1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
|
//===--- SPIRVUtils.cpp ---- SPIR-V Utility Functions -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions.
//
//===----------------------------------------------------------------------===//
#include "SPIRVUtils.h"
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "SPIRV.h"
#include "SPIRVGlobalRegistry.h"
#include "SPIRVInstrInfo.h"
#include "SPIRVSubtarget.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsSPIRV.h"
#include <queue>
#include <vector>
namespace llvm {
// The following functions are used to add these string literals as a series of
// 32-bit integer operands with the correct format, and unpack them if necessary
// when making string comparisons in compiler passes.
// SPIR-V requires null-terminated UTF-8 strings padded to 32-bit alignment.
static uint32_t convertCharsToWord(const StringRef &Str, unsigned i) {
uint32_t Word = 0u; // Build up this 32-bit word from 4 8-bit chars.
for (unsigned WordIndex = 0; WordIndex < 4; ++WordIndex) {
unsigned StrIndex = i + WordIndex;
uint8_t CharToAdd = 0; // Initilize char as padding/null.
if (StrIndex < Str.size()) { // If it's within the string, get a real char.
CharToAdd = Str[StrIndex];
}
Word |= (CharToAdd << (WordIndex * 8));
}
return Word;
}
// Get length including padding and null terminator.
static size_t getPaddedLen(const StringRef &Str) {
return (Str.size() + 4) & ~3;
}
void addStringImm(const StringRef &Str, MCInst &Inst) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add an operand for the 32-bits of chars or padding.
Inst.addOperand(MCOperand::createImm(convertCharsToWord(Str, i)));
}
}
void addStringImm(const StringRef &Str, MachineInstrBuilder &MIB) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add an operand for the 32-bits of chars or padding.
MIB.addImm(convertCharsToWord(Str, i));
}
}
void addStringImm(const StringRef &Str, IRBuilder<> &B,
std::vector<Value *> &Args) {
const size_t PaddedLen = getPaddedLen(Str);
for (unsigned i = 0; i < PaddedLen; i += 4) {
// Add a vector element for the 32-bits of chars or padding.
Args.push_back(B.getInt32(convertCharsToWord(Str, i)));
}
}
std::string getStringImm(const MachineInstr &MI, unsigned StartIndex) {
return getSPIRVStringOperand(MI, StartIndex);
}
std::string getStringValueFromReg(Register Reg, MachineRegisterInfo &MRI) {
MachineInstr *Def = getVRegDef(MRI, Reg);
assert(Def && Def->getOpcode() == TargetOpcode::G_GLOBAL_VALUE &&
"Expected G_GLOBAL_VALUE");
const GlobalValue *GV = Def->getOperand(1).getGlobal();
Value *V = GV->getOperand(0);
const ConstantDataArray *CDA = cast<ConstantDataArray>(V);
return CDA->getAsCString().str();
}
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB) {
const auto Bitwidth = Imm.getBitWidth();
if (Bitwidth == 1)
return; // Already handled
else if (Bitwidth <= 32) {
MIB.addImm(Imm.getZExtValue());
// Asm Printer needs this info to print floating-type correctly
if (Bitwidth == 16)
MIB.getInstr()->setAsmPrinterFlag(SPIRV::ASM_PRINTER_WIDTH16);
return;
} else if (Bitwidth <= 64) {
uint64_t FullImm = Imm.getZExtValue();
uint32_t LowBits = FullImm & 0xffffffff;
uint32_t HighBits = (FullImm >> 32) & 0xffffffff;
MIB.addImm(LowBits).addImm(HighBits);
return;
}
report_fatal_error("Unsupported constant bitwidth");
}
void buildOpName(Register Target, const StringRef &Name,
MachineIRBuilder &MIRBuilder) {
if (!Name.empty()) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpName).addUse(Target);
addStringImm(Name, MIB);
}
}
void buildOpName(Register Target, const StringRef &Name, MachineInstr &I,
const SPIRVInstrInfo &TII) {
if (!Name.empty()) {
auto MIB =
BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpName))
.addUse(Target);
addStringImm(Name, MIB);
}
}
static void finishBuildOpDecorate(MachineInstrBuilder &MIB,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm) {
if (!StrImm.empty())
addStringImm(StrImm, MIB);
for (const auto &DecArg : DecArgs)
MIB.addImm(DecArg);
}
