1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
// -*- C++ -*-
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP___ALGORITHM_RADIX_SORT_H
#define _LIBCPP___ALGORITHM_RADIX_SORT_H
// This is an implementation of classic LSD radix sort algorithm, running in linear time and using `O(max(N, M))`
// additional memory, where `N` is size of an input range, `M` - maximum value of
// a radix of the sorted integer type. Type of the radix and its maximum value are determined at compile time
// based on type returned by function `__radix`. The default radix is uint8.
// The algorithm is equivalent to several consecutive calls of counting sort for each
// radix of the sorted numbers from low to high byte.
// The algorithm uses a temporary buffer of size equal to size of the input range. Each `i`-th pass
// of the algorithm sorts values by `i`-th radix and moves values to the temporary buffer (for each even `i`, counted
// from zero), or moves them back to the initial range (for each odd `i`). If there is only one radix in sorted integers
// (e.g. int8), the sorted values are placed to the buffer, and then moved back to the initial range.
// The implementation also has several optimizations:
// - the counters for the counting sort are calculated in one pass for all radices;
// - if all values of a radix are the same, we do not sort that radix, and just move items to the buffer;
// - if two consecutive radices satisfies condition above, we do nothing for these two radices.
#include <__algorithm/for_each.h>
#include <__algorithm/move.h>
#include <__bit/bit_cast.h>
#include <__bit/bit_log2.h>
#include <__config>
#include <__cstddef/size_t.h>
#include <__functional/identity.h>
#include <__iterator/access.h>
#include <__iterator/distance.h>
#include <__iterator/iterator_traits.h>
#include <__iterator/move_iterator.h>
#include <__iterator/next.h>
#include <__iterator/reverse_iterator.h>
#include <__numeric/partial_sum.h>
#include <__type_traits/decay.h>
#include <__type_traits/enable_if.h>
#include <__type_traits/invoke.h>
#include <__type_traits/is_assignable.h>
#include <__type_traits/is_enum.h>
#include <__type_traits/is_integral.h>
#include <__type_traits/is_unsigned.h>
#include <__type_traits/make_unsigned.h>
#include <__type_traits/void_t.h>
#include <__utility/declval.h>
#include <__utility/forward.h>
#include <__utility/integer_sequence.h>
#include <__utility/move.h>
#include <__utility/pair.h>
#include <climits>
#include <cstdint>
#include <initializer_list>
#include <limits>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
# pragma GCC system_header
#endif
_LIBCPP_PUSH_MACROS
#include <__undef_macros>
_LIBCPP_BEGIN_NAMESPACE_STD
#if _LIBCPP_STD_VER >= 14
template <class _InputIterator, class _OutputIterator>
_LIBCPP_HIDE_FROM_ABI constexpr pair<_OutputIterator, __iter_value_type<_InputIterator>>
__partial_sum_max(_InputIterator __first, _InputIterator __last, _OutputIterator __result) {
if (__first == __last)
return {__result, 0};
auto __max = *__first;
__iter_value_type<_InputIterator> __sum = *__first;
*__result = __sum;
while (++__first != __last) {
if (__max < *__first) {
__max = *__first;
}
__sum = std::move(__sum) + *__first;
*++__result = __sum;
}
return {++__result, __max};
}
template <class _Value, class _Map, class _Radix>
struct __radix_sort_traits {
using __image_type _LIBCPP_NODEBUG = decay_t<__invoke_result_t<_Map, _Value>>;
static_assert(is_unsigned<__image_type>::value);
using __radix_type _LIBCPP_NODEBUG = decay_t<__invoke_result_t<_Radix, __image_type>>;
static_assert(is_integral<__radix_type>::value);
static constexpr auto __radix_value_range = numeric_limits<__radix_type>::max() + 1;
static constexpr auto __radix_size = std::__bit_log2<uint64_t>(__radix_value_range);
static constexpr auto __radix_count = sizeof(__image_type) * CHAR_BIT / __radix_size;
};
template <class _Value, class _Map>
struct __counting_sort_traits {
using __image_type _LIBCPP_NODEBUG = decay_t<__invoke_result_t<_Map, _Value>>;
static_assert(is_unsigned<__image_type>::value);
