1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
//===--- SPIRVUtils.h ---- SPIR-V Utility Functions -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H
#define LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H
#include "MCTargetDesc/SPIRVBaseInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/TypedPointerType.h"
#include <queue>
#include <string>
#include <unordered_map>
#include <unordered_set>
namespace llvm {
class MCInst;
class MachineFunction;
class MachineInstr;
class MachineInstrBuilder;
class MachineIRBuilder;
class MachineRegisterInfo;
class Register;
class StringRef;
class SPIRVInstrInfo;
class SPIRVSubtarget;
class SPIRVGlobalRegistry;
// This class implements a partial ordering visitor, which visits a cyclic graph
// in natural topological-like ordering. Topological ordering is not defined for
// directed graphs with cycles, so this assumes cycles are a single node, and
// ignores back-edges. The cycle is visited from the entry in the same
// topological-like ordering.
//
// Note: this visitor REQUIRES a reducible graph.
//
// This means once we visit a node, we know all the possible ancestors have been
// visited.
//
// clang-format off
//
// Given this graph:
//
// ,-> B -\
// A -+ +---> D ----> E -> F -> G -> H
// `-> C -/ ^ |
// +-----------------+
//
// Visit order is:
// A, [B, C in any order], D, E, F, G, H
//
// clang-format on
//
// Changing the function CFG between the construction of the visitor and
// visiting is undefined. The visitor can be reused, but if the CFG is updated,
// the visitor must be rebuilt.
class PartialOrderingVisitor {
DomTreeBuilder::BBDomTree DT;
LoopInfo LI;
std::unordered_set<BasicBlock *> Queued = {};
std::queue<BasicBlock *> ToVisit = {};
struct OrderInfo {
size_t Rank;
size_t TraversalIndex;
};
using BlockToOrderInfoMap = std::unordered_map<BasicBlock *, OrderInfo>;
BlockToOrderInfoMap BlockToOrder;
std::vector<BasicBlock *> Order = {};
// Get all basic-blocks reachable from Start.
std::unordered_set<BasicBlock *> getReachableFrom(BasicBlock *Start);
// Internal function used to determine the partial ordering.
// Visits |BB| with the current rank being |Rank|.
size_t visit(BasicBlock *BB, size_t Rank);
bool CanBeVisited(BasicBlock *BB) const;
public:
size_t GetNodeRank(BasicBlock *BB) const;
// Build the visitor to operate on the function F.
PartialOrderingVisitor(Function &F);
// Returns true is |LHS| comes before |RHS| in the partial ordering.
// If |LHS| and |RHS| have the same rank, the traversal order determines the
// order (order is stable).
bool compare(const BasicBlock *LHS, const BasicBlock *RHS) const;
// Visit the function starting from the basic block |Start|, and calling |Op|
// on each visited BB. This traversal ignores back-edges, meaning this won't
// visit a node to which |Start| is not an ancestor.
// If Op returns |true|, the visitor continues. If |Op| returns false, the
// visitor will stop at that rank. This means if 2 nodes share the same rank,
// and Op returns false when visiting the first, the second will be visited
// afterwards. But none of their successors will.
void partialOrderVisit(BasicBlock &Start,
std::function<bool(BasicBlock *)> Op);
};
// Add the given string as a series of integer operand, inserting null
// terminators and padding to make sure the operands all have 32-bit
// little-endian words.
void addStringImm(const StringRef &Str, MCInst &Inst);
void addStringImm(const StringRef &Str, MachineInstrBuilder &MIB);
void addStringImm(const StringRef &Str, IRBuilder<> &B,
std::vector<Value *> &Args);
// Read the series of integer operands back as a null-terminated string using
// the reverse of the logic in addStringImm.
std::string getStringImm(const MachineInstr &MI, unsigned StartIndex);
// Returns the string constant that the register refers to. It is assumed that
// Reg is a global value that contains a string.
std::string getStringValueFromReg(Register Reg, MachineRegisterInfo &MRI);
// Add the given numerical immediate to MIB.