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder,
SPIRV::Decoration::Decoration Dec,
const std::vector<uint32_t> &DecArgs, StringRef StrImm) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpDecorate)
.addUse(Reg)
.addImm(static_cast<uint32_t>(Dec));
finishBuildOpDecorate(MIB, DecArgs, StrImm);
}
void buildOpDecorate(Register Reg, MachineInstr &I, const SPIRVInstrInfo &TII,
SPIRV::Decoration::Decoration Dec,
const std::vector<uint32_t> &DecArgs, StringRef StrImm) {
MachineBasicBlock &MBB = *I.getParent();
auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpDecorate))
.addUse(Reg)
.addImm(static_cast<uint32_t>(Dec));
finishBuildOpDecorate(MIB, DecArgs, StrImm);
}
void buildOpMemberDecorate(Register Reg, MachineIRBuilder &MIRBuilder,
SPIRV::Decoration::Decoration Dec, uint32_t Member,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm) {
auto MIB = MIRBuilder.buildInstr(SPIRV::OpMemberDecorate)
.addUse(Reg)
.addImm(Member)
.addImm(static_cast<uint32_t>(Dec));
finishBuildOpDecorate(MIB, DecArgs, StrImm);
}
void buildOpMemberDecorate(Register Reg, MachineInstr &I,
const SPIRVInstrInfo &TII,
SPIRV::Decoration::Decoration Dec, uint32_t Member,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm) {
MachineBasicBlock &MBB = *I.getParent();
auto MIB = BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemberDecorate))
.addUse(Reg)
.addImm(Member)
.addImm(static_cast<uint32_t>(Dec));
finishBuildOpDecorate(MIB, DecArgs, StrImm);
}
void buildOpSpirvDecorations(Register Reg, MachineIRBuilder &MIRBuilder,
const MDNode *GVarMD) {
for (unsigned I = 0, E = GVarMD->getNumOperands(); I != E; ++I) {
auto *OpMD = dyn_cast<MDNode>(GVarMD->getOperand(I));
if (!OpMD)
report_fatal_error("Invalid decoration");
if (OpMD->getNumOperands() == 0)
report_fatal_error("Expect operand(s) of the decoration");
ConstantInt *DecorationId =
mdconst::dyn_extract<ConstantInt>(OpMD->getOperand(0));
if (!DecorationId)
report_fatal_error("Expect SPIR-V <Decoration> operand to be the first "
"element of the decoration");
auto MIB = MIRBuilder.buildInstr(SPIRV::OpDecorate)
.addUse(Reg)
.addImm(static_cast<uint32_t>(DecorationId->getZExtValue()));
for (unsigned OpI = 1, OpE = OpMD->getNumOperands(); OpI != OpE; ++OpI) {
if (ConstantInt *OpV =
mdconst::dyn_extract<ConstantInt>(OpMD->getOperand(OpI)))
MIB.addImm(static_cast<uint32_t>(OpV->getZExtValue()));
else if (MDString *OpV = dyn_cast<MDString>(OpMD->getOperand(OpI)))
addStringImm(OpV->getString(), MIB);
else
report_fatal_error("Unexpected operand of the decoration");
}
}
}
MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I) {
MachineFunction *MF = I.getParent()->getParent();
MachineBasicBlock *MBB = &MF->front();
MachineBasicBlock::iterator It = MBB->SkipPHIsAndLabels(MBB->begin()),
E = MBB->end();
bool IsHeader = false;
unsigned Opcode;
for (; It != E && It != I; ++It) {
Opcode = It->getOpcode();
if (Opcode == SPIRV::OpFunction || Opcode == SPIRV::OpFunctionParameter) {
IsHeader = true;
} else if (IsHeader &&
!(Opcode == SPIRV::ASSIGN_TYPE || Opcode == SPIRV::OpLabel)) {
++It;
break;
}
}
return It;
}
MachineBasicBlock::iterator getInsertPtValidEnd(MachineBasicBlock *MBB) {
MachineBasicBlock::iterator I = MBB->end();
if (I == MBB->begin())
return I;
--I;
while (I->isTerminator() || I->isDebugValue()) {
if (I == MBB->begin())
break;
--I;
}
return I;
}
SPIRV::StorageClass::StorageClass
addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI) {
switch (AddrSpace) {
case 0:
return SPIRV::StorageClass::Function;
case 1:
return SPIRV::StorageClass::CrossWorkgroup;
case 2:
return SPIRV::StorageClass::UniformConstant;
case 3:
return SPIRV::StorageClass::Workgroup;
case 4:
return SPIRV::StorageClass::Generic;
case 5:
return STI.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)
? SPIRV::StorageClass::DeviceOnlyINTEL
: SPIRV::StorageClass::CrossWorkgroup;
case 6:
return STI.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)
? SPIRV::StorageClass::HostOnlyINTEL