static constexpr const auto __value_range = numeric_limits<__image_type>::max() + 1;
static constexpr auto __radix_size = std::__bit_log2<uint64_t>(__value_range);
};
template <class _Radix, class _Integer>
_LIBCPP_HIDE_FROM_ABI constexpr auto __nth_radix(size_t __radix_number, _Radix __radix, _Integer __n) {
static_assert(is_unsigned<_Integer>::value);
using __traits = __counting_sort_traits<_Integer, _Radix>;
return __radix(static_cast<_Integer>(__n >> __traits::__radix_size * __radix_number));
}
template <class _ForwardIterator, class _Map, class _RandomAccessIterator>
_LIBCPP_HIDE_FROM_ABI constexpr void
__collect(_ForwardIterator __first, _ForwardIterator __last, _Map __map, _RandomAccessIterator __counters) {
using __value_type = __iter_value_type<_ForwardIterator>;
using __traits = __counting_sort_traits<__value_type, _Map>;
std::for_each(__first, __last, [&__counters, &__map](const auto& __preimage) { ++__counters[__map(__preimage)]; });
const auto __counters_end = __counters + __traits::__value_range;
std::partial_sum(__counters, __counters_end, __counters);
}
template <class _ForwardIterator, class _RandomAccessIterator1, class _Map, class _RandomAccessIterator2>
_LIBCPP_HIDE_FROM_ABI constexpr void
__dispose(_ForwardIterator __first,
_ForwardIterator __last,
_RandomAccessIterator1 __result,
_Map __map,
_RandomAccessIterator2 __counters) {
std::for_each(__first, __last, [&__result, &__counters, &__map](auto&& __preimage) {
auto __index = __counters[__map(__preimage)]++;
__result[__index] = std::move(__preimage);
});
}
template <class _ForwardIterator,
class _Map,
class _Radix,
class _RandomAccessIterator1,
class _RandomAccessIterator2,
size_t... _Radices>
_LIBCPP_HIDE_FROM_ABI constexpr bool __collect_impl(
_ForwardIterator __first,
_ForwardIterator __last,
_Map __map,
_Radix __radix,
_RandomAccessIterator1 __counters,
_RandomAccessIterator2 __maximums,
index_sequence<_Radices...>) {
using __value_type = __iter_value_type<_ForwardIterator>;
constexpr auto __radix_value_range = __radix_sort_traits<__value_type, _Map, _Radix>::__radix_value_range;
auto __previous = numeric_limits<__invoke_result_t<_Map, __value_type>>::min();
auto __is_sorted = true;
std::for_each(__first, __last, [&__counters, &__map, &__radix, &__previous, &__is_sorted](const auto& __value) {
auto __current = __map(__value);
__is_sorted &= (__current >= __previous);
__previous = __current;
(++__counters[_Radices][std::__nth_radix(_Radices, __radix, __current)], ...);
});
((__maximums[_Radices] =
std::__partial_sum_max(__counters[_Radices], __counters[_Radices] + __radix_value_range, __counters[_Radices])
.second),
...);
return __is_sorted;
}
template <class _ForwardIterator, class _Map, class _Radix, class _RandomAccessIterator1, class _RandomAccessIterator2>
_LIBCPP_HIDE_FROM_ABI constexpr bool
__collect(_ForwardIterator __first,
_ForwardIterator __last,
_Map __map,
_Radix __radix,
_RandomAccessIterator1 __counters,
_RandomAccessIterator2 __maximums) {
using __value_type = __iter_value_type<_ForwardIterator>;
constexpr auto __radix_count = __radix_sort_traits<__value_type, _Map, _Radix>::__radix_count;
return std::__collect_impl(
__first, __last, __map, __radix, __counters, __maximums, make_index_sequence<__radix_count>());
}
template <class _BidirectionalIterator, class _RandomAccessIterator1, class _Map, class _RandomAccessIterator2>
_LIBCPP_HIDE_FROM_ABI constexpr void __dispose_backward(
_BidirectionalIterator __first,
_BidirectionalIterator __last,
_RandomAccessIterator1 __result,
_Map __map,
_RandomAccessIterator2 __counters) {
std::for_each(std::make_reverse_iterator(__last),
std::make_reverse_iterator(__first),
[&__result, &__counters, &__map](auto&& __preimage) {
auto __index = --__counters[__map(__preimage)];
__result[__index] = std::move(__preimage);
});
}
template <class _ForwardIterator, class _RandomAccessIterator, class _Map>
_LIBCPP_HIDE_FROM_ABI constexpr _RandomAccessIterator
__counting_sort_impl(_ForwardIterator __first, _ForwardIterator __last, _RandomAccessIterator __result, _Map __map) {
using __value_type = __iter_value_type<_ForwardIterator>;
