1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
|
//===--- SemaOpenACC.cpp - Semantic Analysis for OpenACC constructs -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for OpenACC constructs, and things
/// that are not clause specific.
///
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaOpenACC.h"
#include "clang/AST/DeclOpenACC.h"
#include "clang/AST/StmtOpenACC.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
using namespace clang;
namespace {
bool diagnoseConstructAppertainment(SemaOpenACC &S, OpenACCDirectiveKind K,
SourceLocation StartLoc, bool IsStmt) {
switch (K) {
default:
case OpenACCDirectiveKind::Invalid:
// Nothing to do here, both invalid and unimplemented don't really need to
// do anything.
break;
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Cache:
case OpenACCDirectiveKind::Atomic:
if (!IsStmt)
return S.Diag(StartLoc, diag::err_acc_construct_appertainment) << K;
break;
}
return false;
}
void CollectActiveReductionClauses(
llvm::SmallVector<OpenACCReductionClause *> &ActiveClauses,
ArrayRef<OpenACCClause *> CurClauses) {
for (auto *CurClause : CurClauses) {
if (auto *RedClause = dyn_cast<OpenACCReductionClause>(CurClause);
RedClause && !RedClause->getVarList().empty())
ActiveClauses.push_back(RedClause);
}
}
// Depth needs to be preserved for all associated statements that aren't
// supposed to modify the compute/combined/loop construct information.
bool PreserveLoopRAIIDepthInAssociatedStmtRAII(OpenACCDirectiveKind DK) {
switch (DK) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
return false;
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Atomic:
return true;
case OpenACCDirectiveKind::Cache:
case OpenACCDirectiveKind::Routine:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
llvm_unreachable("Doesn't have an associated stmt");
case OpenACCDirectiveKind::Invalid:
llvm_unreachable("Unhandled directive kind?");
}
llvm_unreachable("Unhandled directive kind?");
}
} // namespace
SemaOpenACC::SemaOpenACC(Sema &S) : SemaBase(S) {}
SemaOpenACC::AssociatedStmtRAII::AssociatedStmtRAII(
SemaOpenACC &S, OpenACCDirectiveKind DK, SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses)
: SemaRef(S), OldActiveComputeConstructInfo(S.ActiveComputeConstructInfo),
DirKind(DK), OldLoopGangClauseOnKernel(S.LoopGangClauseOnKernel),
OldLoopWorkerClauseLoc(S.LoopWorkerClauseLoc),
OldLoopVectorClauseLoc(S.LoopVectorClauseLoc),
OldLoopWithoutSeqInfo(S.LoopWithoutSeqInfo),
ActiveReductionClauses(S.ActiveReductionClauses),
LoopRAII(SemaRef, PreserveLoopRAIIDepthInAssociatedStmtRAII(DirKind)) {
// Compute constructs end up taking their 'loop'.
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// Implement the 'unless within a nested compute region' part.
SemaRef.LoopGangClauseOnKernel = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
SemaRef.LoopWithoutSeqInfo = {};
} else if (DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
SemaRef.ActiveComputeConstructInfo.Kind = DirKind;
SemaRef.ActiveComputeConstructInfo.Clauses = Clauses;
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SemaRef.LoopGangClauseOnKernel = {};
SemaRef.LoopWorkerClauseLoc = {};
SemaRef.LoopVectorClauseLoc = {};
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (DirKind == OpenACCDirectiveKind::KernelsLoop && UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(), DirKind};
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
} else if (DirKind == OpenACCDirectiveKind::Loop) {
CollectActiveReductionClauses(S.ActiveReductionClauses, Clauses);
SetCollapseInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
SetTileInfoBeforeAssociatedStmt(UnInstClauses, Clauses);
// Set the active 'loop' location if there isn't a 'seq' on it, so we can
// diagnose the for loops.
SemaRef.LoopWithoutSeqInfo = {};
if (Clauses.end() ==
llvm::find_if(Clauses, llvm::IsaPred<OpenACCSeqClause>))
SemaRef.LoopWithoutSeqInfo = {DirKind, DirLoc};
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
//
// We don't bother doing this when this is a template instantiation, as
// there is no reason to do these checks: the existance of a
// gang/kernels/etc cannot be dependent.
if (SemaRef.getActiveComputeConstructInfo().Kind ==
OpenACCDirectiveKind::Kernels &&
UnInstClauses.empty()) {
// This handles the 'outer loop' part of this.
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCGangClause>);
if (Itr != Clauses.end())
SemaRef.LoopGangClauseOnKernel = {(*Itr)->getBeginLoc(),
OpenACCDirectiveKind::Kernels};
}
if (UnInstClauses.empty()) {
auto *Itr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCWorkerClause>);
if (Itr != Clauses.end())
SemaRef.LoopWorkerClauseLoc = (*Itr)->getBeginLoc();
auto *Itr2 = llvm::find_if(Clauses, llvm::IsaPred<OpenACCVectorClause>);
if (Itr2 != Clauses.end())
SemaRef.LoopVectorClauseLoc = (*Itr2)->getBeginLoc();
}
}
}
namespace {
// Given two collapse clauses, and the uninstanted version of the new one,
// return the 'best' one for the purposes of setting the collapse checking
// values.
const OpenACCCollapseClause *
getBestCollapseCandidate(const OpenACCCollapseClause *Old,
const OpenACCCollapseClause *New,
const OpenACCCollapseClause *UnInstNew) {
// If the loop count is nullptr, it is because instantiation failed, so this
// can't be the best one.
if (!New->getLoopCount())
return Old;
// If the loop-count had an error, than 'new' isn't a candidate.
if (!New->getLoopCount())
return Old;
// Don't consider uninstantiated ones, since we can't really check these.
if (New->getLoopCount()->isInstantiationDependent())
return Old;
// If this is an instantiation, and the old version wasn't instantation
// dependent, than nothing has changed and we've already done a diagnostic
// based on this one, so don't consider it.
if (UnInstNew && !UnInstNew->getLoopCount()->isInstantiationDependent())
return Old;
// New is now a valid candidate, so if there isn't an old one at this point,
// New is the only valid one.
if (!Old)
return New;
// If the 'New' expression has a larger value than 'Old', then it is the new
// best candidate.
if (cast<ConstantExpr>(Old->getLoopCount())->getResultAsAPSInt() <
cast<ConstantExpr>(New->getLoopCount())->getResultAsAPSInt())
return New;
return Old;
}
} // namespace
void SemaOpenACC::AssociatedStmtRAII::SetCollapseInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// Reset this checking for loops that aren't covered in a RAII object.