: SPIRV::StorageClass::CrossWorkgroup;
case 7:
return SPIRV::StorageClass::Input;
case 8:
return SPIRV::StorageClass::Output;
case 9:
return SPIRV::StorageClass::CodeSectionINTEL;
case 10:
return SPIRV::StorageClass::Private;
case 11:
return SPIRV::StorageClass::StorageBuffer;
case 12:
return SPIRV::StorageClass::Uniform;
default:
report_fatal_error("Unknown address space");
}
}
SPIRV::MemorySemantics::MemorySemantics
getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC) {
switch (SC) {
case SPIRV::StorageClass::StorageBuffer:
case SPIRV::StorageClass::Uniform:
return SPIRV::MemorySemantics::UniformMemory;
case SPIRV::StorageClass::Workgroup:
return SPIRV::MemorySemantics::WorkgroupMemory;
case SPIRV::StorageClass::CrossWorkgroup:
return SPIRV::MemorySemantics::CrossWorkgroupMemory;
case SPIRV::StorageClass::AtomicCounter:
return SPIRV::MemorySemantics::AtomicCounterMemory;
case SPIRV::StorageClass::Image:
return SPIRV::MemorySemantics::ImageMemory;
default:
return SPIRV::MemorySemantics::None;
}
}
SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord) {
switch (Ord) {
case AtomicOrdering::Acquire:
return SPIRV::MemorySemantics::Acquire;
case AtomicOrdering::Release:
return SPIRV::MemorySemantics::Release;
case AtomicOrdering::AcquireRelease:
return SPIRV::MemorySemantics::AcquireRelease;
case AtomicOrdering::SequentiallyConsistent:
return SPIRV::MemorySemantics::SequentiallyConsistent;
case AtomicOrdering::Unordered:
case AtomicOrdering::Monotonic:
case AtomicOrdering::NotAtomic:
return SPIRV::MemorySemantics::None;
}
llvm_unreachable(nullptr);
}
SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id) {
// Named by
// https://registry.khronos.org/SPIR-V/specs/unified1/SPIRV.html#_scope_id.
// We don't need aliases for Invocation and CrossDevice, as we already have
// them covered by "singlethread" and "" strings respectively (see
// implementation of LLVMContext::LLVMContext()).
static const llvm::SyncScope::ID SubGroup =
Ctx.getOrInsertSyncScopeID("subgroup");
static const llvm::SyncScope::ID WorkGroup =
Ctx.getOrInsertSyncScopeID("workgroup");
static const llvm::SyncScope::ID Device =
Ctx.getOrInsertSyncScopeID("device");
if (Id == llvm::SyncScope::SingleThread)
return SPIRV::Scope::Invocation;
else if (Id == llvm::SyncScope::System)
return SPIRV::Scope::CrossDevice;
else if (Id == SubGroup)
return SPIRV::Scope::Subgroup;
else if (Id == WorkGroup)
return SPIRV::Scope::Workgroup;
else if (Id == Device)
return SPIRV::Scope::Device;
return SPIRV::Scope::CrossDevice;
}
MachineInstr *getDefInstrMaybeConstant(Register &ConstReg,
const MachineRegisterInfo *MRI) {
MachineInstr *MI = MRI->getVRegDef(ConstReg);
MachineInstr *ConstInstr =
MI->getOpcode() == SPIRV::G_TRUNC || MI->getOpcode() == SPIRV::G_ZEXT
? MRI->getVRegDef(MI->getOperand(1).getReg())
: MI;
if (auto *GI = dyn_cast<GIntrinsic>(ConstInstr)) {
if (GI->is(Intrinsic::spv_track_constant)) {
ConstReg = ConstInstr->getOperand(2).getReg();
return MRI->getVRegDef(ConstReg);
}
} else if (ConstInstr->getOpcode() == SPIRV::ASSIGN_TYPE) {
ConstReg = ConstInstr->getOperand(1).getReg();
return MRI->getVRegDef(ConstReg);
} else if (ConstInstr->getOpcode() == TargetOpcode::G_CONSTANT ||
ConstInstr->getOpcode() == TargetOpcode::G_FCONSTANT) {
ConstReg = ConstInstr->getOperand(0).getReg();
return ConstInstr;
}
return MRI->getVRegDef(ConstReg);
}
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI) {
const MachineInstr *MI = getDefInstrMaybeConstant(ConstReg, MRI);
assert(MI && MI->getOpcode() == TargetOpcode::G_CONSTANT);
return MI->getOperand(1).getCImm()->getValue().getZExtValue();
}
bool isSpvIntrinsic(const MachineInstr &MI, Intrinsic::ID IntrinsicID) {
if (const auto *GI = dyn_cast<GIntrinsic>(&MI))
return GI->is(IntrinsicID);
return false;
}
Type *getMDOperandAsType(const MDNode *N, unsigned I) {
Type *ElementTy = cast<ValueAsMetadata>(N->getOperand(I))->getType();
return toTypedPointer(ElementTy);
}
// The set of names is borrowed from the SPIR-V translator.
