBranchConditional, we must also remove the
// OpSelectionMerge. This is not valid for OpLoopMerge:
IntrinsicInst *II =
dyn_cast<IntrinsicInst>(BB->getTerminator()->getPrevNode());
if (!II || II->getIntrinsicID() != Intrinsic::spv_selection_merge)
return;
Constant *C = cast<Constant>(II->getOperand(0));
II->eraseFromParent();
if (!C->isConstantUsed())
C->destroyConstant();
}
// Replaces the target of branch instruction in |BB| with |NewTarget| if it
// was |OldTarget|. This function also fixes the associated merge instruction.
// Note: this function does not simplify branching instructions, it only updates
// targets. See also: simplifyBranches.
static void replaceBranchTargets(BasicBlock *BB, BasicBlock *OldTarget,
BasicBlock *NewTarget) {
auto *T = BB->getTerminator();
if (isa<ReturnInst>(T))
return;
if (isa<BranchInst>(T))
return replaceIfBranchTargets(BB, OldTarget, NewTarget);
if (auto *SI = dyn_cast<SwitchInst>(T)) {
for (size_t i = 0; i < SI->getNumSuccessors(); i++) {
if (SI->getSuccessor(i) == OldTarget)
SI->setSuccessor(i, NewTarget);
}
return;
}
assert(false && "Unhandled terminator type.");
}
namespace {
// Given a reducible CFG, produces a structurized CFG in the SPIR-V sense,
// adding merge instructions when required.
class SPIRVStructurizer : public FunctionPass {
struct DivergentConstruct;
// Represents a list of condition/loops/switch constructs.
// See SPIR-V 2.11.2. Structured Control-flow Constructs for the list of
// constructs.
using ConstructList = std::vector<std::unique_ptr<DivergentConstruct>>;
// Represents a divergent construct in the SPIR-V sense.
// Such constructs are represented by a header (entry), a merge block (exit),
// and possibly a continue block (back-edge). A construct can contain other
// constructs, but their boundaries do not cross.
struct DivergentConstruct {
BasicBlock *Header = nullptr;
BasicBlock *Merge = nullptr;
BasicBlock *Continue = nullptr;
DivergentConstruct *Parent = nullptr;
ConstructList Children;
};
// An helper class to clean the construct boundaries.
// It is used to gather the list of blocks that should belong to each
// divergent construct, and possibly modify CFG edges when exits would cross
// the boundary of multiple constructs.
struct Splitter {
Function &F;
LoopInfo &LI;
DomTreeBuilder::BBDomTree DT;
DomTreeBuilder::BBPostDomTree PDT;
Splitter(Function &F, LoopInfo &LI) : F(F), LI(LI) { invalidate(); }
void invalidate() {
PDT.recalculate(F);
DT.recalculate(F);
}
// Returns the list of blocks that belong to a SPIR-V loop construct,
// including the continue construct.
std::vector<BasicBlock *> getLoopConstructBlocks(BasicBlock *Header,
BasicBlock *Merge) {
assert(DT.dominates(Header, Merge));
std::vector<BasicBlock *> Output;
partialOrderVisit(*Header, [&](BasicBlock *BB) {
if (BB == Merge)
return false;
if (DT.dominates(Merge, BB) || !DT.dominates(Header, BB))
return false;
Output.push_back(BB);
return true;
});
return Output;
}
// Returns the list of blocks that belong to a SPIR-V selection construct.
std::vector<BasicBlock *>
getSelectionConstructBlocks(DivergentConstruct *Node) {
assert(DT.dominates(Node->Header, Node->Merge));
BlockSet OutsideBlocks;
OutsideBlocks.insert(Node->Merge);
for (DivergentConstruct *It = Node->Parent; It != nullptr;
It = It->Parent) {
OutsideBlocks.insert(It->Merge);
if (It->Continue)
OutsideBlocks.insert(It->Continue);
}
std::vector<BasicBlock *> Output;
partialOrderVisit(*Node->Header, [&](BasicBlock *BB) {
if (OutsideBlocks.count(BB) != 0)
return false;
if (DT.dominates(Node->Merge, BB) || !DT.dominates(Node->Header, BB))
return false;
Output.push_back(BB);
return true;
});
return Output;
}
// Returns the list of blocks that belong to a SPIR-V switch construct.
