1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
//===--- Floating.h - Types for the constexpr VM ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines the VM types and helpers operating on types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_INTERP_FLOATING_H
#define LLVM_CLANG_AST_INTERP_FLOATING_H
#include "Primitives.h"
#include "clang/AST/APValue.h"
#include "llvm/ADT/APFloat.h"
// XXX This is just a debugging help. Setting this to 1 will heap-allocate ALL
// floating values.
#define ALLOCATE_ALL 0
namespace clang {
namespace interp {
using APFloat = llvm::APFloat;
using APSInt = llvm::APSInt;
using APInt = llvm::APInt;
/// If a Floating is constructed from Memory, it DOES NOT OWN THAT MEMORY.
/// It will NOT copy the memory (unless, of course, copy() is called) and it
/// won't alllocate anything. The allocation should happen via InterpState or
/// Program.
class Floating final {
private:
union {
uint64_t Val = 0;
uint64_t *Memory;
};
llvm::APFloatBase::Semantics Semantics;
APFloat getValue() const {
unsigned BitWidth = bitWidth();
if (singleWord())
return APFloat(getSemantics(), APInt(BitWidth, Val));
unsigned NumWords = numWords();
return APFloat(getSemantics(), APInt(BitWidth, NumWords, Memory));
}
public:
Floating() = default;
Floating(llvm::APFloatBase::Semantics Semantics)
: Val(0), Semantics(Semantics) {}
Floating(const APFloat &F) {
Semantics = llvm::APFloatBase::SemanticsToEnum(F.getSemantics());
this->copy(F);
}
Floating(uint64_t *Memory, llvm::APFloatBase::Semantics Semantics)
: Memory(Memory), Semantics(Semantics) {}
APFloat getAPFloat() const { return getValue(); }
bool operator<(Floating RHS) const { return getValue() < RHS.getValue(); }
bool operator>(Floating RHS) const { return getValue() > RHS.getValue(); }
bool operator<=(Floating RHS) const { return getValue() <= RHS.getValue(); }
bool operator>=(Floating RHS) const { return getValue() >= RHS.getValue(); }
APFloat::opStatus convertToInteger(APSInt &Result) const {
bool IsExact;
return getValue().convertToInteger(Result, llvm::APFloat::rmTowardZero,
&IsExact);
}
void toSemantics(const llvm::fltSemantics *Sem, llvm::RoundingMode RM,
Floating *Result) const {
APFloat Copy = getValue();
bool LosesInfo;
Copy.convert(*Sem, RM, &LosesInfo);
(void)LosesInfo;
Result->copy(Copy);
}
APSInt toAPSInt(unsigned NumBits = 0) const {
return APSInt(getValue().bitcastToAPInt());
}
APValue toAPValue(const ASTContext &) const { return APValue(getValue()); }
void print(llvm::raw_ostream &OS) const {
// Can't use APFloat::print() since it appends a newline.
SmallVector<char, 16> Buffer;
getValue().toString(Buffer);
OS << Buffer;
}
std::string toDiagnosticString(const ASTContext &Ctx) const {
std::string NameStr;
llvm::raw_string_ostream OS(NameStr);
print(OS);
return NameStr;
}
unsigned bitWidth() const {
return llvm::APFloatBase::semanticsSizeInBits(getSemantics());
}
unsigned numWords() const { return llvm::APInt::getNumWords(bitWidth()); }
bool singleWord() const {
#if ALLOCATE_ALL
return false;
#endif
return numWords() == 1;
}
static bool singleWord(const llvm::fltSemantics &Sem) {
#if ALLOCATE_ALL
return false;
#endif
return APInt::getNumWords(llvm::APFloatBase::getSizeInBits(Sem)) == 1;
}
const llvm::fltSemantics &getSemantics() const {
return llvm::APFloatBase::EnumToSemantics(Semantics);
}
void copy(const APFloat &F) {
if (singleWord()) {
Val = F.bitcastToAPInt().getZExtValue();
} else {
assert(Memory);
std::memcpy(Memory, F.bitcastToAPInt().getRawData(),
numWords() * sizeof(uint64_t));
}
}
void take(uint64_t *NewMemory) {
if (singleWord())
return;
if (Memory)
std::memcpy(NewMemory, Memory, numWords() * sizeof(uint64_t));
Memory = NewMemory;
}
bool isSigned() const { return true; }
bool isNegative() const { return getValue().isNegative(); }
bool isZero() const { return getValue().isZero(); }
bool isNonZero() const { return getValue().isNonZero(); }
bool isMin() const { return getValue().isSmallest(); }
bool isMinusOne() const { return getValue().isExactlyValue(-1.0); }
bool isNan() const { return getValue().isNaN(); }
bool isSignaling() const { return getValue().isSignaling(); }
bool isInf() const { return getValue().isInfinity(); }
bool isFinite() const { return getValue().isFinite(); }