void addNumImm(const APInt &Imm, MachineInstrBuilder &MIB);
// Add an OpName instruction for the given target register.
void buildOpName(Register Target, const StringRef &Name,
MachineIRBuilder &MIRBuilder);
void buildOpName(Register Target, const StringRef &Name, MachineInstr &I,
const SPIRVInstrInfo &TII);
// Add an OpDecorate instruction for the given Reg.
void buildOpDecorate(Register Reg, MachineIRBuilder &MIRBuilder,
SPIRV::Decoration::Decoration Dec,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm = "");
void buildOpDecorate(Register Reg, MachineInstr &I, const SPIRVInstrInfo &TII,
SPIRV::Decoration::Decoration Dec,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm = "");
// Add an OpDecorate instruction for the given Reg.
void buildOpMemberDecorate(Register Reg, MachineIRBuilder &MIRBuilder,
SPIRV::Decoration::Decoration Dec, uint32_t Member,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm = "");
void buildOpMemberDecorate(Register Reg, MachineInstr &I,
const SPIRVInstrInfo &TII,
SPIRV::Decoration::Decoration Dec, uint32_t Member,
const std::vector<uint32_t> &DecArgs,
StringRef StrImm = "");
// Add an OpDecorate instruction by "spirv.Decorations" metadata node.
void buildOpSpirvDecorations(Register Reg, MachineIRBuilder &MIRBuilder,
const MDNode *GVarMD);
// Return a valid position for the OpVariable instruction inside a function,
// i.e., at the beginning of the first block of the function.
MachineBasicBlock::iterator getOpVariableMBBIt(MachineInstr &I);
// Return a valid position for the instruction at the end of the block before
// terminators and debug instructions.
MachineBasicBlock::iterator getInsertPtValidEnd(MachineBasicBlock *MBB);
// Returns true if a pointer to the storage class can be casted to/from a
// pointer to the Generic storage class.
constexpr bool isGenericCastablePtr(SPIRV::StorageClass::StorageClass SC) {
switch (SC) {
case SPIRV::StorageClass::Workgroup:
case SPIRV::StorageClass::CrossWorkgroup:
case SPIRV::StorageClass::Function:
return true;
default:
return false;
}
}
// Convert a SPIR-V storage class to the corresponding LLVM IR address space.
// TODO: maybe the following two functions should be handled in the subtarget
// to allow for different OpenCL vs Vulkan handling.
constexpr unsigned
storageClassToAddressSpace(SPIRV::StorageClass::StorageClass SC) {
switch (SC) {
case SPIRV::StorageClass::Function:
return 0;
case SPIRV::StorageClass::CrossWorkgroup:
return 1;
case SPIRV::StorageClass::UniformConstant:
return 2;
case SPIRV::StorageClass::Workgroup:
return 3;
case SPIRV::StorageClass::Generic:
return 4;
case SPIRV::StorageClass::DeviceOnlyINTEL:
return 5;
case SPIRV::StorageClass::HostOnlyINTEL:
return 6;
case SPIRV::StorageClass::Input:
return 7;
case SPIRV::StorageClass::Output:
return 8;
case SPIRV::StorageClass::CodeSectionINTEL:
return 9;
case SPIRV::StorageClass::Private:
return 10;
case SPIRV::StorageClass::StorageBuffer:
return 11;
case SPIRV::StorageClass::Uniform:
return 12;
default:
report_fatal_error("Unable to get address space id");
}
}
// Convert an LLVM IR address space to a SPIR-V storage class.
SPIRV::StorageClass::StorageClass
addressSpaceToStorageClass(unsigned AddrSpace, const SPIRVSubtarget &STI);
SPIRV::MemorySemantics::MemorySemantics
getMemSemanticsForStorageClass(SPIRV::StorageClass::StorageClass SC);
SPIRV::MemorySemantics::MemorySemantics getMemSemantics(AtomicOrdering Ord);
SPIRV::Scope::Scope getMemScope(LLVMContext &Ctx, SyncScope::ID Id);
// Find def instruction for the given ConstReg, walking through
// spv_track_constant and ASSIGN_TYPE instructions. Updates ConstReg by def
// of OpConstant instruction.