// TODO: may be implemented in SPIRVBuiltins.td.
static bool isPipeOrAddressSpaceCastBI(const StringRef MangledName) {
return MangledName == "write_pipe_2" || MangledName == "read_pipe_2" ||
MangledName == "write_pipe_2_bl" || MangledName == "read_pipe_2_bl" ||
MangledName == "write_pipe_4" || MangledName == "read_pipe_4" ||
MangledName == "reserve_write_pipe" ||
MangledName == "reserve_read_pipe" ||
MangledName == "commit_write_pipe" ||
MangledName == "commit_read_pipe" ||
MangledName == "work_group_reserve_write_pipe" ||
MangledName == "work_group_reserve_read_pipe" ||
MangledName == "work_group_commit_write_pipe" ||
MangledName == "work_group_commit_read_pipe" ||
MangledName == "get_pipe_num_packets_ro" ||
MangledName == "get_pipe_max_packets_ro" ||
MangledName == "get_pipe_num_packets_wo" ||
MangledName == "get_pipe_max_packets_wo" ||
MangledName == "sub_group_reserve_write_pipe" ||
MangledName == "sub_group_reserve_read_pipe" ||
MangledName == "sub_group_commit_write_pipe" ||
MangledName == "sub_group_commit_read_pipe" ||
MangledName == "to_global" || MangledName == "to_local" ||
MangledName == "to_private";
}
static bool isEnqueueKernelBI(const StringRef MangledName) {
return MangledName == "__enqueue_kernel_basic" ||
MangledName == "__enqueue_kernel_basic_events" ||
MangledName == "__enqueue_kernel_varargs" ||
MangledName == "__enqueue_kernel_events_varargs";
}
static bool isKernelQueryBI(const StringRef MangledName) {
return MangledName == "__get_kernel_work_group_size_impl" ||
MangledName == "__get_kernel_sub_group_count_for_ndrange_impl" ||
MangledName == "__get_kernel_max_sub_group_size_for_ndrange_impl" ||
MangledName == "__get_kernel_preferred_work_group_size_multiple_impl";
}
static bool isNonMangledOCLBuiltin(StringRef Name) {
if (!Name.starts_with("__"))
return false;
return isEnqueueKernelBI(Name) || isKernelQueryBI(Name) ||
isPipeOrAddressSpaceCastBI(Name.drop_front(2)) ||
Name == "__translate_sampler_initializer";
}
std::string getOclOrSpirvBuiltinDemangledName(StringRef Name) {
bool IsNonMangledOCL = isNonMangledOCLBuiltin(Name);
bool IsNonMangledSPIRV = Name.starts_with("__spirv_");
bool IsNonMangledHLSL = Name.starts_with("__hlsl_");
bool IsMangled = Name.starts_with("_Z");
// Otherwise use simple demangling to return the function name.
if (IsNonMangledOCL || IsNonMangledSPIRV || IsNonMangledHLSL || !IsMangled)
return Name.str();
// Try to use the itanium demangler.
if (char *DemangledName = itaniumDemangle(Name.data())) {
std::string Result = DemangledName;
free(DemangledName);
return Result;
}
// Autocheck C++, maybe need to do explicit check of the source language.
// OpenCL C++ built-ins are declared in cl namespace.
// TODO: consider using 'St' abbriviation for cl namespace mangling.
// Similar to ::std:: in C++.
size_t Start, Len = 0;
size_t DemangledNameLenStart = 2;
if (Name.starts_with("_ZN")) {
// Skip CV and ref qualifiers.
size_t NameSpaceStart = Name.find_first_not_of("rVKRO", 3);
// All built-ins are in the ::cl:: namespace.
if (Name.substr(NameSpaceStart, 11) != "2cl7__spirv")
return std::string();
DemangledNameLenStart = NameSpaceStart + 11;
}
Start = Name.find_first_not_of("0123456789", DemangledNameLenStart);
Name.substr(DemangledNameLenStart, Start - DemangledNameLenStart)
.getAsInteger(10, Len);
return Name.substr(Start, Len).str();
}
bool hasBuiltinTypePrefix(StringRef Name) {
if (Name.starts_with("opencl.") || Name.starts_with("ocl_") ||
Name.starts_with("spirv."))