SemaRef.LoopInfo.CurLevelHasLoopAlready = false;
SemaRef.CollapseInfo.CollapseDepthSatisfied = true;
SemaRef.CollapseInfo.CurCollapseCount = 0;
SemaRef.TileInfo.TileDepthSatisfied = true;
// We make sure to take an optional list of uninstantiated clauses, so that
// we can check to make sure we don't 'double diagnose' in the event that
// the value of 'N' was not dependent in a template. Since we cannot count on
// there only being a single collapse clause, we count on the order to make
// sure get the matching ones, and we count on TreeTransform not removing
// these, even if loop-count instantiation failed. We can check the
// non-dependent ones right away, and realize that subsequent instantiation
// can only make it more specific.
auto *UnInstClauseItr =
llvm::find_if(UnInstClauses, llvm::IsaPred<OpenACCCollapseClause>);
auto *ClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCCollapseClause>);
const OpenACCCollapseClause *FoundClause = nullptr;
// Loop through the list of Collapse clauses and find the one that:
// 1- Has a non-dependent, non-null loop count (null means error, likely
// during instantiation).
// 2- If UnInstClauses isn't empty, its corresponding
// loop count was dependent.
// 3- Has the largest 'loop count' of all.
while (ClauseItr != Clauses.end()) {
const OpenACCCollapseClause *CurClause =
cast<OpenACCCollapseClause>(*ClauseItr);
const OpenACCCollapseClause *UnInstCurClause =
UnInstClauseItr == UnInstClauses.end()
? nullptr
: cast<OpenACCCollapseClause>(*UnInstClauseItr);
FoundClause =
getBestCollapseCandidate(FoundClause, CurClause, UnInstCurClause);
UnInstClauseItr =
UnInstClauseItr == UnInstClauses.end()
? UnInstClauseItr
: std::find_if(std::next(UnInstClauseItr), UnInstClauses.end(),
llvm::IsaPred<OpenACCCollapseClause>);
ClauseItr = std::find_if(std::next(ClauseItr), Clauses.end(),
llvm::IsaPred<OpenACCCollapseClause>);
}
if (!FoundClause)
return;
SemaRef.CollapseInfo.ActiveCollapse = FoundClause;
SemaRef.CollapseInfo.CollapseDepthSatisfied = false;
SemaRef.CollapseInfo.CurCollapseCount =
cast<ConstantExpr>(FoundClause->getLoopCount())->getResultAsAPSInt();
SemaRef.CollapseInfo.DirectiveKind = DirKind;
}
void SemaOpenACC::AssociatedStmtRAII::SetTileInfoBeforeAssociatedStmt(
ArrayRef<const OpenACCClause *> UnInstClauses,
ArrayRef<OpenACCClause *> Clauses) {
// We don't diagnose if this is during instantiation, since the only thing we
// care about is the number of arguments, which we can figure out without
// instantiation, so we don't want to double-diagnose.
if (UnInstClauses.size() > 0)
return;
auto *TileClauseItr =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCTileClause>);
if (Clauses.end() == TileClauseItr)
return;
OpenACCTileClause *TileClause = cast<OpenACCTileClause>(*TileClauseItr);
// Multiple tile clauses are allowed, so ensure that we use the one with the
// largest 'tile count'.
while (Clauses.end() !=
(TileClauseItr = std::find_if(std::next(TileClauseItr), Clauses.end(),
llvm::IsaPred<OpenACCTileClause>))) {
OpenACCTileClause *NewClause = cast<OpenACCTileClause>(*TileClauseItr);
if (NewClause->getSizeExprs().size() > TileClause->getSizeExprs().size())
TileClause = NewClause;
}
SemaRef.TileInfo.ActiveTile = TileClause;
SemaRef.TileInfo.TileDepthSatisfied = false;
SemaRef.TileInfo.CurTileCount =
static_cast<unsigned>(TileClause->getSizeExprs().size());
SemaRef.TileInfo.DirectiveKind = DirKind;
}
SemaOpenACC::AssociatedStmtRAII::~AssociatedStmtRAII() {
if (DirKind == OpenACCDirectiveKind::Parallel ||
DirKind == OpenACCDirectiveKind::Serial ||
DirKind == OpenACCDirectiveKind::Kernels ||
DirKind == OpenACCDirectiveKind::Loop ||
DirKind == OpenACCDirectiveKind::ParallelLoop ||
DirKind == OpenACCDirectiveKind::SerialLoop ||
DirKind == OpenACCDirectiveKind::KernelsLoop) {
SemaRef.ActiveComputeConstructInfo = OldActiveComputeConstructInfo;
SemaRef.LoopGangClauseOnKernel = OldLoopGangClauseOnKernel;
SemaRef.LoopWorkerClauseLoc = OldLoopWorkerClauseLoc;
SemaRef.LoopVectorClauseLoc = OldLoopVectorClauseLoc;
SemaRef.LoopWithoutSeqInfo = OldLoopWithoutSeqInfo;
SemaRef.ActiveReductionClauses.swap(ActiveReductionClauses);
} else if (DirKind == OpenACCDirectiveKind::Data ||
DirKind == OpenACCDirectiveKind::HostData) {
// Intentionally doesn't reset the Loop, Compute Construct, or reduction
// effects.
}
}
void SemaOpenACC::ActOnConstruct(OpenACCDirectiveKind K,
SourceLocation DirLoc) {
// Start an evaluation context to parse the clause arguments on.
SemaRef.PushExpressionEvaluationContext(
Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
// There is nothing do do here as all we have at this point is the name of the
// construct itself.