std::vector<BasicBlock *> getSwitchConstructBlocks(BasicBlock *Header,
BasicBlock *Merge) {
assert(DT.dominates(Header, Merge));
std::vector<BasicBlock *> Output;
partialOrderVisit(*Header, [&](BasicBlock *BB) {
// the blocks structurally dominated by a switch header,
if (!DT.dominates(Header, BB))
return false;
// excluding blocks structurally dominated by the switch header’s merge
// block.
if (DT.dominates(Merge, BB) || BB == Merge)
return false;
Output.push_back(BB);
return true;
});
return Output;
}
// Returns the list of blocks that belong to a SPIR-V case construct.
std::vector<BasicBlock *> getCaseConstructBlocks(BasicBlock *Target,
BasicBlock *Merge) {
assert(DT.dominates(Target, Merge));
std::vector<BasicBlock *> Output;
partialOrderVisit(*Target, [&](BasicBlock *BB) {
// the blocks structurally dominated by an OpSwitch Target or Default
// block
if (!DT.dominates(Target, BB))
return false;
// excluding the blocks structurally dominated by the OpSwitch
// construct’s corresponding merge block.
if (DT.dominates(Merge, BB) || BB == Merge)
return false;
Output.push_back(BB);
return true;
});
return Output;
}
// Splits the given edges by recreating proxy nodes so that the destination
// has unique incoming edges from this region.
//
// clang-format off
//
// In SPIR-V, constructs must have a single exit/merge.
// Given nodes A and B in the construct, a node C outside, and the following edges.
// A -> C
// B -> C
//
// In such cases, we must create a new exit node D, that belong to the construct to make is viable:
// A -> D -> C
// B -> D -> C
//
// This is fine (assuming C has no PHI nodes), but requires handling the merge instruction here.
// By adding a proxy node, we create a regular divergent shape which can easily be regularized later on.
// A -> D -> D1 -> C
// B -> D -> D2 -> C
//
// A, B, D belongs to the construct. D is the exit. D1 and D2 are empty.
//
// clang-format on
std::vector<Edge>
createAliasBlocksForComplexEdges(std::vector<Edge> Edges) {
std::unordered_set<BasicBlock *> Seen;
std::vector<Edge> Output;
Output.reserve(Edges.size());
for (auto &[Src, Dst] : Edges) {
auto [Iterator, Inserted] = Seen.insert(Src);
if (!Inserted) {
// Src already a source node. Cannot have 2 edges from A to B.
// Creating alias source block.
BasicBlock *NewSrc = BasicBlock::Create(
F.getContext(), Src->getName() + ".new.src", &F);
replaceBranchTargets(Src, Dst, NewSrc);
IRBuilder<> Builder(NewSrc);
Builder.CreateBr(Dst);
Src = NewSrc;
}
Output.emplace_back(Src, Dst);
}
return Output;
}
AllocaInst *CreateVariable(Function &F, Type *Type,
BasicBlock::iterator Position) {
const DataLayout &DL = F.getDataLayout();
return new AllocaInst(Type, DL.getAllocaAddrSpace(), nullptr, "reg",
Position);
}
// Given a construct defined by |Header|, and a list of exiting edges
// |Edges|, creates a new single exit node, fixing up those edges.
BasicBlock *createSingleExitNode(BasicBlock *Header,
std::vector<Edge> &Edges) {
std::vector<Edge> FixedEdges = createAliasBlocksForComplexEdges(Edges);
std::vector<BasicBlock *> Dsts;
std::unordered_map<BasicBlock *, ConstantInt *> DstToIndex;
auto NewExit = BasicBlock::Create(F.getContext(),
Header->getName() + ".new.exit", &F);
IRBuilder<> ExitBuilder(NewExit);
for (auto &[Src, Dst] : FixedEdges) {
if (DstToIndex.count(Dst) != 0)
continue;
DstToIndex.emplace(Dst, ExitBuilder.getInt32(DstToIndex.size()));
Dsts.push_back(Dst);
}
if (Dsts.size() == 1) {
for (auto &[Src, Dst] : FixedEdges) {
replaceBranchTargets(Src, Dst, NewExit);
}
ExitBuilder.CreateBr(Dsts[0]);
return NewExit;
}
AllocaInst *Variable = CreateVariable(F, ExitBuilder.getInt32Ty(),
F.begin()->getFirstInsertionPt());
for (auto &[Src, Dst] : FixedEdges) {
IRBuilder<> B2(Src);
B2.SetInsertPoint(Src->getFirstInsertionPt());
B2.CreateStore(DstToIndex[Dst], Variable);
replaceBranchTargets(Src, Dst, NewExit);
}
Value *Load = ExitBuilder.CreateLoad(ExitBuilder.getInt32Ty(), Variable);
// If we can avoid an OpSwitch, generate an OpBranch. Reason is some
// OpBranch are allowed to exist without a new OpSelectionMerge if one of
// the branch is the parent's merge node, while OpSwitches are not.