return true;
return false;
}
bool isSpecialOpaqueType(const Type *Ty) {
if (const TargetExtType *ExtTy = dyn_cast<TargetExtType>(Ty))
return isTypedPointerWrapper(ExtTy)
? false
: hasBuiltinTypePrefix(ExtTy->getName());
return false;
}
bool isEntryPoint(const Function &F) {
// OpenCL handling: any function with the SPIR_KERNEL
// calling convention will be a potential entry point.
if (F.getCallingConv() == CallingConv::SPIR_KERNEL)
return true;
// HLSL handling: special attribute are emitted from the
// front-end.
if (F.getFnAttribute("hlsl.shader").isValid())
return true;
return false;
}
Type *parseBasicTypeName(StringRef &TypeName, LLVMContext &Ctx) {
TypeName.consume_front("atomic_");
if (TypeName.consume_front("void"))
return Type::getVoidTy(Ctx);
else if (TypeName.consume_front("bool") || TypeName.consume_front("_Bool"))
return Type::getIntNTy(Ctx, 1);
else if (TypeName.consume_front("char") ||
TypeName.consume_front("signed char") ||
TypeName.consume_front("unsigned char") ||
TypeName.consume_front("uchar"))
return Type::getInt8Ty(Ctx);
else if (TypeName.consume_front("short") ||
TypeName.consume_front("signed short") ||
TypeName.consume_front("unsigned short") ||
TypeName.consume_front("ushort"))
return Type::getInt16Ty(Ctx);
else if (TypeName.consume_front("int") ||
TypeName.consume_front("signed int") ||
TypeName.consume_front("unsigned int") ||
TypeName.consume_front("uint"))
return Type::getInt32Ty(Ctx);
else if (TypeName.consume_front("long") ||
TypeName.consume_front("signed long") ||
TypeName.consume_front("unsigned long") ||
TypeName.consume_front("ulong"))
return Type::getInt64Ty(Ctx);
else if (TypeName.consume_front("half") ||
TypeName.consume_front("_Float16") ||
TypeName.consume_front("__fp16"))
return Type::getHalfTy(Ctx);
else if (TypeName.consume_front("float"))
return Type::getFloatTy(Ctx);
else if (TypeName.consume_front("double"))
return Type::getDoubleTy(Ctx);
// Unable to recognize SPIRV type name
return nullptr;
}
std::unordered_set<BasicBlock *>
PartialOrderingVisitor::getReachableFrom(BasicBlock *Start) {
std::queue<BasicBlock *> ToVisit;
ToVisit.push(Start);
std::unordered_set<BasicBlock *> Output;
while (ToVisit.size() != 0) {
BasicBlock *BB = ToVisit.front();
ToVisit.pop();
if (Output.count(BB) != 0)
continue;
Output.insert(BB);
for (BasicBlock *Successor : successors(BB)) {
if (DT.dominates(Successor, BB))
continue;
ToVisit.push(Successor);
}
}
return Output;
}
bool PartialOrderingVisitor::CanBeVisited(BasicBlock *BB) const {
for (BasicBlock *P : predecessors(BB)) {
// Ignore back-edges.
if (DT.dominates(BB, P))
continue;
// One of the predecessor hasn't been visited. Not ready yet.
if (BlockToOrder.count(P) == 0)
return false;
// If the block is a loop exit, the loop must be finished before
// we can continue.
Loop *L = LI.getLoopFor(P);
if (L == nullptr || L->contains(BB))
continue;
// SPIR-V requires a single back-edge. And the backend first
// step transforms loops into the simplified format. If we have
// more than 1 back-edge, something is wrong.
assert(L->getNumBackEdges() <= 1);
// If the loop has no latch, loop's rank won't matter, so we can
// proceed.
BasicBlock *Latch = L->getLoopLatch();
assert(Latch);
if (Latch == nullptr)
continue;
// The latch is not ready yet, let's wait.
if (BlockToOrder.count(Latch) == 0)
return false;
}
return true;
}
size_t PartialOrderingVisitor::GetNodeRank(BasicBlock *BB) const {
auto It = BlockToOrder.find(BB);
if (It != BlockToOrder.end())
return It->second.Rank;
size_t result = 0;
for (BasicBlock *P : predecessors(BB)) {
// Ignore back-edges.
if (DT.dominates(BB, P))
continue;
auto Iterator = BlockToOrder.end();
Loop *L = LI.getLoopFor(P);
BasicBlock *Latch = L ? L->getLoopLatch() : nullptr;
// If the predecessor is either outside a loop, or part of
// the same loop, simply take its rank + 1.
if (L == nullptr || L->contains(BB) || Latch == nullptr) {
Iterator = BlockToOrder.find(P);
} else {
// Otherwise, take the loop's rank (highest rank in the loop) as base.
