1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
//===-- WebAssemblyTargetTransformInfo.cpp - WebAssembly-specific TTI -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the WebAssembly-specific TargetTransformInfo
/// implementation.
///
//===----------------------------------------------------------------------===//
#include "WebAssemblyTargetTransformInfo.h"
#include "llvm/CodeGen/CostTable.h"
using namespace llvm;
#define DEBUG_TYPE "wasmtti"
TargetTransformInfo::PopcntSupportKind
WebAssemblyTTIImpl::getPopcntSupport(unsigned TyWidth) const {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
return TargetTransformInfo::PSK_FastHardware;
}
unsigned WebAssemblyTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
unsigned Result = BaseT::getNumberOfRegisters(ClassID);
// For SIMD, use at least 16 registers, as a rough guess.
bool Vector = (ClassID == 1);
if (Vector)
Result = std::max(Result, 16u);
return Result;
}
TypeSize WebAssemblyTTIImpl::getRegisterBitWidth(
TargetTransformInfo::RegisterKind K) const {
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(64);
case TargetTransformInfo::RGK_FixedWidthVector:
return TypeSize::getFixed(getST()->hasSIMD128() ? 128 : 64);
case TargetTransformInfo::RGK_ScalableVector:
return TypeSize::getScalable(0);
}
llvm_unreachable("Unsupported register kind");
}
InstructionCost WebAssemblyTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
ArrayRef<const Value *> Args, const Instruction *CxtI) const {
InstructionCost Cost =
BasicTTIImplBase<WebAssemblyTTIImpl>::getArithmeticInstrCost(
Opcode, Ty, CostKind, Op1Info, Op2Info);
if (auto *VTy = dyn_cast<VectorType>(Ty)) {
switch (Opcode) {
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl:
// SIMD128's shifts currently only accept a scalar shift count. For each
// element, we'll need to extract, op, insert. The following is a rough
// approximation.
if (!Op2Info.isUniform())
Cost =
cast<FixedVectorType>(VTy)->getNumElements() *
(TargetTransformInfo::TCC_Basic +
getArithmeticInstrCost(Opcode, VTy->getElementType(), CostKind) +
TargetTransformInfo::TCC_Basic);
break;
}
}
return Cost;
}
InstructionCost WebAssemblyTTIImpl::getCastInstrCost(
unsigned Opcode, Type *Dst, Type *Src, TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind, const Instruction *I) const {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
auto SrcTy = TLI->getValueType(DL, Src);
auto DstTy = TLI->getValueType(DL, Dst);
if (!SrcTy.isSimple() || !DstTy.isSimple()) {
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
if (!ST->hasSIMD128()) {
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
auto DstVT = DstTy.getSimpleVT();
auto SrcVT = SrcTy.getSimpleVT();
if (I && I->hasOneUser()) {
auto *SingleUser = cast<Instruction>(*I->user_begin());
int UserISD = TLI->InstructionOpcodeToISD(SingleUser->getOpcode());
// extmul_low support
if (UserISD == ISD::MUL &&
(ISD == ISD::ZERO_EXTEND || ISD == ISD::SIGN_EXTEND)) {
// Free low extensions.
if ((SrcVT == MVT::v8i8 && DstVT == MVT::v8i16) ||
(SrcVT == MVT::v4i16 && DstVT == MVT::v4i32) ||
(SrcVT == MVT::v2i32 && DstVT == MVT::v2i64)) {
return 0;
}
// Will require an additional extlow operation for the intermediate
// i16/i32 value.
if ((SrcVT == MVT::v4i8 && DstVT == MVT::v4i32) ||
(SrcVT == MVT::v2i16 && DstVT == MVT::v2i64)) {
return 1;
}
}
}
// extend_low
static constexpr TypeConversionCostTblEntry ConversionTbl[] = {
{ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1},
{ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1},
{ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 1},
{ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 1},
{ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i8, 1},
{ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i8, 1},
{ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i16, 2},
{ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i16, 2},
{ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i8, 2},
{ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i8, 2},
};
if (const auto *Entry =
ConvertCostTableLookup(ConversionTbl, ISD, DstVT, SrcVT)) {
return Entry->Cost;
}
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
InstructionCost WebAssemblyTTIImpl::getMemoryOpCost(
unsigned Opcode, Type *Ty, Align Alignment, unsigned AddressSpace,
TTI::TargetCostKind CostKind, TTI::OperandValueInfo OpInfo,
const Instruction *I) const {
if (!ST->hasSIMD128() || !isa<FixedVectorType>(Ty)) {
return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
CostKind);
}
int ISD = TLI->InstructionOpcodeToISD(Opcode);
if (ISD != ISD::LOAD) {
return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
CostKind);
}
EVT VT = TLI->getValueType(DL, Ty, true);
// Type legalization can't handle structs
if (VT == MVT::Other)
return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
CostKind);
auto LT = getTypeLegalizationCost(Ty);
if (!LT.first.isValid())
return InstructionCost::getInvalid();
// 128-bit loads are a single instruction. 32-bit and 64-bit vector loads can
// be lowered to load32_zero and load64_zero respectively. Assume SIMD loads
// are twice as expensive as scalar.