MachineInstr *getDefInstrMaybeConstant(Register &ConstReg,
const MachineRegisterInfo *MRI);
// Get constant integer value of the given ConstReg.
uint64_t getIConstVal(Register ConstReg, const MachineRegisterInfo *MRI);
// Check if MI is a SPIR-V specific intrinsic call.
bool isSpvIntrinsic(const MachineInstr &MI, Intrinsic::ID IntrinsicID);
// Check if it's a SPIR-V specific intrinsic call.
bool isSpvIntrinsic(const Value *Arg);
// Get type of i-th operand of the metadata node.
Type *getMDOperandAsType(const MDNode *N, unsigned I);
// If OpenCL or SPIR-V builtin function name is recognized, return a demangled
// name, otherwise return an empty string.
std::string getOclOrSpirvBuiltinDemangledName(StringRef Name);
// Check if a string contains a builtin prefix.
bool hasBuiltinTypePrefix(StringRef Name);
// Check if given LLVM type is a special opaque builtin type.
bool isSpecialOpaqueType(const Type *Ty);
// Check if the function is an SPIR-V entry point
bool isEntryPoint(const Function &F);
// Parse basic scalar type name, substring TypeName, and return LLVM type.
Type *parseBasicTypeName(StringRef &TypeName, LLVMContext &Ctx);
// Sort blocks in a partial ordering, so each block is after all its
// dominators. This should match both the SPIR-V and the MIR requirements.
// Returns true if the function was changed.
bool sortBlocks(Function &F);
inline bool hasInitializer(const GlobalVariable *GV) {
return GV->hasInitializer() && !isa<UndefValue>(GV->getInitializer());
}
// True if this is an instance of TypedPointerType.
inline bool isTypedPointerTy(const Type *T) {
return T && T->getTypeID() == Type::TypedPointerTyID;
}
// True if this is an instance of PointerType.
inline bool isUntypedPointerTy(const Type *T) {
return T && T->getTypeID() == Type::PointerTyID;
}
// True if this is an instance of PointerType or TypedPointerType.
inline bool isPointerTy(const Type *T) {
return isUntypedPointerTy(T) || isTypedPointerTy(T);
}
// Get the address space of this pointer or pointer vector type for instances of
// PointerType or TypedPointerType.
inline unsigned getPointerAddressSpace(const Type *T) {
Type *SubT = T->getScalarType();
return SubT->getTypeID() == Type::PointerTyID
? cast<PointerType>(SubT)->getAddressSpace()
: cast<TypedPointerType>(SubT)->getAddressSpace();
}
// Return true if the Argument is decorated with a pointee type
inline bool hasPointeeTypeAttr(Argument *Arg) {
return Arg->hasByValAttr() || Arg->hasByRefAttr() || Arg->hasStructRetAttr();
}
// Return the pointee type of the argument or nullptr otherwise
inline Type *getPointeeTypeByAttr(Argument *Arg) {
if (Arg->hasByValAttr())
return Arg->getParamByValType();
if (Arg->hasStructRetAttr())
return Arg->getParamStructRetType();
if (Arg->hasByRefAttr())
return Arg->getParamByRefType();
return nullptr;
}
inline Type *reconstructFunctionType(Function *F) {
SmallVector<Type *> ArgTys;
for (unsigned i = 0; i < F->arg_size(); ++i)
ArgTys.push_back(F->getArg(i)->getType());
return FunctionType::get(F->getReturnType(), ArgTys, F->isVarArg());
}
#define TYPED_PTR_TARGET_EXT_NAME "spirv.$TypedPointerType"
inline Type *getTypedPointerWrapper(Type *ElemTy, unsigned AS) {
return TargetExtType::get(ElemTy->getContext(), TYPED_PTR_TARGET_EXT_NAME,
{ElemTy}, {AS});
}
inline bool isTypedPointerWrapper(const TargetExtType *ExtTy) {
return ExtTy->getName() == TYPED_PTR_TARGET_EXT_NAME &&
ExtTy->getNumIntParameters() == 1 &&
ExtTy->getNumTypeParameters() == 1;
}
// True if this is an instance of PointerType or TypedPointerType.