// Since loops have a single latch, highest rank is easy to find.
// If the loop has no latch, then it doesn't matter.
Iterator = BlockToOrder.find(Latch);
}
assert(Iterator != BlockToOrder.end());
result = std::max(result, Iterator->second.Rank + 1);
}
return result;
}
size_t PartialOrderingVisitor::visit(BasicBlock *BB, size_t Unused) {
ToVisit.push(BB);
Queued.insert(BB);
size_t QueueIndex = 0;
while (ToVisit.size() != 0) {
BasicBlock *BB = ToVisit.front();
ToVisit.pop();
if (!CanBeVisited(BB)) {
ToVisit.push(BB);
if (QueueIndex >= ToVisit.size())
llvm::report_fatal_error(
"No valid candidate in the queue. Is the graph reducible?");
QueueIndex++;
continue;
}
QueueIndex = 0;
size_t Rank = GetNodeRank(BB);
OrderInfo Info = {Rank, BlockToOrder.size()};
BlockToOrder.emplace(BB, Info);
for (BasicBlock *S : successors(BB)) {
if (Queued.count(S) != 0)
continue;
ToVisit.push(S);
Queued.insert(S);
}
}
return 0;
}
PartialOrderingVisitor::PartialOrderingVisitor(Function &F) {
DT.recalculate(F);
LI = LoopInfo(DT);
visit(&*F.begin(), 0);
Order.reserve(F.size());
for (auto &[BB, Info] : BlockToOrder)
Order.emplace_back(BB);
std::sort(Order.begin(), Order.end(), [&](const auto &LHS, const auto &RHS) {
return compare(LHS, RHS);
});
}
bool PartialOrderingVisitor::compare(const BasicBlock *LHS,
const BasicBlock *RHS) const {
const OrderInfo &InfoLHS = BlockToOrder.at(const_cast<BasicBlock *>(LHS));
const OrderInfo &InfoRHS = BlockToOrder.at(const_cast<BasicBlock *>(RHS));
if (InfoLHS.Rank != InfoRHS.Rank)
return InfoLHS.Rank < InfoRHS.Rank;
return InfoLHS.TraversalIndex < InfoRHS.TraversalIndex;
}
void PartialOrderingVisitor::partialOrderVisit(
BasicBlock &Start, std::function<bool(BasicBlock *)> Op) {
std::unordered_set<BasicBlock *> Reachable = getReachableFrom(&Start);
assert(BlockToOrder.count(&Start) != 0);
// Skipping blocks with a rank inferior to |Start|'s rank.
auto It = Order.begin();
while (It != Order.end() && *It != &Start)
++It;
// This is unexpected. Worst case |Start| is the last block,
// so It should point to the last block, not past-end.
assert(It != Order.end());
// By default, there is no rank limit. Setting it to the maximum value.
std::optional<size_t> EndRank = std::nullopt;
for (; It != Order.end(); ++It) {
if (EndRank.has_value() && BlockToOrder[*It].Rank > *EndRank)
break;
if (Reachable.count(*It) == 0) {
continue;
}
if (!Op(*It)) {
EndRank = BlockToOrder[*It].Rank;
}
}
}
bool sortBlocks(Function &F) {
if (F.size() == 0)
return false;
bool Modified = false;
std::vector<BasicBlock *> Order;
Order.reserve(F.size());
ReversePostOrderTraversal<Function *> RPOT(&F);
llvm::append_range(Order, RPOT);
assert(&*F.begin() == Order[0]);
BasicBlock *LastBlock = &*F.begin();
for (BasicBlock *BB : Order) {
if (BB != LastBlock && &*LastBlock->getNextNode() != BB) {
Modified = true;
BB->moveAfter(LastBlock);
}
LastBlock = BB;
}
return Modified;
}
MachineInstr *getVRegDef(MachineRegisterInfo &MRI, Register Reg) {
MachineInstr *MaybeDef = MRI.getVRegDef(Reg);
if (MaybeDef && MaybeDef->getOpcode() == SPIRV::ASSIGN_TYPE)
MaybeDef = MRI.getVRegDef(MaybeDef->getOperand(1).getReg());
return MaybeDef;
}
bool getVacantFunctionName(Module &M, std::string &Name) {
// It's a bit of paranoia, but still we don't want to have even a chance that
// the loop will work for too long.