}
ExprResult SemaOpenACC::ActOnIntExpr(OpenACCDirectiveKind DK,
OpenACCClauseKind CK, SourceLocation Loc,
Expr *IntExpr) {
assert(((DK != OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK != OpenACCClauseKind::Invalid) ||
(DK == OpenACCDirectiveKind::Invalid &&
CK == OpenACCClauseKind::Invalid)) &&
"Only one of directive or clause kind should be provided");
class IntExprConverter : public Sema::ICEConvertDiagnoser {
OpenACCDirectiveKind DirectiveKind;
OpenACCClauseKind ClauseKind;
Expr *IntExpr;
// gets the index into the diagnostics so we can use this for clauses,
// directives, and sub array.s
unsigned getDiagKind() const {
if (ClauseKind != OpenACCClauseKind::Invalid)
return 0;
if (DirectiveKind != OpenACCDirectiveKind::Invalid)
return 1;
return 2;
}
public:
IntExprConverter(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
Expr *IntExpr)
: ICEConvertDiagnoser(/*AllowScopedEnumerations=*/false,
/*Suppress=*/false,
/*SuppressConversion=*/true),
DirectiveKind(DK), ClauseKind(CK), IntExpr(IntExpr) {}
bool match(QualType T) override {
// OpenACC spec just calls this 'integer expression' as having an
// 'integer type', so fall back on C99's 'integer type'.
return T->isIntegerType();
}
SemaBase::SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_requires_integer)
<< getDiagKind() << ClauseKind << DirectiveKind << T;
}
SemaBase::SemaDiagnosticBuilder
diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_incomplete_class_type)
<< T << IntExpr->getSourceRange();
}
SemaBase::SemaDiagnosticBuilder
diagnoseExplicitConv(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
return S.Diag(Loc, diag::err_acc_int_expr_explicit_conversion)
<< T << ConvTy;
}
SemaBase::SemaDiagnosticBuilder noteExplicitConv(Sema &S,
CXXConversionDecl *Conv,
QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) override {
return S.Diag(Loc, diag::err_acc_int_expr_multiple_conversions) << T;
}
SemaBase::SemaDiagnosticBuilder
noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
return S.Diag(Conv->getLocation(), diag::note_acc_int_expr_conversion)
<< ConvTy->isEnumeralType() << ConvTy;
}
SemaBase::SemaDiagnosticBuilder
diagnoseConversion(Sema &S, SourceLocation Loc, QualType T,
QualType ConvTy) override {
llvm_unreachable("conversion functions are permitted");
}
} IntExprDiagnoser(DK, CK, IntExpr);
if (!IntExpr)
return ExprError();
ExprResult IntExprResult = SemaRef.PerformContextualImplicitConversion(
Loc, IntExpr, IntExprDiagnoser);
if (IntExprResult.isInvalid())
return ExprError();
IntExpr = IntExprResult.get();
if (!IntExpr->isTypeDependent() && !IntExpr->getType()->isIntegerType())
return ExprError();
// TODO OpenACC: Do we want to perform usual unary conversions here? When
// doing codegen we might find that is necessary, but skip it for now.
return IntExpr;
}
bool SemaOpenACC::CheckVarIsPointerType(OpenACCClauseKind ClauseKind,
Expr *VarExpr) {
// We already know that VarExpr is a proper reference to a variable, so we
// should be able to just take the type of the expression to get the type of
// the referenced variable.
// We've already seen an error, don't diagnose anything else.
if (!VarExpr || VarExpr->containsErrors())
return false;
if (isa<ArraySectionExpr>(VarExpr->IgnoreParenImpCasts()) ||
VarExpr->hasPlaceholderType(BuiltinType::ArraySection)) {
Diag(VarExpr->getExprLoc(), diag::err_array_section_use) << /*OpenACC=*/0;
Diag(VarExpr->getExprLoc(), diag::note_acc_expected_pointer_var);
return true;
}
QualType Ty = VarExpr->getType();
Ty = Ty.getNonReferenceType().getUnqualifiedType();
// Nothing we can do if this is a dependent type.
if (Ty->isDependentType())
return false;
if (!Ty->isPointerType())
return Diag(VarExpr->getExprLoc(), diag::err_acc_var_not_pointer_type)
<< ClauseKind << Ty;
return false;
}
void SemaOpenACC::ActOnStartParseVar(OpenACCDirectiveKind DK,
OpenACCClauseKind CK) {
if (DK == OpenACCDirectiveKind::Cache) {
CacheInfo.ParsingCacheVarList = true;
CacheInfo.IsInvalidCacheRef = false;
}
}
void SemaOpenACC::ActOnInvalidParseVar() {
CacheInfo.ParsingCacheVarList = false;
CacheInfo.IsInvalidCacheRef = false;
}
ExprResult SemaOpenACC::ActOnCacheVar(Expr *VarExpr) {
Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();
// Clear this here, so we can do the returns based on the invalid cache ref
// here. Note all return statements in this function must return ExprError if
// IsInvalidCacheRef. However, instead of doing an 'early return' in that
// case, we can let the rest of the diagnostics happen, as the invalid decl
// ref is a warning.
bool WasParsingInvalidCacheRef =
CacheInfo.ParsingCacheVarList && CacheInfo.IsInvalidCacheRef;
CacheInfo.ParsingCacheVarList = false;
CacheInfo.IsInvalidCacheRef = false;
if (!isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_cache);
return ExprError();
}
// It isn't clear what 'simple array element or simple subarray' means, so we
// will just allow arbitrary depth.
while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
else
CurVarExpr =
cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
}
// References to a VarDecl are fine.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
if (isa<VarDecl, NonTypeTemplateParmDecl>(
DRE->getFoundDecl()->getCanonicalDecl()))
return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr;
}
if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl())) {
return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr;
}
}
// Nothing really we can do here, as these are dependent. So just return they
// are valid.
if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(CurVarExpr))
return WasParsingInvalidCacheRef ? ExprEmpty() : VarExpr;
// There isn't really anything we can do in the case of a recovery expr, so
// skip the diagnostic rather than produce a confusing diagnostic.
if (isa<RecoveryExpr>(CurVarExpr))
return ExprError();
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_cache);
return ExprError();
}
void SemaOpenACC::CheckDeclReference(SourceLocation Loc, Expr *E, Decl *D) {
if (!getLangOpts().OpenACC || !CacheInfo.ParsingCacheVarList || !D ||
D->isInvalidDecl())
return;
// A 'cache' variable reference MUST be declared before the 'acc.loop' we
// generate in codegen, so we have to mark it invalid here in some way. We do
// so in a bit of a convoluted way as there is no good way to put this into
// the AST, so we store it in SemaOpenACC State. We can check the Scope
// during parsing to make sure there is a 'loop' before the decl is
// declared(and skip during instantiation).