bool isNormal() const { return getValue().isNormal(); }
bool isDenormal() const { return getValue().isDenormal(); }
llvm::FPClassTest classify() const { return getValue().classify(); }
APFloat::fltCategory getCategory() const { return getValue().getCategory(); }
ComparisonCategoryResult compare(const Floating &RHS) const {
llvm::APFloatBase::cmpResult CmpRes = getValue().compare(RHS.getValue());
switch (CmpRes) {
case llvm::APFloatBase::cmpLessThan:
return ComparisonCategoryResult::Less;
case llvm::APFloatBase::cmpEqual:
return ComparisonCategoryResult::Equal;
case llvm::APFloatBase::cmpGreaterThan:
return ComparisonCategoryResult::Greater;
case llvm::APFloatBase::cmpUnordered:
return ComparisonCategoryResult::Unordered;
}
llvm_unreachable("Inavlid cmpResult value");
}
static APFloat::opStatus fromIntegral(APSInt Val,
const llvm::fltSemantics &Sem,
llvm::RoundingMode RM,
Floating *Result) {
APFloat F = APFloat(Sem);
APFloat::opStatus Status = F.convertFromAPInt(Val, Val.isSigned(), RM);
Result->copy(F);
return Status;
}
static void bitcastFromMemory(const std::byte *Buff,
const llvm::fltSemantics &Sem,
Floating *Result) {
size_t Size = APFloat::semanticsSizeInBits(Sem);
llvm::APInt API(Size, true);
llvm::LoadIntFromMemory(API, (const uint8_t *)Buff, Size / 8);
Result->copy(APFloat(Sem, API));
}
void bitcastToMemory(std::byte *Buff) const {
llvm::APInt API = getValue().bitcastToAPInt();
llvm::StoreIntToMemory(API, (uint8_t *)Buff, bitWidth() / 8);
}
// === Serialization support ===
size_t bytesToSerialize() const {
return sizeof(Semantics) + (numWords() * sizeof(uint64_t));
}
void serialize(std::byte *Buff) const {
std::memcpy(Buff, &Semantics, sizeof(Semantics));
if (singleWord()) {
std::memcpy(Buff + sizeof(Semantics), &Val, sizeof(uint64_t));
} else {
std::memcpy(Buff + sizeof(Semantics), Memory,
numWords() * sizeof(uint64_t));
}
}
static llvm::APFloatBase::Semantics
deserializeSemantics(const std::byte *Buff) {
return *reinterpret_cast<const llvm::APFloatBase::Semantics *>(Buff);
}
static void deserialize(const std::byte *Buff, Floating *Result) {
llvm::APFloatBase::Semantics Semantics;
std::memcpy(&Semantics, Buff, sizeof(Semantics));
unsigned BitWidth = llvm::APFloat::semanticsSizeInBits(
llvm::APFloatBase::EnumToSemantics(Semantics));
unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
Result->Semantics = Semantics;
if (NumWords == 1 && !ALLOCATE_ALL) {
std::memcpy(&Result->Val, Buff + sizeof(Semantics), sizeof(uint64_t));
} else {
assert(Result->Memory);
std::memcpy(Result->Memory, Buff + sizeof(Semantics),
NumWords * sizeof(uint64_t));
}
}
// -------
static APFloat::opStatus add(const Floating &A, const Floating &B,
llvm::RoundingMode RM, Floating *R) {
APFloat LHS = A.getValue();
APFloat RHS = B.getValue();
auto Status = LHS.add(RHS, RM);
R->copy(LHS);
return Status;
}
static APFloat::opStatus increment(const Floating &A, llvm::RoundingMode RM,
Floating *R) {
APFloat One(A.getSemantics(), 1);
APFloat LHS = A.getValue();
auto Status = LHS.add(One, RM);
R->copy(LHS);
return Status;
}
static APFloat::opStatus sub(const Floating &A, const Floating &B,
llvm::RoundingMode RM, Floating *R) {
APFloat LHS = A.getValue();
APFloat RHS = B.getValue();
auto Status = LHS.subtract(RHS, RM);
R->copy(LHS);
return Status;
}
static APFloat::opStatus decrement(const Floating &A, llvm::RoundingMode RM,
Floating *R) {
APFloat One(A.getSemantics(), 1);
APFloat LHS = A.getValue();
auto Status = LHS.subtract(One, RM);
R->copy(LHS);
return Status;
}
static APFloat::opStatus mul(const Floating &A, const Floating &B,
llvm::RoundingMode RM, Floating *R) {
APFloat LHS = A.getValue();
APFloat RHS = B.getValue();
auto Status = LHS.multiply(RHS, RM);
R->copy(LHS);
return Status;
}
static APFloat::opStatus div(const Floating &A, const Floating &B,
llvm::RoundingMode RM, Floating *R) {
APFloat LHS = A.getValue();
APFloat RHS = B.getValue();
auto Status = LHS.divide(RHS, RM);
R->copy(LHS);
return Status;
}
static bool neg(const Floating &A, Floating *R) {
R->copy(-A.getValue());
return false;
}
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, Floating F);
Floating getSwappedBytes(Floating F);
} // namespace interp
} // namespace clang
#endif
|