inline bool isPointerTyOrWrapper(const Type *Ty) {
if (auto *ExtTy = dyn_cast<TargetExtType>(Ty))
return isTypedPointerWrapper(ExtTy);
return isPointerTy(Ty);
}
inline Type *applyWrappers(Type *Ty) {
if (auto *ExtTy = dyn_cast<TargetExtType>(Ty)) {
if (isTypedPointerWrapper(ExtTy))
return TypedPointerType::get(applyWrappers(ExtTy->getTypeParameter(0)),
ExtTy->getIntParameter(0));
} else if (auto *VecTy = dyn_cast<VectorType>(Ty)) {
Type *ElemTy = VecTy->getElementType();
Type *NewElemTy = ElemTy->isTargetExtTy() ? applyWrappers(ElemTy) : ElemTy;
if (NewElemTy != ElemTy)
return VectorType::get(NewElemTy, VecTy->getElementCount());
}
return Ty;
}
inline Type *getPointeeType(const Type *Ty) {
if (Ty) {
if (auto PType = dyn_cast<TypedPointerType>(Ty))
return PType->getElementType();
else if (auto *ExtTy = dyn_cast<TargetExtType>(Ty))
if (isTypedPointerWrapper(ExtTy))
return ExtTy->getTypeParameter(0);
}
return nullptr;
}
inline bool isUntypedEquivalentToTyExt(Type *Ty1, Type *Ty2) {
if (!isUntypedPointerTy(Ty1) || !Ty2)
return false;
if (auto *ExtTy = dyn_cast<TargetExtType>(Ty2))
if (isTypedPointerWrapper(ExtTy) &&
ExtTy->getTypeParameter(0) ==
IntegerType::getInt8Ty(Ty1->getContext()) &&
ExtTy->getIntParameter(0) == cast<PointerType>(Ty1)->getAddressSpace())
return true;
return false;
}
inline bool isEquivalentTypes(Type *Ty1, Type *Ty2) {
return isUntypedEquivalentToTyExt(Ty1, Ty2) ||
isUntypedEquivalentToTyExt(Ty2, Ty1);
}
inline Type *toTypedPointer(Type *Ty) {
if (Type *NewTy = applyWrappers(Ty); NewTy != Ty)
return NewTy;
return isUntypedPointerTy(Ty)
? TypedPointerType::get(IntegerType::getInt8Ty(Ty->getContext()),
getPointerAddressSpace(Ty))
: Ty;
}
inline Type *toTypedFunPointer(FunctionType *FTy) {
Type *OrigRetTy = FTy->getReturnType();
Type *RetTy = toTypedPointer(OrigRetTy);
bool IsUntypedPtr = false;
for (Type *PTy : FTy->params()) {
if (isUntypedPointerTy(PTy)) {
IsUntypedPtr = true;
break;
}
}
if (!IsUntypedPtr && RetTy == OrigRetTy)
return FTy;
SmallVector<Type *> ParamTys;
for (Type *PTy : FTy->params())
ParamTys.push_back(toTypedPointer(PTy));
return FunctionType::get(RetTy, ParamTys, FTy->isVarArg());
}
inline const Type *unifyPtrType(const Type *Ty) {
if (auto FTy = dyn_cast<FunctionType>(Ty))
return toTypedFunPointer(const_cast<FunctionType *>(FTy));
return toTypedPointer(const_cast<Type *>(Ty));
}
inline bool isVector1(Type *Ty) {
auto *FVTy = dyn_cast<FixedVectorType>(Ty);
return FVTy && FVTy->getNumElements() == 1;
}
// Modify an LLVM type to conform with future transformations in IRTranslator.