// We only diagnose this as a warning, as this isn't required by the standard
// (unless you take a VERY awkward reading of some awkward prose).
Scope *CurScope = SemaRef.getCurScope();
// if we are at TU level, we are either doing some EXTRA wacky, or are in a
// template instantiation, so just give up.
if (CurScope->getDepth() == 0)
return;
while (CurScope) {
// If we run into a loop construct scope, than this is 'correct' in that the
// declaration is outside of the loop.
if (CurScope->isOpenACCLoopConstructScope())
return;
if (CurScope->isDeclScope(D)) {
Diag(Loc, diag::warn_acc_cache_var_not_outside_loop);
CacheInfo.IsInvalidCacheRef = true;
}
CurScope = CurScope->getParent();
}
// If we don't find the decl at all, we assume that it must be outside of the
// loop (or we aren't in a loop!) so skip the diagnostic.
}
ExprResult SemaOpenACC::ActOnVar(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
Expr *VarExpr) {
// This has unique enough restrictions that we should split it to a separate
// function.
if (DK == OpenACCDirectiveKind::Cache)
return ActOnCacheVar(VarExpr);
Expr *CurVarExpr = VarExpr->IgnoreParenImpCasts();
// 'use_device' doesn't allow array subscript or array sections.
// OpenACC3.3 2.8:
// A 'var' in a 'use_device' clause must be the name of a variable or array.
// OpenACC3.3 2.13:
// A 'var' in a 'declare' directive must be a variable or array name.
if ((CK == OpenACCClauseKind::UseDevice ||
DK == OpenACCDirectiveKind::Declare) &&
isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< (DK == OpenACCDirectiveKind::Declare);
return ExprError();
}
// Sub-arrays/subscript-exprs are fine as long as the base is a
// VarExpr/MemberExpr. So strip all of those off.
while (isa<ArraySectionExpr, ArraySubscriptExpr>(CurVarExpr)) {
if (auto *SubScrpt = dyn_cast<ArraySubscriptExpr>(CurVarExpr))
CurVarExpr = SubScrpt->getBase()->IgnoreParenImpCasts();
else
CurVarExpr =
cast<ArraySectionExpr>(CurVarExpr)->getBase()->IgnoreParenImpCasts();
}
// References to a VarDecl are fine.
if (const auto *DRE = dyn_cast<DeclRefExpr>(CurVarExpr)) {
if (isa<VarDecl, NonTypeTemplateParmDecl>(
DRE->getFoundDecl()->getCanonicalDecl()))
return VarExpr;
}
// If CK is a Reduction, this special cases for OpenACC3.3 2.5.15: "A var in a
// reduction clause must be a scalar variable name, an aggregate variable
// name, an array element, or a subarray.
// If CK is a 'use_device', this also isn't valid, as it isn't the name of a
// variable or array, if not done as a member expr.
// A MemberExpr that references a Field is valid for other clauses.
if (const auto *ME = dyn_cast<MemberExpr>(CurVarExpr)) {
if (isa<FieldDecl>(ME->getMemberDecl()->getCanonicalDecl())) {
if (DK == OpenACCDirectiveKind::Declare ||
CK == OpenACCClauseKind::Reduction ||
CK == OpenACCClauseKind::UseDevice) {
// We can allow 'member expr' if the 'this' is implicit in the case of
// declare, reduction, and use_device.
const auto *This = dyn_cast<CXXThisExpr>(ME->getBase());
if (This && This->isImplicit())
return VarExpr;
} else {
return VarExpr;
}
}
}
// Referring to 'this' is ok for the most part, but for 'use_device'/'declare'
// doesn't fall into 'variable or array name'
if (CK != OpenACCClauseKind::UseDevice &&
DK != OpenACCDirectiveKind::Declare && isa<CXXThisExpr>(CurVarExpr))
return VarExpr;
// Nothing really we can do here, as these are dependent. So just return they
// are valid.
if (isa<DependentScopeDeclRefExpr>(CurVarExpr) ||
(CK != OpenACCClauseKind::Reduction &&
isa<CXXDependentScopeMemberExpr>(CurVarExpr)))
return VarExpr;
// There isn't really anything we can do in the case of a recovery expr, so
// skip the diagnostic rather than produce a confusing diagnostic.
if (isa<RecoveryExpr>(CurVarExpr))
return ExprError();
if (DK == OpenACCDirectiveKind::Declare)
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< /*declare*/ 1;
else if (CK == OpenACCClauseKind::UseDevice)
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref_use_device_declare)
<< /*use_device*/ 0;
else
Diag(VarExpr->getExprLoc(), diag::err_acc_not_a_var_ref)
<< (CK != OpenACCClauseKind::Reduction);
return ExprError();
}
ExprResult SemaOpenACC::ActOnArraySectionExpr(Expr *Base, SourceLocation LBLoc,
Expr *LowerBound,
SourceLocation ColonLoc,
Expr *Length,
SourceLocation RBLoc) {
ASTContext &Context = getASTContext();
// Handle placeholders.
if (Base->hasPlaceholderType() &&
!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(LowerBound);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
LowerBound = Result.get();
}
if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
ExprResult Result = SemaRef.CheckPlaceholderExpr(Length);
if (Result.isInvalid())
return ExprError();
Result = SemaRef.DefaultLvalueConversion(Result.get());
if (Result.isInvalid())
return ExprError();
Length = Result.get();
}
// Check the 'base' value, it must be an array or pointer type, and not to/of
// a function type.