constexpr unsigned MaxIters = 1024;
for (unsigned I = 0; I < MaxIters; ++I) {
std::string OrdName = Name + Twine(I).str();
if (!M.getFunction(OrdName)) {
Name = OrdName;
return true;
}
}
return false;
}
// Assign SPIR-V type to the register. If the register has no valid assigned
// class, set register LLT type and class according to the SPIR-V type.
void setRegClassType(Register Reg, SPIRVType *SpvType, SPIRVGlobalRegistry *GR,
MachineRegisterInfo *MRI, const MachineFunction &MF,
bool Force) {
GR->assignSPIRVTypeToVReg(SpvType, Reg, MF);
if (!MRI->getRegClassOrNull(Reg) || Force) {
MRI->setRegClass(Reg, GR->getRegClass(SpvType));
MRI->setType(Reg, GR->getRegType(SpvType));
}
}
// Create a SPIR-V type, assign SPIR-V type to the register. If the register has
// no valid assigned class, set register LLT type and class according to the
// SPIR-V type.
void setRegClassType(Register Reg, const Type *Ty, SPIRVGlobalRegistry *GR,
MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AccessQual,
bool EmitIR, bool Force) {
setRegClassType(Reg,
GR->getOrCreateSPIRVType(Ty, MIRBuilder, AccessQual, EmitIR),
GR, MIRBuilder.getMRI(), MIRBuilder.getMF(), Force);
}
// Create a virtual register and assign SPIR-V type to the register. Set
// register LLT type and class according to the SPIR-V type.
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR,
MachineRegisterInfo *MRI,
const MachineFunction &MF) {
Register Reg = MRI->createVirtualRegister(GR->getRegClass(SpvType));
MRI->setType(Reg, GR->getRegType(SpvType));
GR->assignSPIRVTypeToVReg(SpvType, Reg, MF);
return Reg;
}
// Create a virtual register and assign SPIR-V type to the register. Set
// register LLT type and class according to the SPIR-V type.
Register createVirtualRegister(SPIRVType *SpvType, SPIRVGlobalRegistry *GR,
MachineIRBuilder &MIRBuilder) {
return createVirtualRegister(SpvType, GR, MIRBuilder.getMRI(),
MIRBuilder.getMF());
}
// Create a SPIR-V type, virtual register and assign SPIR-V type to the
// register. Set register LLT type and class according to the SPIR-V type.
Register createVirtualRegister(
const Type *Ty, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AccessQual, bool EmitIR) {
return createVirtualRegister(
GR->getOrCreateSPIRVType(Ty, MIRBuilder, AccessQual, EmitIR), GR,
MIRBuilder);
}
CallInst *buildIntrWithMD(Intrinsic::ID IntrID, ArrayRef<Type *> Types,
Value *Arg, Value *Arg2, ArrayRef<Constant *> Imms,
IRBuilder<> &B) {
SmallVector<Value *, 4> Args;
Args.push_back(Arg2);
Args.push_back(buildMD(Arg));
llvm::append_range(Args, Imms);
return B.CreateIntrinsic(IntrID, {Types}, Args);
}
// Return true if there is an opaque pointer type nested in the argument.
bool isNestedPointer(const Type *Ty) {
if (Ty->isPtrOrPtrVectorTy())
return true;
if (const FunctionType *RefTy = dyn_cast<FunctionType>(Ty)) {
if (isNestedPointer(RefTy->getReturnType()))
return true;
for (const Type *ArgTy : RefTy->params())
if (isNestedPointer(ArgTy))
return true;
return false;
}
if (const ArrayType *RefTy = dyn_cast<ArrayType>(Ty))
return isNestedPointer(RefTy->getElementType());
return false;
}
bool isSpvIntrinsic(const Value *Arg) {
if (const auto *II = dyn_cast<IntrinsicInst>(Arg))
if (Function *F = II->getCalledFunction())
if (F->getName().starts_with("llvm.spv."))
return true;
return false;
}
// Function to create continued instructions for SPV_INTEL_long_composites
// extension
SmallVector<MachineInstr *, 4>
createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode,
unsigned MinWC, unsigned ContinuedOpcode,
ArrayRef<Register> Args, Register ReturnRegister,
Register TypeID) {
SmallVector<MachineInstr *, 4> Instructions;
constexpr unsigned MaxWordCount = UINT16_MAX;
const size_t NumElements = Args.size();
size_t MaxNumElements = MaxWordCount - MinWC;
size_t SPIRVStructNumElements = NumElements;
if (NumElements > MaxNumElements) {
// Do adjustments for continued instructions which always had only one
// minumum word count.