using __traits = __counting_sort_traits<__value_type, _Map>;
__iter_diff_t<_RandomAccessIterator> __counters[__traits::__value_range + 1] = {0};
std::__collect(__first, __last, __map, std::next(std::begin(__counters)));
std::__dispose(__first, __last, __result, __map, std::begin(__counters));
return __result + __counters[__traits::__value_range];
}
template <class _RandomAccessIterator1,
class _RandomAccessIterator2,
class _Map,
class _Radix,
enable_if_t< __radix_sort_traits<__iter_value_type<_RandomAccessIterator1>, _Map, _Radix>::__radix_count == 1,
int> = 0>
_LIBCPP_HIDE_FROM_ABI constexpr void __radix_sort_impl(
_RandomAccessIterator1 __first,
_RandomAccessIterator1 __last,
_RandomAccessIterator2 __buffer,
_Map __map,
_Radix __radix) {
auto __buffer_end = std::__counting_sort_impl(__first, __last, __buffer, [&__map, &__radix](const auto& __value) {
return __radix(__map(__value));
});
std::move(__buffer, __buffer_end, __first);
}
template <
class _RandomAccessIterator1,
class _RandomAccessIterator2,
class _Map,
class _Radix,
enable_if_t< __radix_sort_traits<__iter_value_type<_RandomAccessIterator1>, _Map, _Radix>::__radix_count % 2 == 0,
int> = 0 >
_LIBCPP_HIDE_FROM_ABI constexpr void __radix_sort_impl(
_RandomAccessIterator1 __first,
_RandomAccessIterator1 __last,
_RandomAccessIterator2 __buffer_begin,
_Map __map,
_Radix __radix) {
using __value_type = __iter_value_type<_RandomAccessIterator1>;
using __traits = __radix_sort_traits<__value_type, _Map, _Radix>;
__iter_diff_t<_RandomAccessIterator1> __counters[__traits::__radix_count][__traits::__radix_value_range] = {{0}};
__iter_diff_t<_RandomAccessIterator1> __maximums[__traits::__radix_count] = {0};
const auto __is_sorted = std::__collect(__first, __last, __map, __radix, __counters, __maximums);
if (!__is_sorted) {
const auto __range_size = std::distance(__first, __last);
auto __buffer_end = __buffer_begin + __range_size;
for (size_t __radix_number = 0; __radix_number < __traits::__radix_count; __radix_number += 2) {
const auto __n0th_is_single = __maximums[__radix_number] == __range_size;
const auto __n1th_is_single = __maximums[__radix_number + 1] == __range_size;
if (__n0th_is_single && __n1th_is_single) {
continue;
}
if (__n0th_is_single) {
std::move(__first, __last, __buffer_begin);
} else {
auto __n0th = [__radix_number, &__map, &__radix](const auto& __v) {
return std::__nth_radix(__radix_number, __radix, __map(__v));
};
std::__dispose_backward(__first, __last, __buffer_begin, __n0th, __counters[__radix_number]);
}
if (__n1th_is_single) {
std::move(__buffer_begin, __buffer_end, __first);
} else {
auto __n1th = [__radix_number, &__map, &__radix](const auto& __v) {
return std::__nth_radix(__radix_number + 1, __radix, __map(__v));
};
std::__dispose_backward(__buffer_begin, __buffer_end, __first, __n1th, __counters[__radix_number + 1]);
}
}
}
}
_LIBCPP_HIDE_FROM_ABI constexpr auto __shift_to_unsigned(bool __b) { return __b; }
template <class _Ip>
_LIBCPP_HIDE_FROM_ABI constexpr auto __shift_to_unsigned(_Ip __n) {
constexpr const auto __min_value = numeric_limits<_Ip>::min();
return static_cast<make_unsigned_t<_Ip> >(__n ^ __min_value);
}
template <size_t _Size>
struct __unsigned_integer_of_size;
template <>
struct __unsigned_integer_of_size<1> {
using type _LIBCPP_NODEBUG = uint8_t;
};
template <>
struct __unsigned_integer_of_size<2> {
using type _LIBCPP_NODEBUG = uint16_t;
};
template <>
struct __unsigned_integer_of_size<4> {
using type _LIBCPP_NODEBUG = uint32_t;
};
template <>
struct __unsigned_integer_of_size<8> {
using type _LIBCPP_NODEBUG = uint64_t;
};
# if _LIBCPP_HAS_INT128
template <>
struct __unsigned_integer_of_size<16> {
using type _LIBCPP_NODEBUG = unsigned __int128;
};
# endif
template <size_t _Size>
using __unsigned_integer_of_size_t _LIBCPP_NODEBUG = typename __unsigned_integer_of_size<_Size>::type;
template <class _Sc>
using __unsigned_representation_for_t _LIBCPP_NODEBUG = __unsigned_integer_of_size_t<sizeof(_Sc)>;
// The function `__to_ordered_integral` is defined for integers and IEEE 754 floating-point numbers.