QualType OriginalBaseTy = ArraySectionExpr::getBaseOriginalType(Base);
QualType ResultTy;
if (!Base->isTypeDependent()) {
if (OriginalBaseTy->isAnyPointerType()) {
ResultTy = OriginalBaseTy->getPointeeType();
} else if (OriginalBaseTy->isArrayType()) {
ResultTy = OriginalBaseTy->getAsArrayTypeUnsafe()->getElementType();
} else {
return ExprError(
Diag(Base->getExprLoc(), diag::err_acc_typecheck_subarray_value)
<< Base->getSourceRange());
}
if (ResultTy->isFunctionType()) {
Diag(Base->getExprLoc(), diag::err_acc_subarray_function_type)
<< ResultTy << Base->getSourceRange();
return ExprError();
}
if (SemaRef.RequireCompleteType(Base->getExprLoc(), ResultTy,
diag::err_acc_subarray_incomplete_type,
Base))
return ExprError();
if (!Base->hasPlaceholderType(BuiltinType::ArraySection)) {
ExprResult Result = SemaRef.DefaultFunctionArrayLvalueConversion(Base);
if (Result.isInvalid())
return ExprError();
Base = Result.get();
}
}
auto GetRecovery = [&](Expr *E, QualType Ty) {
ExprResult Recovery =
SemaRef.CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), E, Ty);
return Recovery.isUsable() ? Recovery.get() : nullptr;
};
// Ensure both of the expressions are int-exprs.
if (LowerBound && !LowerBound->isTypeDependent()) {
ExprResult LBRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
LowerBound->getExprLoc(), LowerBound);
if (LBRes.isUsable())
LBRes = SemaRef.DefaultLvalueConversion(LBRes.get());
LowerBound =
LBRes.isUsable() ? LBRes.get() : GetRecovery(LowerBound, Context.IntTy);
}
if (Length && !Length->isTypeDependent()) {
ExprResult LenRes =
ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Invalid,
Length->getExprLoc(), Length);
if (LenRes.isUsable())
LenRes = SemaRef.DefaultLvalueConversion(LenRes.get());
Length =
LenRes.isUsable() ? LenRes.get() : GetRecovery(Length, Context.IntTy);
}
// Length is required if the base type is not an array of known bounds.
if (!Length && (OriginalBaseTy.isNull() ||
(!OriginalBaseTy->isDependentType() &&
!OriginalBaseTy->isConstantArrayType() &&
!OriginalBaseTy->isDependentSizedArrayType()))) {
bool IsArray = !OriginalBaseTy.isNull() && OriginalBaseTy->isArrayType();
SourceLocation DiagLoc = ColonLoc.isInvalid() ? LBLoc : ColonLoc;
Diag(DiagLoc, diag::err_acc_subarray_no_length) << IsArray;
// Fill in a dummy 'length' so that when we instantiate this we don't
// double-diagnose here.
ExprResult Recovery = SemaRef.CreateRecoveryExpr(
DiagLoc, SourceLocation(), ArrayRef<Expr *>(), Context.IntTy);
Length = Recovery.isUsable() ? Recovery.get() : nullptr;
}
// Check the values of each of the arguments, they cannot be negative(we
// assume), and if the array bound is known, must be within range. As we do
// so, do our best to continue with evaluation, we can set the
// value/expression to nullptr/nullopt if they are invalid, and treat them as
// not present for the rest of evaluation.
// We don't have to check for dependence, because the dependent size is
// represented as a different AST node.
std::optional<llvm::APSInt> BaseSize;
if (!OriginalBaseTy.isNull() && OriginalBaseTy->isConstantArrayType()) {
const auto *ArrayTy = Context.getAsConstantArrayType(OriginalBaseTy);
BaseSize = ArrayTy->getSize();
}
auto GetBoundValue = [&](Expr *E) -> std::optional<llvm::APSInt> {
if (!E || E->isInstantiationDependent())
return std::nullopt;
Expr::EvalResult Res;
if (!E->EvaluateAsInt(Res, Context))
return std::nullopt;
return Res.Val.getInt();
};
std::optional<llvm::APSInt> LowerBoundValue = GetBoundValue(LowerBound);
std::optional<llvm::APSInt> LengthValue = GetBoundValue(Length);
// Check lower bound for negative or out of range.
if (LowerBoundValue.has_value()) {
if (LowerBoundValue->isNegative()) {
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_negative)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LowerBoundValue, *BaseSize) >= 0) {
// Lower bound (start index) must be less than the size of the array.
Diag(LowerBound->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*LowerBound=*/0 << toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
}
}
// Check length for negative or out of range.
if (LengthValue.has_value()) {
if (LengthValue->isNegative()) {
Diag(Length->getExprLoc(), diag::err_acc_subarray_negative)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
} else if (BaseSize.has_value() &&
llvm::APSInt::compareValues(*LengthValue, *BaseSize) > 0) {
// Length must be lessthan or EQUAL to the size of the array.
Diag(Length->getExprLoc(), diag::err_acc_subarray_out_of_range)
<< /*Length=*/1 << toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
}
// Adding two APSInts requires matching sign, so extract that here.
auto AddAPSInt = [](llvm::APSInt LHS, llvm::APSInt RHS) -> llvm::APSInt {
if (LHS.isSigned() == RHS.isSigned())
return LHS + RHS;
unsigned Width = std::max(LHS.getBitWidth(), RHS.getBitWidth()) + 1;
return llvm::APSInt(LHS.sext(Width) + RHS.sext(Width), /*Signed=*/true);
};
// If we know all 3 values, we can diagnose that the total value would be out
// of range.
if (BaseSize.has_value() && LowerBoundValue.has_value() &&
LengthValue.has_value() &&
llvm::APSInt::compareValues(AddAPSInt(*LowerBoundValue, *LengthValue),
*BaseSize) > 0) {
Diag(Base->getExprLoc(),
diag::err_acc_subarray_base_plus_length_out_of_range)
<< toString(*LowerBoundValue, /*Radix=*/10)
<< toString(*LengthValue, /*Radix=*/10)
<< toString(*BaseSize, /*Radix=*/10);
LowerBoundValue.reset();
LowerBound = GetRecovery(LowerBound, LowerBound->getType());
LengthValue.reset();
Length = GetRecovery(Length, Length->getType());
}
// If any part of the expression is dependent, return a dependent sub-array.