// At the moment use cases comprise only a <1 x Type> vector. To extend when/if
// needed.
inline Type *normalizeType(Type *Ty) {
auto *FVTy = dyn_cast<FixedVectorType>(Ty);
if (!FVTy || FVTy->getNumElements() != 1)
return Ty;
// If it's a <1 x Type> vector type, replace it by the element type, because
// it's not a legal vector type in LLT and IRTranslator will represent it as
// the scalar eventually.
return normalizeType(FVTy->getElementType());
}
inline PoisonValue *getNormalizedPoisonValue(Type *Ty) {
return PoisonValue::get(normalizeType(Ty));
}
inline MetadataAsValue *buildMD(Value *Arg) {
LLVMContext &Ctx = Arg->getContext();
return MetadataAsValue::get(
Ctx, MDNode::get(Ctx, ValueAsMetadata::getConstant(Arg)));
}
CallInst *buildIntrWithMD(Intrinsic::ID IntrID, ArrayRef<Type *> Types,
Value *Arg, Value *Arg2, ArrayRef<Constant *> Imms,
IRBuilder<> &B);
MachineInstr *getVRegDef(MachineRegisterInfo &MRI, Register Reg);
#define SPIRV_BACKEND_SERVICE_FUN_NAME "__spirv_backend_service_fun"
bool getVacantFunctionName(Module &M, std::string &Name);
void setRegClassType(Register Reg, const Type *Ty, SPIRVGlobalRegistry *GR,
MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AccessQual,
bool EmitIR, bool Force = false);
void setRegClassType(Register Reg, const MachineInstr *SpvType,
SPIRVGlobalRegistry *GR, MachineRegisterInfo *MRI,
const MachineFunction &MF, bool Force = false);
Register createVirtualRegister(const MachineInstr *SpvType,
SPIRVGlobalRegistry *GR,
MachineRegisterInfo *MRI,
const MachineFunction &MF);
Register createVirtualRegister(const MachineInstr *SpvType,
SPIRVGlobalRegistry *GR,
MachineIRBuilder &MIRBuilder);
Register createVirtualRegister(
const Type *Ty, SPIRVGlobalRegistry *GR, MachineIRBuilder &MIRBuilder,
SPIRV::AccessQualifier::AccessQualifier AccessQual, bool EmitIR);
// Return true if there is an opaque pointer type nested in the argument.
bool isNestedPointer(const Type *Ty);
enum FPDecorationId { NONE, RTE, RTZ, RTP, RTN, SAT };
inline FPDecorationId demangledPostfixToDecorationId(const std::string &S) {
static std::unordered_map<std::string, FPDecorationId> Mapping = {
{"rte", FPDecorationId::RTE},
{"rtz", FPDecorationId::RTZ},
{"rtp", FPDecorationId::RTP},
{"rtn", FPDecorationId::RTN},
{"sat", FPDecorationId::SAT}};
auto It = Mapping.find(S);
return It == Mapping.end() ? FPDecorationId::NONE : It->second;
}
SmallVector<MachineInstr *, 4>
createContinuedInstructions(MachineIRBuilder &MIRBuilder, unsigned Opcode,
unsigned MinWC, unsigned ContinuedOpcode,
ArrayRef<Register> Args, Register ReturnRegister,
Register TypeID);
// Instruction selection directed by type folding.
const std::set<unsigned> &getTypeFoldingSupportedOpcodes();
bool isTypeFoldingSupported(unsigned Opcode);
// Get loop controls from llvm.loop. metadata.
SmallVector<unsigned, 1> getSpirvLoopControlOperandsFromLoopMetadata(Loop *L);
// Traversing [g]MIR accounting for pseudo-instructions.
MachineInstr *passCopy(MachineInstr *Def, const MachineRegisterInfo *MRI);
MachineInstr *getDef(const MachineOperand &MO, const MachineRegisterInfo *MRI);
MachineInstr *getImm(const MachineOperand &MO, const MachineRegisterInfo *MRI);
int64_t foldImm(const MachineOperand &MO, const MachineRegisterInfo *MRI);
unsigned getArrayComponentCount(const MachineRegisterInfo *MRI,
const MachineInstr *ResType);
} // namespace llvm
#endif // LLVM_LIB_TARGET_SPIRV_SPIRVUTILS_H
|