if (Dsts.size() == 2) {
Value *Condition =
ExitBuilder.CreateCmp(CmpInst::ICMP_EQ, DstToIndex[Dsts[0]], Load);
ExitBuilder.CreateCondBr(Condition, Dsts[0], Dsts[1]);
return NewExit;
}
SwitchInst *Sw = ExitBuilder.CreateSwitch(Load, Dsts[0], Dsts.size() - 1);
for (BasicBlock *BB : drop_begin(Dsts))
Sw->addCase(DstToIndex[BB], BB);
return NewExit;
}
};
/// Create a value in BB set to the value associated with the branch the block
/// terminator will take.
Value *createExitVariable(
BasicBlock *BB,
const DenseMap<BasicBlock *, ConstantInt *> &TargetToValue) {
auto *T = BB->getTerminator();
if (isa<ReturnInst>(T))
return nullptr;
IRBuilder<> Builder(BB);
Builder.SetInsertPoint(T);
if (auto *BI = dyn_cast<BranchInst>(T)) {
BasicBlock *LHSTarget = BI->getSuccessor(0);
BasicBlock *RHSTarget =
BI->isConditional() ? BI->getSuccessor(1) : nullptr;
Value *LHS = TargetToValue.lookup(LHSTarget);
Value *RHS = TargetToValue.lookup(RHSTarget);
if (LHS == nullptr || RHS == nullptr)
return LHS == nullptr ? RHS : LHS;
return Builder.CreateSelect(BI->getCondition(), LHS, RHS);
}
// TODO: add support for switch cases.
llvm_unreachable("Unhandled terminator type.");
}
// Creates a new basic block in F with a single OpUnreachable instruction.
BasicBlock *CreateUnreachable(Function &F) {
BasicBlock *BB = BasicBlock::Create(F.getContext(), "unreachable", &F);
IRBuilder<> Builder(BB);
Builder.CreateUnreachable();
return BB;
}
// Add OpLoopMerge instruction on cycles.
bool addMergeForLoops(Function &F) {
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *TopLevelRegion =
getAnalysis<SPIRVConvergenceRegionAnalysisWrapperPass>()
.getRegionInfo()
.getTopLevelRegion();
bool Modified = false;
for (auto &BB : F) {
// Not a loop header. Ignoring for now.
if (!LI.isLoopHeader(&BB))
continue;
auto *L = LI.getLoopFor(&BB);
// This loop header is not the entrance of a convergence region. Ignoring
// this block.
auto *CR = getRegionForHeader(TopLevelRegion, &BB);
if (CR == nullptr)
continue;
IRBuilder<> Builder(&BB);
auto *Merge = getExitFor(CR);
// We are indeed in a loop, but there are no exits (infinite loop).
// This could be caused by a bad shader, but also could be an artifact
// from an earlier optimization. It is not always clear if structurally
// reachable means runtime reachable, so we cannot error-out. What we must
// do however is to make is legal on the SPIR-V point of view, hence
// adding an unreachable merge block.