QualType ArrayExprTy = Context.ArraySectionTy;
if (Base->isTypeDependent() ||
(LowerBound && LowerBound->isInstantiationDependent()) ||
(Length && Length->isInstantiationDependent()))
ArrayExprTy = Context.DependentTy;
return new (Context)
ArraySectionExpr(Base, LowerBound, Length, ArrayExprTy, VK_LValue,
OK_Ordinary, ColonLoc, RBLoc);
}
void SemaOpenACC::ActOnWhileStmt(SourceLocation WhileLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(WhileLoc, diag::err_acc_invalid_in_loop)
<< /*while loop*/ 1 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ActOnDoStmt(SourceLocation DoLoc) {
if (!getLangOpts().OpenACC)
return;
if (!LoopInfo.TopLevelLoopSeen)
return;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
CollapseInfo.CurCollapseCount = std::nullopt;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(DoLoc, diag::err_acc_invalid_in_loop)
<< /*do loop*/ 2 << TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
// Remove the value so that we don't get cascading errors in the body. The
// caller RAII object will restore this.
TileInfo.CurTileCount = std::nullopt;
}
}
void SemaOpenACC::ForStmtBeginHelper(SourceLocation ForLoc,
ForStmtBeginChecker &C) {
assert(getLangOpts().OpenACC && "Check enabled when not OpenACC?");
// Enable the while/do-while checking.
LoopInfo.TopLevelLoopSeen = true;
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
// Check the format of this loop if it is affected by the collapse.
C.check();
// OpenACC 3.3 2.9.1:
// Each associated loop, except the innermost, must contain exactly one loop
// or loop nest.
// This checks for more than 1 loop at the current level, the
// 'depth'-satisifed checking manages the 'not zero' case.
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< CollapseInfo.DirectiveKind << OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "No collapse object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
} else {
--(*CollapseInfo.CurCollapseCount);
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*CollapseInfo.CurCollapseCount == 0)
CollapseInfo.CollapseDepthSatisfied = true;
}
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
// Check the format of this loop if it is affected by the tile.
C.check();
if (LoopInfo.CurLevelHasLoopAlready) {
Diag(ForLoc, diag::err_acc_clause_multiple_loops)
<< TileInfo.DirectiveKind << OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "No tile object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
} else {
TileInfo.CurTileCount = *TileInfo.CurTileCount - 1;
// Once we've hit zero here, we know we have deep enough 'for' loops to
// get to the bottom.
if (*TileInfo.CurTileCount == 0)
TileInfo.TileDepthSatisfied = true;
}
}
// Set this to 'false' for the body of this loop, so that the next level
// checks independently.
LoopInfo.CurLevelHasLoopAlready = false;
}
namespace {
bool isValidLoopVariableType(QualType LoopVarTy) {
// Just skip if it is dependent, it could be any of the below.
if (LoopVarTy->isDependentType())
return true;
// The loop variable must be of integer,
if (LoopVarTy->isIntegerType())
return true;
// C/C++ pointer,
if (LoopVarTy->isPointerType())
return true;
// or C++ random-access iterator type.
if (const auto *RD = LoopVarTy->getAsCXXRecordDecl()) {
// Note: Only do CXXRecordDecl because RecordDecl can't be a random access
// iterator type!
// We could either do a lot of work to see if this matches
// random-access-iterator, but it seems that just checking that the
// 'iterator_category' typedef is more than sufficient. If programmers are
// willing to lie about this, we can let them.
for (const auto *TD :
llvm::make_filter_range(RD->decls(), llvm::IsaPred<TypedefNameDecl>)) {
const auto *TDND = cast<TypedefNameDecl>(TD)->getCanonicalDecl();
if (TDND->getName() != "iterator_category")
continue;
// If there is no type for this decl, return false.
if (TDND->getUnderlyingType().isNull())
return false;
const CXXRecordDecl *ItrCategoryDecl =
TDND->getUnderlyingType()->getAsCXXRecordDecl();
// If the category isn't a record decl, it isn't the tag type.
if (!ItrCategoryDecl)
return false;
auto IsRandomAccessIteratorTag = [](const CXXRecordDecl *RD) {
if (RD->getName() != "random_access_iterator_tag")
return false;
// Checks just for std::random_access_iterator_tag.
return RD->getEnclosingNamespaceContext()->isStdNamespace();
};
if (IsRandomAccessIteratorTag(ItrCategoryDecl))
return true;
// We can also support tag-types inherited from the
// random_access_iterator_tag.
for (CXXBaseSpecifier BS : ItrCategoryDecl->bases())
if (IsRandomAccessIteratorTag(BS.getType()->getAsCXXRecordDecl()))
return true;
return false;
}
}
return false;
}
const ValueDecl *getDeclFromExpr(const Expr *E) {
E = E->IgnoreParenImpCasts();
if (const auto *FE = dyn_cast<FullExpr>(E))
E = FE->getSubExpr();
E = E->IgnoreParenImpCasts();
if (!E)
return nullptr;
if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
return dyn_cast<ValueDecl>(DRE->getDecl());
if (const auto *ME = dyn_cast<MemberExpr>(E))
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
return ME->getMemberDecl();
return nullptr;
}
} // namespace
void SemaOpenACC::ForStmtBeginChecker::checkRangeFor() {
const RangeForInfo &RFI = std::get<RangeForInfo>(Info);
// If this hasn't changed since last instantiated we're done.
if (RFI.Uninstantiated == RFI.CurrentVersion)
return;
const DeclStmt *UninstRangeStmt =
IsInstantiation ? RFI.Uninstantiated->getBeginStmt() : nullptr;
const DeclStmt *RangeStmt = RFI.CurrentVersion->getBeginStmt();
// If this isn't the first time we've checked this loop, suppress any cases
// where we previously diagnosed.
if (UninstRangeStmt) {
const ValueDecl *InitVar =
cast<ValueDecl>(UninstRangeStmt->getSingleDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
if (!isValidLoopVariableType(VarType))
return;
}
// In some dependent contexts, the autogenerated range statement doesn't get
// included until instantiation, so skip for now.
if (RangeStmt) {
const ValueDecl *InitVar = cast<ValueDecl>(RangeStmt->getSingleDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
if (!isValidLoopVariableType(VarType)) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
return;
}
}
}
bool SemaOpenACC::ForStmtBeginChecker::checkForInit(const Stmt *InitStmt,
const ValueDecl *&InitVar,
bool Diag) {
// Init statement is required.