unsigned width = VT.getSizeInBits();
switch (width) {
default:
break;
case 32:
case 64:
case 128:
return 2;
}
return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace, CostKind);
}
InstructionCost WebAssemblyTTIImpl::getVectorInstrCost(
unsigned Opcode, Type *Val, TTI::TargetCostKind CostKind, unsigned Index,
const Value *Op0, const Value *Op1) const {
InstructionCost Cost = BasicTTIImplBase::getVectorInstrCost(
Opcode, Val, CostKind, Index, Op0, Op1);
// SIMD128's insert/extract currently only take constant indices.
if (Index == -1u)
return Cost + 25 * TargetTransformInfo::TCC_Expensive;
return Cost;
}
InstructionCost WebAssemblyTTIImpl::getPartialReductionCost(
unsigned Opcode, Type *InputTypeA, Type *InputTypeB, Type *AccumType,
ElementCount VF, TTI::PartialReductionExtendKind OpAExtend,
TTI::PartialReductionExtendKind OpBExtend, std::optional<unsigned> BinOp,
TTI::TargetCostKind CostKind) const {
InstructionCost Invalid = InstructionCost::getInvalid();
if (!VF.isFixed() || !ST->hasSIMD128())
return Invalid;
if (CostKind != TTI::TCK_RecipThroughput)
return Invalid;
InstructionCost Cost(TTI::TCC_Basic);
// Possible options:
// - i16x8.extadd_pairwise_i8x16_sx
// - i32x4.extadd_pairwise_i16x8_sx
// - i32x4.dot_i16x8_s
// Only try to support dot, for now.
if (Opcode != Instruction::Add)
return Invalid;
if (!BinOp || *BinOp != Instruction::Mul)
return Invalid;
if (InputTypeA != InputTypeB)
return Invalid;
if (OpAExtend != OpBExtend)
return Invalid;
EVT InputEVT = EVT::getEVT(InputTypeA);
EVT AccumEVT = EVT::getEVT(AccumType);
// TODO: Add i64 accumulator.
if (AccumEVT != MVT::i32)
return Invalid;
// Signed inputs can lower to dot
if (InputEVT == MVT::i16 && VF.getFixedValue() == 8)
return OpAExtend == TTI::PR_SignExtend ? Cost : Cost * 2;
// Double the size of the lowered sequence.
if (InputEVT == MVT::i8 && VF.getFixedValue() == 16)
return OpAExtend == TTI::PR_SignExtend ? Cost * 2 : Cost * 4;
return Invalid;
}
TTI::ReductionShuffle WebAssemblyTTIImpl::getPreferredExpandedReductionShuffle(
const IntrinsicInst *II) const {
switch (II->getIntrinsicID()) {
default:
break;
case Intrinsic::vector_reduce_fadd:
return TTI::ReductionShuffle::Pairwise;
}
return TTI::ReductionShuffle::SplitHalf;
}
void WebAssemblyTTIImpl::getUnrollingPreferences(
Loop *L, ScalarEvolution &SE, TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) const {
// Scan the loop: don't unroll loops with calls. This is a standard approach
// for most (all?) targets.
for (BasicBlock *BB : L->blocks())
for (Instruction &I : *BB)
if (isa<CallInst>(I) || isa<InvokeInst>(I))
if (const Function *F = cast<CallBase>(I).getCalledFunction())
if (isLoweredToCall(F))
return;
// The chosen threshold is within the range of 'LoopMicroOpBufferSize' of
// the various microarchitectures that use the BasicTTI implementation and
// has been selected through heuristics across multiple cores and runtimes.
UP.Partial = UP.Runtime = UP.UpperBound = true;
UP.PartialThreshold = 30;
// Avoid unrolling when optimizing for size.
UP.OptSizeThreshold = 0;
UP.PartialOptSizeThreshold = 0;
// Set number of instructions optimized when "back edge"
// becomes "fall through" to default value of 2.
UP.BEInsns = 2;
}
bool WebAssemblyTTIImpl::supportsTailCalls() const {
return getST()->hasTailCall();
}
bool WebAssemblyTTIImpl::isProfitableToSinkOperands(
Instruction *I, SmallVectorImpl<Use *> &Ops) const {
using namespace llvm::PatternMatch;
if (!I->getType()->isVectorTy() || !I->isShift())
return false;
Value *V = I->getOperand(1);
// We dont need to sink constant splat.
if (isa<Constant>(V))
return false;
if (match(V, m_Shuffle(m_InsertElt(m_Value(), m_Value(), m_ZeroInt()),
m_Value(), m_ZeroMask()))) {
// Sink insert
Ops.push_back(&cast<Instruction>(V)->getOperandUse(0));
// Sink shuffle
Ops.push_back(&I->getOperandUse(1));
return true;
}
return false;
}
|