if (Merge == nullptr) {
BranchInst *Br = cast<BranchInst>(BB.getTerminator());
assert(Br->isUnconditional());
Merge = CreateUnreachable(F);
Builder.SetInsertPoint(Br);
Builder.CreateCondBr(Builder.getFalse(), Merge, Br->getSuccessor(0));
Br->eraseFromParent();
}
auto *Continue = L->getLoopLatch();
Builder.SetInsertPoint(BB.getTerminator());
auto MergeAddress = BlockAddress::get(Merge->getParent(), Merge);
auto ContinueAddress = BlockAddress::get(Continue->getParent(), Continue);
SmallVector<Value *, 2> Args = {MergeAddress, ContinueAddress};
SmallVector<unsigned, 1> LoopControlImms =
getSpirvLoopControlOperandsFromLoopMetadata(L);
for (unsigned Imm : LoopControlImms)
Args.emplace_back(ConstantInt::get(Builder.getInt32Ty(), Imm));
Builder.CreateIntrinsic(Intrinsic::spv_loop_merge, {Args});
Modified = true;
}
return Modified;
}
// Adds an OpSelectionMerge to the immediate dominator or each node with an
// in-degree of 2 or more which is not already the merge target of an
// OpLoopMerge/OpSelectionMerge.
bool addMergeForNodesWithMultiplePredecessors(Function &F) {
DomTreeBuilder::BBDomTree DT;
DT.recalculate(F);
bool Modified = false;
for (auto &BB : F) {
if (pred_size(&BB) <= 1)
continue;
if (hasLoopMergeInstruction(BB) && pred_size(&BB) <= 2)
continue;
assert(DT.getNode(&BB)->getIDom());
BasicBlock *Header = DT.getNode(&BB)->getIDom()->getBlock();
if (isDefinedAsSelectionMergeBy(*Header, BB))
continue;
IRBuilder<> Builder(Header);
Builder.SetInsertPoint(Header->getTerminator());
auto MergeAddress = BlockAddress::get(BB.getParent(), &BB);
createOpSelectMerge(&Builder, MergeAddress);
Modified = true;
}
return Modified;
}
// When a block has multiple OpSelectionMerge/OpLoopMerge instructions, sorts
// them to put the "largest" first. A merge instruction is defined as larger
// than another when its target merge block post-dominates the other target's
// merge block. (This ordering should match the nesting ordering of the source
// HLSL).
bool sortSelectionMerge(Function &F, BasicBlock &Block) {
std::vector<Instruction *> MergeInstructions;
for (Instruction &I : Block)
if (isMergeInstruction(&I))
MergeInstructions.push_back(&I);
if (MergeInstructions.size() <= 1)
return false;
Instruction *InsertionPoint = *MergeInstructions.begin();
PartialOrderingVisitor Visitor(F);
std::sort(MergeInstructions.begin(), MergeInstructions.end(),
[&Visitor](Instruction *Left, Instruction *Right) {
if (Left == Right)
return false;
BasicBlock *RightMerge = getDesignatedMergeBlock(Right);
BasicBlock *LeftMerge = getDesignatedMergeBlock(Left);
return !Visitor.compare(RightMerge, LeftMerge);
});
for (Instruction *I : MergeInstructions) {
I->moveBefore(InsertionPoint->getIterator());
InsertionPoint = I;
}
return true;
}
// Sorts selection merge headers in |F|.
// A is sorted before B if the merge block designated by B is an ancestor of
// the one designated by A.
bool sortSelectionMergeHeaders(Function &F) {
bool Modified = false;
for (BasicBlock &BB : F) {
Modified |= sortSelectionMerge(F, BB);
}
return Modified;
}
// Split basic blocks containing multiple OpLoopMerge/OpSelectionMerge
// instructions so each basic block contains only a single merge instruction.
bool splitBlocksWithMultipleHeaders(Function &F) {
std::stack<BasicBlock *> Work;
for (auto &BB : F) {
std::vector<Instruction *> MergeInstructions = getMergeInstructions(BB);
if (MergeInstructions.size() <= 1)
continue;
Work.push(&BB);
}
const bool Modified = Work.size() > 0;
while (Work.size() > 0) {
BasicBlock *Header = Work.top();
Work.pop();
std::vector<Instruction *> MergeInstructions =
getMergeInstructions(*Header);
for (unsigned i = 1; i < MergeInstructions.size(); i++) {
BasicBlock *NewBlock =
Header->splitBasicBlock(MergeInstructions[i], "new.header");
if (getDesignatedContinueBlock(MergeInstructions[0]) == nullptr) {
BasicBlock *Unreachable = CreateUnreachable(F);
BranchInst *BI = cast<BranchInst>(Header->getTerminator());
IRBuilder<> Builder(Header);
Builder.SetInsertPoint(BI);
Builder.CreateCondBr(Builder.getTrue(), NewBlock, Unreachable);
BI->eraseFromParent();
}
Header = NewBlock;
}
}
return Modified;
}
// Adds an OpSelectionMerge to each block with an out-degree >= 2 which
// doesn't already have an OpSelectionMerge.