SPIRVStructNumElements = MaxNumElements;
MaxNumElements = MaxWordCount - 1;
}
auto MIB =
MIRBuilder.buildInstr(Opcode).addDef(ReturnRegister).addUse(TypeID);
for (size_t I = 0; I < SPIRVStructNumElements; ++I)
MIB.addUse(Args[I]);
Instructions.push_back(MIB.getInstr());
for (size_t I = SPIRVStructNumElements; I < NumElements;
I += MaxNumElements) {
auto MIB = MIRBuilder.buildInstr(ContinuedOpcode);
for (size_t J = I; J < std::min(I + MaxNumElements, NumElements); ++J)
MIB.addUse(Args[J]);
Instructions.push_back(MIB.getInstr());
}
return Instructions;
}
SmallVector<unsigned, 1> getSpirvLoopControlOperandsFromLoopMetadata(Loop *L) {
unsigned LC = SPIRV::LoopControl::None;
// Currently used only to store PartialCount value. Later when other
// LoopControls are added - this map should be sorted before making
// them loop_merge operands to satisfy 3.23. Loop Control requirements.
std::vector<std::pair<unsigned, unsigned>> MaskToValueMap;
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) {
LC |= SPIRV::LoopControl::DontUnroll;
} else {
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable") ||
getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) {
LC |= SPIRV::LoopControl::Unroll;
}
std::optional<int> Count =
getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
if (Count && Count != 1) {
LC |= SPIRV::LoopControl::PartialCount;
MaskToValueMap.emplace_back(
std::make_pair(SPIRV::LoopControl::PartialCount, *Count));
}
}
SmallVector<unsigned, 1> Result = {LC};
for (auto &[Mask, Val] : MaskToValueMap)
Result.push_back(Val);
return Result;
}
const std::set<unsigned> &getTypeFoldingSupportedOpcodes() {
// clang-format off
static const std::set<unsigned> TypeFoldingSupportingOpcs = {
TargetOpcode::G_ADD,
TargetOpcode::G_FADD,
TargetOpcode::G_STRICT_FADD,
TargetOpcode::G_SUB,
TargetOpcode::G_FSUB,
TargetOpcode::G_STRICT_FSUB,
TargetOpcode::G_MUL,
TargetOpcode::G_FMUL,
TargetOpcode::G_STRICT_FMUL,
TargetOpcode::G_SDIV,
TargetOpcode::G_UDIV,
TargetOpcode::G_FDIV,
TargetOpcode::G_STRICT_FDIV,
TargetOpcode::G_SREM,
TargetOpcode::G_UREM,
TargetOpcode::G_FREM,
TargetOpcode::G_STRICT_FREM,
TargetOpcode::G_FNEG,
TargetOpcode::G_CONSTANT,
TargetOpcode::G_FCONSTANT,
TargetOpcode::G_AND,
TargetOpcode::G_OR,
TargetOpcode::G_XOR,
TargetOpcode::G_SHL,
TargetOpcode::G_ASHR,
TargetOpcode::G_LSHR,
TargetOpcode::G_SELECT,
TargetOpcode::G_EXTRACT_VECTOR_ELT,
};
// clang-format on
return TypeFoldingSupportingOpcs;
}
bool isTypeFoldingSupported(unsigned Opcode) {
return getTypeFoldingSupportedOpcodes().count(Opcode) > 0;
}
// Traversing [g]MIR accounting for pseudo-instructions.
MachineInstr *passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI) {
return (Def->getOpcode() == SPIRV::ASSIGN_TYPE ||
Def->getOpcode() == TargetOpcode::COPY)
? MRI->getVRegDef(Def->getOperand(1).getReg())
: Def;
}
MachineInstr *getDef(const MachineOperand &MO, const MachineRegisterInfo *MRI) {
if (MachineInstr *Def = MRI->getVRegDef(MO.getReg()))
return passCopy(Def, MRI);
return nullptr;
}
MachineInstr *getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI) {
if (MachineInstr *Def = getDef(MO, MRI)) {
if (Def->getOpcode() == TargetOpcode::G_CONSTANT ||
Def->getOpcode() == SPIRV::OpConstantI)
return Def;
}
return nullptr;
}
int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI) {
if (MachineInstr *Def = getImm(MO, MRI)) {
if (Def->getOpcode() == SPIRV::OpConstantI)
return Def->getOperand(2).getImm();
if (Def->getOpcode() == TargetOpcode::G_CONSTANT)
return Def->getOperand(1).getCImm()->getZExtValue();
}
llvm_unreachable("Unexpected integer constant pattern");
}
unsigned getArrayComponentCount(const MachineRegisterInfo *MRI,
const MachineInstr *ResType) {
return foldImm(ResType->getOperand(2), MRI);
}
} // namespace llvm
|