1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
//===------ LeonPasses.cpp - Define passes specific to LEON ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "LeonPasses.h"
#include "SparcSubtarget.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
char ErrataWorkaround::ID = 0;
ErrataWorkaround::ErrataWorkaround() : MachineFunctionPass(ID) {
initializeErrataWorkaroundPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS(ErrataWorkaround, "errata-workaround", "Errata workaround pass",
false, false)
// Move iterator to the next instruction in the function, ignoring
// meta instructions and inline assembly. Returns false when reaching
// the end of the function.
bool ErrataWorkaround::moveNext(MachineBasicBlock::iterator &I) {
MachineBasicBlock *MBB = I->getParent();
do {
I++;
while (I == MBB->end()) {
if (MBB->getFallThrough() == nullptr)
return false;
MBB = MBB->getFallThrough();
I = MBB->begin();
}
} while (I->isMetaInstruction() || I->isInlineAsm());
return true;
}
void ErrataWorkaround::insertNop(MachineBasicBlock::iterator I) {
BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(SP::NOP));
}
bool ErrataWorkaround::isFloat(MachineBasicBlock::iterator I) {
if (I->getNumOperands() == 0)
return false;
if (!I->getOperand(0).isReg())
return false;
unsigned reg = I->getOperand(0).getReg();
if (!SP::FPRegsRegClass.contains(reg) && !SP::DFPRegsRegClass.contains(reg))
return false;
return true;
}
bool ErrataWorkaround::isDivSqrt(MachineBasicBlock::iterator I) {
switch (I->getOpcode()) {
case SP::FDIVS:
case SP::FDIVD:
case SP::FSQRTS:
case SP::FSQRTD:
return true;
}
return false;
}
// Prevents the following code sequence from being generated:
// (stb/sth/st/stf) -> (single non-store/load instruction) -> (any store)
// If the sequence is detected a NOP instruction is inserted after
// the first store instruction.
bool ErrataWorkaround::checkSeqTN0009A(MachineBasicBlock::iterator I) {
switch (I->getOpcode()) {
case SP::STrr:
case SP::STri:
case SP::STBrr:
case SP::STBri:
case SP::STHrr:
case SP::STHri:
case SP::STFrr:
case SP::STFri:
break;
default:
return false;
}
MachineBasicBlock::iterator MI = I;
if (!moveNext(MI))
return false;
if (MI->mayStore() || MI->mayLoad())
return false;
MachineBasicBlock::iterator PatchHere = MI;
if (!moveNext(MI))
return false;
if (!MI->mayStore())
return false;
insertNop(PatchHere);
return true;
}
// Prevents the following code sequence from being generated:
// (std/stdf) -> (any store)
// If the sequence is detected a NOP instruction is inserted after
// the first store instruction.
bool ErrataWorkaround::checkSeqTN0009B(MachineBasicBlock::iterator I) {
switch (I->getOpcode()) {
case SP::STDrr:
case SP::STDri:
case SP::STDFrr:
case SP::STDFri:
break;
default:
return false;
}
MachineBasicBlock::iterator MI = I;
if (!moveNext(MI))
return false;
if (!MI->mayStore())
return false;
insertNop(MI);
return true;
}
// Insert a NOP at branch target if load in delay slot and atomic
// instruction at branch target. Also insert a NOP between load
// instruction and atomic instruction (swap or casa).
bool ErrataWorkaround::checkSeqTN0010(MachineBasicBlock::iterator I) {
// Check for load instruction or branch bundled with load instruction
if (!I->mayLoad())
return false;
// Check for branch to atomic instruction with load in delay slot
if (I->isBranch()) {
MachineBasicBlock *TargetMBB = I->getOperand(0).getMBB();
MachineBasicBlock::iterator MI = TargetMBB->begin();
while (MI != TargetMBB->end() && MI->isMetaInstruction())
MI++;
if (MI == TargetMBB->end())
return false;
switch (MI->getOpcode()) {
case SP::SWAPrr:
case SP::SWAPri:
case SP::CASArr:
insertNop(MI);
break;
default:
break;
}
}
// Check for load followed by atomic instruction
MachineBasicBlock::iterator MI = I;
if (!moveNext(MI))
return false;
switch (MI->getOpcode()) {
case SP::SWAPrr:
case SP::SWAPri:
case SP::CASArr:
break;
default:
return false;
}
insertNop(MI);
return true;
}
// Do not allow functions to begin with an atomic instruction
bool ErrataWorkaround::checkSeqTN0010First(MachineBasicBlock &MBB) {
MachineBasicBlock::iterator I = MBB.begin();
while (I != MBB.end() && I->isMetaInstruction())
I++;
switch (I->getOpcode()) {
case SP::SWAPrr:
case SP::SWAPri:
case SP::CASArr:
break;
default:
return false;
}
insertNop(I);
return true;
}
// Inserts a NOP instruction at the target of an integer branch if the
// target is a floating-point instruction or floating-point branch.
bool ErrataWorkaround::checkSeqTN0012(MachineBasicBlock::iterator I) {
if (I->getOpcode() != SP::BCOND && I->getOpcode() != SP::BCONDA)
return false;
MachineBasicBlock *TargetMBB = I->getOperand(0).getMBB();
MachineBasicBlock::iterator MI = TargetMBB->begin();
while (MI != TargetMBB->end() && MI->isMetaInstruction())
MI++;
if (MI == TargetMBB->end())
return false;
if (!isFloat(MI) && MI->getOpcode() != SP::FBCOND)
return false;
insertNop(MI);
return true;
}
// Prevents the following code sequence from being generated:
// (div/sqrt) -> (2 to 3 floating-point operations or loads) -> (div/sqrt)
// If the sequence is detected one or two NOP instruction are inserted after
// the first div/sqrt instruction. No NOPs are inserted if one of the floating-
// point instructions in the middle of the sequence is a (div/sqrt), or if
// they have dependency on the destination register of the first (div/sqrt).