bool addMergeForDivergentBlocks(Function &F) {
DomTreeBuilder::BBPostDomTree PDT;
PDT.recalculate(F);
bool Modified = false;
auto MergeBlocks = getMergeBlocks(F);
auto ContinueBlocks = getContinueBlocks(F);
for (auto &BB : F) {
if (getMergeInstructions(BB).size() != 0)
continue;
std::vector<BasicBlock *> Candidates;
for (BasicBlock *Successor : successors(&BB)) {
if (MergeBlocks.contains(Successor))
continue;
if (ContinueBlocks.contains(Successor))
continue;
Candidates.push_back(Successor);
}
if (Candidates.size() <= 1)
continue;
Modified = true;
BasicBlock *Merge = Candidates[0];
auto MergeAddress = BlockAddress::get(Merge->getParent(), Merge);
IRBuilder<> Builder(&BB);
Builder.SetInsertPoint(BB.getTerminator());
createOpSelectMerge(&Builder, MergeAddress);
}
return Modified;
}
// Gather all the exit nodes for the construct header by |Header| and
// containing the blocks |Construct|.
std::vector<Edge> getExitsFrom(const BlockSet &Construct,
BasicBlock &Header) {
std::vector<Edge> Output;
visit(Header, [&](BasicBlock *Item) {
if (Construct.count(Item) == 0)
return false;
for (BasicBlock *Successor : successors(Item)) {
if (Construct.count(Successor) == 0)
Output.emplace_back(Item, Successor);
}
return true;
});
return Output;
}
// Build a divergent construct tree searching from |BB|.
// If |Parent| is not null, this tree is attached to the parent's tree.
void constructDivergentConstruct(BlockSet &Visited, Splitter &S,
BasicBlock *BB, DivergentConstruct *Parent) {
if (Visited.count(BB) != 0)
return;
Visited.insert(BB);
auto MIS = getMergeInstructions(*BB);
if (MIS.size() == 0) {
for (BasicBlock *Successor : successors(BB))
constructDivergentConstruct(Visited, S, Successor, Parent);
return;
}
assert(MIS.size() == 1);
Instruction *MI = MIS[0];
BasicBlock *Merge = getDesignatedMergeBlock(MI);
BasicBlock *Continue = getDesignatedContinueBlock(MI);
auto Output = std::make_unique<DivergentConstruct>();
Output->Header = BB;
Output->Merge = Merge;
Output->Continue = Continue;
Output->Parent = Parent;
constructDivergentConstruct(Visited, S, Merge, Parent);
if (Continue)
constructDivergentConstruct(Visited, S, Continue, Output.get());
for (BasicBlock *Successor : successors(BB))
constructDivergentConstruct(Visited, S, Successor, Output.get());
if (Parent)
Parent->Children.emplace_back(std::move(Output));
}
// Returns the blocks belonging to the divergent construct |Node|.
BlockSet getConstructBlocks(Splitter &S, DivergentConstruct *Node) {
assert(Node->Header && Node->Merge);
if (Node->Continue) {
auto LoopBlocks = S.getLoopConstructBlocks(Node->Header, Node->Merge);
return BlockSet(LoopBlocks.begin(), LoopBlocks.end());
}
auto SelectionBlocks = S.getSelectionConstructBlocks(Node);
return BlockSet(SelectionBlocks.begin(), SelectionBlocks.end());
}
// Fixup the construct |Node| to respect a set of rules defined by the SPIR-V
// spec.
bool fixupConstruct(Splitter &S, DivergentConstruct *Node) {
bool Modified = false;
for (auto &Child : Node->Children)
Modified |= fixupConstruct(S, Child.get());
// This construct is the root construct. Does not represent any real
// construct, just a way to access the first level of the forest.
if (Node->Parent == nullptr)
return Modified;
// This node's parent is the root. Meaning this is a top-level construct.