if (!InitStmt) {
if (Diag) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
}
auto DiagLoopVar = [this, Diag, InitStmt]() {
if (Diag) {
SemaRef.Diag(InitStmt->getBeginLoc(), diag::err_acc_loop_variable)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(InitStmt))
InitStmt = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(InitStmt))
InitStmt = E->IgnoreParenImpCasts();
InitVar = nullptr;
if (const auto *BO = dyn_cast<BinaryOperator>(InitStmt)) {
// Allow assignment operator here.
if (!BO->isAssignmentOp())
return DiagLoopVar();
const Expr *LHS = BO->getLHS()->IgnoreParenImpCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS))
InitVar = DRE->getDecl();
} else if (const auto *DS = dyn_cast<DeclStmt>(InitStmt)) {
// Allow T t = <whatever>
if (!DS->isSingleDecl())
return DiagLoopVar();
InitVar = dyn_cast<ValueDecl>(DS->getSingleDecl());
// Ensure we have an initializer, unless this is a record/dependent type.
if (InitVar) {
if (!isa<VarDecl>(InitVar))
return DiagLoopVar();
if (!InitVar->getType()->isRecordType() &&
!InitVar->getType()->isDependentType() &&
!cast<VarDecl>(InitVar)->hasInit())
return DiagLoopVar();
}
} else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(InitStmt)) {
// Allow assignment operator call.
if (CE->getOperator() != OO_Equal)
return DiagLoopVar();
const Expr *LHS = CE->getArg(0)->IgnoreParenImpCasts();
if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
InitVar = DRE->getDecl();
} else if (auto *ME = dyn_cast<MemberExpr>(LHS)) {
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()))
InitVar = ME->getMemberDecl();
}
}
// If after all of that, we haven't found a variable, give up.
if (!InitVar)
return DiagLoopVar();
InitVar = cast<ValueDecl>(InitVar->getCanonicalDecl());
QualType VarType = InitVar->getType().getNonReferenceType();
// Since we have one, all we need to do is ensure it is the right type.
if (!isValidLoopVariableType(VarType)) {
if (Diag) {
SemaRef.Diag(InitVar->getBeginLoc(), diag::err_acc_loop_variable_type)
<< SemaRef.LoopWithoutSeqInfo.Kind << VarType;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
}
return false;
}
bool SemaOpenACC::ForStmtBeginChecker::checkForCond(const Stmt *CondStmt,
const ValueDecl *InitVar,
bool Diag) {
// A condition statement is required.
if (!CondStmt) {
if (Diag) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_terminating_condition)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
}
auto DiagCondVar = [this, Diag, CondStmt] {
if (Diag) {
SemaRef.Diag(CondStmt->getBeginLoc(),
diag::err_acc_loop_terminating_condition)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(CondStmt))
CondStmt = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(CondStmt))
CondStmt = E->IgnoreParenImpCasts();
const ValueDecl *CondVar = nullptr;
if (const auto *BO = dyn_cast<BinaryOperator>(CondStmt)) {
switch (BO->getOpcode()) {
default:
return DiagCondVar();
case BO_EQ:
case BO_LT:
case BO_GT:
case BO_NE:
case BO_LE:
case BO_GE:
break;
}
// Assign the condition-var to the LHS. If it either comes back null, or
// the LHS doesn't match the InitVar, assign it to the RHS so that 5 < N is
// allowed.
CondVar = getDeclFromExpr(BO->getLHS());
if (!CondVar ||
(InitVar && CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl()))
CondVar = getDeclFromExpr(BO->getRHS());
} else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(CondStmt)) {
// Any of the comparison ops should be ok here, but we don't know how to
// handle spaceship, so disallow for now.
if (!CE->isComparisonOp() || CE->getOperator() == OO_Spaceship)
return DiagCondVar();
// Same logic here: Assign it to the LHS, unless the LHS comes back null or
// not equal to the init var.
CondVar = getDeclFromExpr(CE->getArg(0));
if (!CondVar ||
(InitVar &&
CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl() &&
CE->getNumArgs() > 1))
CondVar = getDeclFromExpr(CE->getArg(1));
} else {
return DiagCondVar();
}
if (!CondVar)
return DiagCondVar();
// Don't consider this an error unless the init variable was properly set,
// else check to make sure they are the same variable.
if (InitVar && CondVar->getCanonicalDecl() != InitVar->getCanonicalDecl())
return DiagCondVar();
return false;
}
namespace {
// Helper to check the RHS of an assignment during for's step. We can allow
// InitVar = InitVar + N, InitVar = N + InitVar, and Initvar = Initvar - N,
// where N is an integer.
bool isValidForIncRHSAssign(const ValueDecl *InitVar, const Expr *RHS) {
auto isValid = [](const ValueDecl *InitVar, const Expr *InnerLHS,
const Expr *InnerRHS, bool IsAddition) {
// ONE of the sides has to be an integer type.
if (!InnerLHS->getType()->isIntegerType() &&
!InnerRHS->getType()->isIntegerType())
return false;
// If the init var is already an error, don't bother trying to check for
// it.
if (!InitVar)
return true;
const ValueDecl *LHSDecl = getDeclFromExpr(InnerLHS);
const ValueDecl *RHSDecl = getDeclFromExpr(InnerRHS);
// If we can't get a declaration, this is probably an error, so give up.
if (!LHSDecl || !RHSDecl)
return true;
// If the LHS is the InitVar, the other must be int, so this is valid.
if (LHSDecl->getCanonicalDecl() ==
InitVar->getCanonicalDecl())
return true;
// Subtraction doesn't allow the RHS to be init var, so this is invalid.