// Returns an integer representation such that for any `x` and `y` such that `x < y`, the expression
// `__to_ordered_integral(x) < __to_ordered_integral(y)` is true, where `x`, `y` are integers or IEEE 754 floats.
template <class _Integral, enable_if_t< is_integral<_Integral>::value, int> = 0>
_LIBCPP_HIDE_FROM_ABI constexpr auto __to_ordered_integral(_Integral __n) {
return __n;
}
// An overload for IEEE 754 floating-point numbers
// For the floats conforming to IEEE 754 (IEC 559) standard, we know that:
// 1. The bit representation of positive floats directly reflects their order:
// When comparing floats by magnitude, the number with the larger exponent is greater, and if the exponents are
// equal, the one with the larger mantissa is greater.
// 2. The bit representation of negative floats reflects their reverse order (for the same reasons).
// 3. The most significant bit (sign bit) is zero for positive floats and one for negative floats. Therefore, in the raw
// bit representation, any negative number will be greater than any positive number.
// The only exception from this rule is `NaN`, which is unordered by definition.
// Based on the above, to obtain correctly ordered integral representation of floating-point numbers, we need to:
// 1. Invert the bit representation (including the sign bit) of negative floats to switch from reverse order to direct
// order;
// 2. Invert the sign bit for positive floats.
// Thus, in final integral representation, we have reversed the order for negative floats and made all negative floats
// smaller than all positive numbers (by inverting the sign bit).
template <class _Floating, enable_if_t< numeric_limits<_Floating>::is_iec559, int> = 0>
_LIBCPP_HIDE_FROM_ABI constexpr auto __to_ordered_integral(_Floating __f) {
using __integral_type = __unsigned_representation_for_t<_Floating>;
constexpr auto __bit_count = std::numeric_limits<__integral_type>::digits;
constexpr auto __sign_bit_mask = static_cast<__integral_type>(__integral_type{1} << (__bit_count - 1));
const auto __u = std::__bit_cast<__integral_type>(__f);
return static_cast<__integral_type>(__u & __sign_bit_mask ? ~__u : __u ^ __sign_bit_mask);
}
// There may exist user-defined comparison for enum, so we cannot compare enums just like integers.
template <class _Enum, enable_if_t< is_enum<_Enum>::value, int> = 0>
_LIBCPP_HIDE_FROM_ABI constexpr auto __to_ordered_integral(_Enum __e) = delete;
// `long double` varies significantly across platforms and compilers, making it practically
// impossible to determine its actual bit width for conversion to an ordered integer.
inline _LIBCPP_HIDE_FROM_ABI constexpr auto __to_ordered_integral(long double) = delete;
template <class _Tp, class = void>
inline const bool __is_ordered_integer_representable_v = false;
template <class _Tp>
inline const bool
__is_ordered_integer_representable_v<_Tp, __void_t<decltype(std::__to_ordered_integral(std::declval<_Tp>()))>> =
true;
struct __low_byte_fn {
template <class _Ip>
_LIBCPP_HIDE_FROM_ABI constexpr uint8_t operator()(_Ip __integer) const {
static_assert(is_unsigned<_Ip>::value);
return static_cast<uint8_t>(__integer & 0xff);
}
};
template <class _RandomAccessIterator1, class _RandomAccessIterator2, class _Map, class _Radix>
_LIBCPP_HIDE_FROM_ABI constexpr void
__radix_sort(_RandomAccessIterator1 __first,
_RandomAccessIterator1 __last,
_RandomAccessIterator2 __buffer,
_Map __map,
_Radix __radix) {
auto __map_to_unsigned = [__map = std::move(__map)](const auto& __x) {
return std::__shift_to_unsigned(__map(std::__to_ordered_integral(__x)));
};
std::__radix_sort_impl(__first, __last, __buffer, __map_to_unsigned, __radix);
}
template <class _RandomAccessIterator1, class _RandomAccessIterator2>
_LIBCPP_HIDE_FROM_ABI constexpr void
__radix_sort(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __buffer) {
std::__radix_sort(__first, __last, __buffer, __identity{}, __low_byte_fn{});
}
#endif // _LIBCPP_STD_VER >= 14
_LIBCPP_END_NAMESPACE_STD
_LIBCPP_POP_MACROS
#endif // _LIBCPP___ALGORITHM_RADIX_SORT_H
|