// There can be multiple exists, but all are guaranteed to exit at most 1
// construct since we are at first level.
if (Node->Parent->Header == nullptr)
return Modified;
// Health check for the structure.
assert(Node->Header && Node->Merge);
assert(Node->Parent->Header && Node->Parent->Merge);
BlockSet ConstructBlocks = getConstructBlocks(S, Node);
auto Edges = getExitsFrom(ConstructBlocks, *Node->Header);
// No edges exiting the construct.
if (Edges.size() < 1)
return Modified;
bool HasBadEdge = Node->Merge == Node->Parent->Merge ||
Node->Merge == Node->Parent->Continue;
// BasicBlock *Target = Edges[0].second;
for (auto &[Src, Dst] : Edges) {
// - Breaking from a selection construct: S is a selection construct, S is
// the innermost structured
// control-flow construct containing A, and B is the merge block for S
// - Breaking from the innermost loop: S is the innermost loop construct
// containing A,
// and B is the merge block for S
if (Node->Merge == Dst)
continue;
// Entering the innermost loop’s continue construct: S is the innermost
// loop construct containing A, and B is the continue target for S
if (Node->Continue == Dst)
continue;
// TODO: what about cases branching to another case in the switch? Seems
// to work, but need to double check.
HasBadEdge = true;
}
if (!HasBadEdge)
return Modified;
// Create a single exit node gathering all exit edges.
BasicBlock *NewExit = S.createSingleExitNode(Node->Header, Edges);
// Fixup this construct's merge node to point to the new exit.
// Note: this algorithm fixes inner-most divergence construct first. So
// recursive structures sharing a single merge node are fixed from the
// inside toward the outside.
auto MergeInstructions = getMergeInstructions(*Node->Header);
assert(MergeInstructions.size() == 1);
Instruction *I = MergeInstructions[0];
BlockAddress *BA = cast<BlockAddress>(I->getOperand(0));
if (BA->getBasicBlock() == Node->Merge) {
auto MergeAddress = BlockAddress::get(NewExit->getParent(), NewExit);
I->setOperand(0, MergeAddress);
}
// Clean up of the possible dangling BockAddr operands to prevent MIR
// comments about "address of removed block taken".
if (!BA->isConstantUsed())
BA->destroyConstant();
Node->Merge = NewExit;
// Regenerate the dom trees.
S.invalidate();
return true;
}
bool splitCriticalEdges(Function &F) {
LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Splitter S(F, LI);
DivergentConstruct Root;
BlockSet Visited;
constructDivergentConstruct(Visited, S, &*F.begin(), &Root);
return fixupConstruct(S, &Root);
}
// Simplify branches when possible:
// - if the 2 sides of a conditional branch are the same, transforms it to an
// unconditional branch.
// - if a switch has only 2 distinct successors, converts it to a conditional
// branch.
bool simplifyBranches(Function &F) {
bool Modified = false;
for (BasicBlock &BB : F) {
SwitchInst *SI = dyn_cast<SwitchInst>(BB.getTerminator());
if (!SI)
continue;
if (SI->getNumCases() > 1)
continue;
Modified = true;
IRBuilder<> Builder(&BB);
Builder.SetInsertPoint(SI);
if (SI->getNumCases() == 0) {
Builder.CreateBr(SI->getDefaultDest());
} else {
Value *Condition =
Builder.CreateCmp(CmpInst::ICMP_EQ, SI->getCondition(),
SI->case_begin()->getCaseValue());
Builder.CreateCondBr(Condition, SI->case_begin()->getCaseSuccessor(),
SI->getDefaultDest());
}
SI->eraseFromParent();
}
return Modified;
}
// Makes sure every case target in |F| is unique. If 2 cases branch to the
// same basic block, one of the targets is updated so it jumps to a new basic
// block ending with a single unconditional branch to the original target.
bool splitSwitchCases(Function &F) {
bool Modified = false;
for (BasicBlock &BB : F) {
SwitchInst *SI = dyn_cast<SwitchInst>(BB.getTerminator());
if (!SI)
continue;
BlockSet Seen;
Seen.insert(SI->getDefaultDest());
auto It = SI->case_begin();
while (It != SI->case_end()) {
BasicBlock *Target = It->getCaseSuccessor();
if (Seen.count(Target) == 0) {
Seen.insert(Target);
++It;
continue;
}
Modified = true;
BasicBlock *NewTarget =
BasicBlock::Create(F.getContext(), "new.sw.case", &F);
IRBuilder<> Builder(NewTarget);
Builder.CreateBr(Target);
SI->addCase(It->getCaseValue(), NewTarget);
It = SI->removeCase(It);
}
}
return Modified;
}
// Removes blocks not contributing to any structured CFG. This assumes there
// is no PHI nodes.