//
// The function also prevents the following code sequence from being generated,
// (div/sqrt) -> (branch), by inserting a NOP instruction after the (div/sqrt).
bool ErrataWorkaround::checkSeqTN0013(MachineBasicBlock::iterator I) {
if (!isDivSqrt(I))
return false;
unsigned dstReg = I->getOperand(0).getReg();
MachineBasicBlock::iterator MI = I;
if (!moveNext(MI))
return false;
if (MI->isBranch()) {
insertNop(MI);
return true;
}
MachineBasicBlock::iterator PatchHere = MI;
unsigned fpFound = 0;
for (unsigned i = 0; i < 4; i++) {
if (!isFloat(MI)) {
if (!moveNext(MI))
return false;
continue;
}
if (MI->readsRegister(dstReg, TRI))
return false;
if (isDivSqrt(MI)) {
if (i < 2)
return false;
if (fpFound < 2)
return false;
insertNop(PatchHere);
if (i == 2)
insertNop(PatchHere);
return true;
}
fpFound++;
if (!moveNext(MI))
return false;
}
return false;
}
bool ErrataWorkaround::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
ST = &MF.getSubtarget<SparcSubtarget>();
if (!(ST->fixTN0009() || ST->fixTN0010() || ST->fixTN0012() ||
ST->fixTN0013()))
return false;
TII = ST->getInstrInfo();
TRI = ST->getRegisterInfo();
if (ST->fixTN0010())
Changed |= checkSeqTN0010First(MF.front());
for (auto &MBB : MF) {
for (auto &I : MBB) {
if (ST->fixTN0009()) {
Changed |= checkSeqTN0009A(I);
Changed |= checkSeqTN0009B(I);
}
if (ST->fixTN0010())
Changed |= checkSeqTN0010(I);
if (ST->fixTN0012())
Changed |= checkSeqTN0012(I);
if (ST->fixTN0013())
Changed |= checkSeqTN0013(I);
}
}
return Changed;
}
LEONMachineFunctionPass::LEONMachineFunctionPass(char &ID)
: MachineFunctionPass(ID) {}
//*****************************************************************************
//**** InsertNOPLoad pass
//*****************************************************************************
// This pass fixes the incorrectly working Load instructions that exists for
// some earlier versions of the LEON processor line. NOP instructions must
// be inserted after the load instruction to ensure that the Load instruction
// behaves as expected for these processors.
//
// This pass inserts a NOP after any LD or LDF instruction.
//
char InsertNOPLoad::ID = 0;
InsertNOPLoad::InsertNOPLoad() : LEONMachineFunctionPass(ID) {}
bool InsertNOPLoad::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
if (!Subtarget->insertNOPLoad())
return false;
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (MachineBasicBlock &MBB : MF) {
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode >= SP::LDDArr && Opcode <= SP::LDrr) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
return Modified;
}
//*****************************************************************************
//**** DetectRoundChange pass
//*****************************************************************************
// To prevent any explicit change of the default rounding mode, this pass
// detects any call of the fesetround function.
// A warning is generated to ensure the user knows this has happened.
//
// Detects an erratum in UT699 LEON 3 processor
char DetectRoundChange::ID = 0;
DetectRoundChange::DetectRoundChange() : LEONMachineFunctionPass(ID) {}
bool DetectRoundChange::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
if (!Subtarget->detectRoundChange())
return false;
bool Modified = false;
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::CALL && MI.getNumOperands() > 0) {
MachineOperand &MO = MI.getOperand(0);
if (MO.isGlobal()) {
StringRef FuncName = MO.getGlobal()->getName();
if (FuncName.compare_insensitive("fesetround") == 0) {
errs() << "Error: You are using the detectroundchange "
"option to detect rounding changes that will "
"cause LEON errata. The only way to fix this "
"is to remove the call to fesetround from "
"the source code.\n";
}
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** FixAllFDIVSQRT pass
//*****************************************************************************
// This pass fixes the incorrectly working FDIVx and FSQRTx instructions that
// exist for some earlier versions of the LEON processor line. Five NOP
// instructions need to be inserted after these instructions to ensure the
// correct result is placed in the destination registers before they are used.
//
// This pass implements two fixes:
// 1) fixing the FSQRTS and FSQRTD instructions.
// 2) fixing the FDIVS and FDIVD instructions.
//
// FSQRTS and FDIVS are converted to FDIVD and FSQRTD respectively earlier in
// the pipeline when this option is enabled, so this pass needs only to deal
// with the changes that still need implementing for the "double" versions
// of these instructions.
//
char FixAllFDIVSQRT::ID = 0;
FixAllFDIVSQRT::FixAllFDIVSQRT() : LEONMachineFunctionPass(ID) {}
bool FixAllFDIVSQRT::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
if (!Subtarget->fixAllFDIVSQRT())
return false;
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (MachineBasicBlock &MBB : MF) {
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
// Note: FDIVS and FSQRTS cannot be generated when this erratum fix is
// switched on so we don't need to check for them here. They will
// already have been converted to FSQRTD or FDIVD earlier in the
// pipeline.
if (Opcode == SP::FSQRTD || Opcode == SP::FDIVD) {
for (int InsertedCount = 0; InsertedCount < 5; InsertedCount++)
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
for (int InsertedCount = 0; InsertedCount < 28; InsertedCount++)
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
return Modified;
}
|