bool removeUselessBlocks(Function &F) {
std::vector<BasicBlock *> ToRemove;
auto MergeBlocks = getMergeBlocks(F);
auto ContinueBlocks = getContinueBlocks(F);
for (BasicBlock &BB : F) {
if (BB.size() != 1)
continue;
if (isa<ReturnInst>(BB.getTerminator()))
continue;
if (MergeBlocks.count(&BB) != 0 || ContinueBlocks.count(&BB) != 0)
continue;
if (BB.getUniqueSuccessor() == nullptr)
continue;
BasicBlock *Successor = BB.getUniqueSuccessor();
std::vector<BasicBlock *> Predecessors(predecessors(&BB).begin(),
predecessors(&BB).end());
for (BasicBlock *Predecessor : Predecessors)
replaceBranchTargets(Predecessor, &BB, Successor);
ToRemove.push_back(&BB);
}
for (BasicBlock *BB : ToRemove)
BB->eraseFromParent();
return ToRemove.size() != 0;
}
bool addHeaderToRemainingDivergentDAG(Function &F) {
bool Modified = false;
auto MergeBlocks = getMergeBlocks(F);
auto ContinueBlocks = getContinueBlocks(F);
auto HeaderBlocks = getHeaderBlocks(F);
DomTreeBuilder::BBDomTree DT;
DomTreeBuilder::BBPostDomTree PDT;
PDT.recalculate(F);
DT.recalculate(F);
for (BasicBlock &BB : F) {
if (HeaderBlocks.count(&BB) != 0)
continue;
if (succ_size(&BB) < 2)
continue;
size_t CandidateEdges = 0;
for (BasicBlock *Successor : successors(&BB)) {
if (MergeBlocks.count(Successor) != 0 ||
ContinueBlocks.count(Successor) != 0)
continue;
if (HeaderBlocks.count(Successor) != 0)
continue;
CandidateEdges += 1;
}
if (CandidateEdges <= 1)
continue;
BasicBlock *Header = &BB;
BasicBlock *Merge = PDT.getNode(&BB)->getIDom()->getBlock();
bool HasBadBlock = false;
visit(*Header, [&](const BasicBlock *Node) {
if (DT.dominates(Header, Node))
return false;
if (PDT.dominates(Merge, Node))
return false;
if (Node == Header || Node == Merge)
return true;
HasBadBlock |= MergeBlocks.count(Node) != 0 ||
ContinueBlocks.count(Node) != 0 ||
HeaderBlocks.count(Node) != 0;
return !HasBadBlock;
});
if (HasBadBlock)
continue;
Modified = true;
if (Merge == nullptr) {
Merge = *successors(Header).begin();
IRBuilder<> Builder(Header);
Builder.SetInsertPoint(Header->getTerminator());
auto MergeAddress = BlockAddress::get(Merge->getParent(), Merge);
createOpSelectMerge(&Builder, MergeAddress);
continue;
}
Instruction *SplitInstruction = Merge->getTerminator();
if (isMergeInstruction(SplitInstruction->getPrevNode()))
SplitInstruction = SplitInstruction->getPrevNode();
BasicBlock *NewMerge =
Merge->splitBasicBlockBefore(SplitInstruction, "new.merge");
IRBuilder<> Builder(Header);
Builder.SetInsertPoint(Header->getTerminator());
auto MergeAddress = BlockAddress::get(NewMerge->getParent(), NewMerge);
createOpSelectMerge(&Builder, MergeAddress);
}
return Modified;
}
public:
static char ID;
SPIRVStructurizer() : FunctionPass(ID) {}
virtual bool runOnFunction(Function &F) override {
bool Modified = false;
// In LLVM, Switches are allowed to have several cases branching to the same
// basic block. This is allowed in SPIR-V, but can make structurizing SPIR-V
// harder, so first remove edge cases.
Modified |= splitSwitchCases(F);
// LLVM allows conditional branches to have both side jumping to the same
// block. It also allows switched to have a single default, or just one
// case. Cleaning this up now.
Modified |= simplifyBranches(F);
// At this state, we should have a reducible CFG with cycles.
// STEP 1: Adding OpLoopMerge instructions to loop headers.
Modified |= addMergeForLoops(F);
// STEP 2: adding OpSelectionMerge to each node with an in-degree >= 2.
Modified |= addMergeForNodesWithMultiplePredecessors(F);
// STEP 3:
// Sort selection merge, the largest construct goes first.
// This simplifies the next step.
Modified |= sortSelectionMergeHeaders(F);
// STEP 4: As this stage, we can have a single basic block with multiple
// OpLoopMerge/OpSelectionMerge instructions. Splitting this block so each
// BB has a single merge instruction.
Modified |= splitBlocksWithMultipleHeaders(F);
// STEP 5: In the previous steps, we added merge blocks the loops and
// natural merge blocks (in-degree >= 2). What remains are conditions with
// an exiting branch (return, unreachable). In such case, we must start from
// the header, and add headers to divergent construct with no headers.
Modified |= addMergeForDivergentBlocks(F);
// STEP 6: At this stage, we have several divergent construct defines by a
// header and a merge block. But their boundaries have no constraints: a
// construct exit could be outside of the parents' construct exit. Such
// edges are called critical edges. What we need is to split those edges
// into several parts. Each part exiting the parent's construct by its merge
// block.
Modified |= splitCriticalEdges(F);
// STEP 7: The previous steps possibly created a lot of "proxy" blocks.
// Blocks with a single unconditional branch, used to create a valid
// divergent construct tree. Some nodes are still requires (e.g: nodes
// allowing a valid exit through the parent's merge block). But some are
// left-overs of past transformations, and could cause actual validation
// issues. E.g: the SPIR-V spec allows a construct to break to the parents
// loop construct without an OpSelectionMerge, but this requires a straight
// jump. If a proxy block lies between the conditional branch and the
// parent's merge, the CFG is not valid.
Modified |= removeUselessBlocks(F);
// STEP 8: Final fix-up steps: our tree boundaries are correct, but some
// blocks are branching with no header. Those are often simple conditional
// branches with 1 or 2 returning edges. Adding a header for those.
Modified |= addHeaderToRemainingDivergentDAG(F);
// STEP 9: sort basic blocks to match both the LLVM & SPIR-V requirements.
Modified |= sortBlocks(F);
return Modified;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<SPIRVConvergenceRegionAnalysisWrapperPass>();
AU.addPreserved<SPIRVConvergenceRegionAnalysisWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
void createOpSelectMerge(IRBuilder<> *Builder, BlockAddress *MergeAddress) {
Instruction *BBTerminatorInst = Builder->GetInsertBlock()->getTerminator();
MDNode *MDNode = BBTerminatorInst->getMetadata("hlsl.controlflow.hint");
ConstantInt *BranchHint = ConstantInt::get(Builder->getInt32Ty(), 0);
if (MDNode) {
assert(MDNode->getNumOperands() == 2 &&
"invalid metadata hlsl.controlflow.hint");
BranchHint = mdconst::extract<ConstantInt>(MDNode->getOperand(1));
}
SmallVector<Value *, 2> Args = {MergeAddress, BranchHint};
Builder->CreateIntrinsic(Intrinsic::spv_selection_merge,
{MergeAddress->getType()}, Args);
}
};
} // anonymous namespace
char SPIRVStructurizer::ID = 0;
INITIALIZE_PASS_BEGIN(SPIRVStructurizer, "spirv-structurizer",
"structurize SPIRV", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SPIRVConvergenceRegionAnalysisWrapperPass)
INITIALIZE_PASS_END(SPIRVStructurizer, "spirv-structurizer",
"structurize SPIRV", false, false)
FunctionPass *llvm::createSPIRVStructurizerPass() {
return new SPIRVStructurizer();
}
PreservedAnalyses SPIRVStructurizerWrapper::run(Function &F,
FunctionAnalysisManager &AF) {
auto FPM = legacy::FunctionPassManager(F.getParent());
FPM.add(createSPIRVStructurizerPass());
if (!FPM.run(F))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
return PA;
}
|