if (!IsAddition)
return false;
return RHSDecl->getCanonicalDecl() ==
InitVar->getCanonicalDecl();
};
if (const auto *BO = dyn_cast<BinaryOperator>(RHS)) {
BinaryOperatorKind OpC = BO->getOpcode();
if (OpC != BO_Add && OpC != BO_Sub)
return false;
return isValid(InitVar, BO->getLHS(), BO->getRHS(), OpC == BO_Add);
} else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(RHS)) {
OverloadedOperatorKind Op = CE->getOperator();
if (Op != OO_Plus && Op != OO_Minus)
return false;
return isValid(InitVar, CE->getArg(0), CE->getArg(1), Op == OO_Plus);
}
return false;
}
} // namespace
bool SemaOpenACC::ForStmtBeginChecker::checkForInc(const Stmt *IncStmt,
const ValueDecl *InitVar,
bool Diag) {
if (!IncStmt) {
if (Diag) {
SemaRef.Diag(ForLoc, diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
}
auto DiagIncVar = [this, Diag, IncStmt] {
if (Diag) {
SemaRef.Diag(IncStmt->getBeginLoc(), diag::err_acc_loop_not_monotonic)
<< SemaRef.LoopWithoutSeqInfo.Kind;
SemaRef.Diag(SemaRef.LoopWithoutSeqInfo.Loc,
diag::note_acc_construct_here)
<< SemaRef.LoopWithoutSeqInfo.Kind;
}
return true;
};
if (const auto *ExprTemp = dyn_cast<ExprWithCleanups>(IncStmt))
IncStmt = ExprTemp->getSubExpr();
if (const auto *E = dyn_cast<Expr>(IncStmt))
IncStmt = E->IgnoreParenImpCasts();
const ValueDecl *IncVar = nullptr;
// Here we enforce the monotonically increase/decrease:
if (const auto *UO = dyn_cast<UnaryOperator>(IncStmt)) {
// Allow increment/decrement ops.
if (!UO->isIncrementDecrementOp())
return DiagIncVar();
IncVar = getDeclFromExpr(UO->getSubExpr());
} else if (const auto *BO = dyn_cast<BinaryOperator>(IncStmt)) {
switch (BO->getOpcode()) {
default:
return DiagIncVar();
case BO_AddAssign:
case BO_SubAssign:
break;
case BO_Assign:
// For assignment we also allow InitVar = InitVar + N, InitVar = N +
// InitVar, and InitVar = InitVar - N; BUT only if 'N' is integral.
if (!isValidForIncRHSAssign(InitVar, BO->getRHS()))
return DiagIncVar();
break;
}
IncVar = getDeclFromExpr(BO->getLHS());
} else if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(IncStmt)) {
switch (CE->getOperator()) {
default:
return DiagIncVar();
case OO_PlusPlus:
case OO_MinusMinus:
case OO_PlusEqual:
case OO_MinusEqual:
break;
case OO_Equal:
// For assignment we also allow InitVar = InitVar + N, InitVar = N +
// InitVar, and InitVar = InitVar - N; BUT only if 'N' is integral.
if (!isValidForIncRHSAssign(InitVar, CE->getArg(1)))
return DiagIncVar();
break;
}
IncVar = getDeclFromExpr(CE->getArg(0));
} else {
return DiagIncVar();
}
if (!IncVar)
return DiagIncVar();
// InitVar shouldn't be null unless there was an error, so don't diagnose if
// that is the case. Else we should ensure that it refers to the loop
// value.
if (InitVar && IncVar->getCanonicalDecl() != InitVar->getCanonicalDecl())
return DiagIncVar();
return false;
}
void SemaOpenACC::ForStmtBeginChecker::checkFor() {
const CheckForInfo &CFI = std::get<CheckForInfo>(Info);
if (!IsInstantiation) {
// If this isn't an instantiation, we can just check all of these and
// diagnose.
const ValueDecl *CurInitVar = nullptr;
checkForInit(CFI.Current.Init, CurInitVar, /*Diag=*/true);
checkForCond(CFI.Current.Condition, CurInitVar, /*Diag=*/true);
checkForInc(CFI.Current.Increment, CurInitVar, /*DIag=*/true);
} else {
const ValueDecl *UninstInitVar = nullptr;
// Checking the 'init' section first. We have to always run both versions,
// at minimum with the 'diag' off, so that we can ensure we get the correct
// instantiation var for checking by later ones.
bool UninstInitFailed =
checkForInit(CFI.Uninst.Init, UninstInitVar, /*Diag=*/false);
// VarDecls are always rebuild because they are dependent, so we can do a
// little work to suppress some of the double checking based on whether the
// type is instantiation dependent. This is imperfect, but will get us most
// cases suppressed. Currently this only handles the 'T t =' case.
auto InitChanged = [=]() {
if (CFI.Uninst.Init == CFI.Current.Init)
return false;
QualType OldVDTy;
QualType NewVDTy;
if (const auto *DS = dyn_cast<DeclStmt>(CFI.Uninst.Init))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
OldVDTy = VD->getType();
if (const auto *DS = dyn_cast<DeclStmt>(CFI.Current.Init))
if (const VarDecl *VD = dyn_cast_if_present<VarDecl>(
DS->isSingleDecl() ? DS->getSingleDecl() : nullptr))
NewVDTy = VD->getType();
if (OldVDTy.isNull() || NewVDTy.isNull())
return true;
return OldVDTy->isInstantiationDependentType() !=
NewVDTy->isInstantiationDependentType();
};
// Only diagnose the new 'init' if the previous version didn't fail, AND the
// current init changed meaningfully.
bool ShouldDiagNewInit = !UninstInitFailed && InitChanged();
const ValueDecl *CurInitVar = nullptr;
checkForInit(CFI.Current.Init, CurInitVar, /*Diag=*/ShouldDiagNewInit);
// Check the condition and increment only if the previous version passed,
// and this changed.
if (CFI.Uninst.Condition != CFI.Current.Condition &&
!checkForCond(CFI.Uninst.Condition, UninstInitVar, /*Diag=*/false))
checkForCond(CFI.Current.Condition, CurInitVar, /*Diag=*/true);
if (CFI.Uninst.Increment != CFI.Current.Increment &&
!checkForInc(CFI.Uninst.Increment, UninstInitVar, /*Diag=*/false))
checkForInc(CFI.Current.Increment, CurInitVar, /*Diag=*/true);
}
}
void SemaOpenACC::ForStmtBeginChecker::check() {
// If this isn't an active loop without a seq, immediately return, nothing to
// check.
if (SemaRef.LoopWithoutSeqInfo.Kind == OpenACCDirectiveKind::Invalid)
return;
// If we've already checked, because this is a 'top level' one (and asking
// again because 'tile' and 'collapse' might apply), just return, nothing to
// do here.
if (AlreadyChecked)
return;
AlreadyChecked = true;
// OpenACC3.3 2.1:
// A loop associated with a loop construct that does not have a seq clause
// must be written to meet all the following conditions:
// - The loop variable must be of integer, C/C++ pointer, or C++ random-access
// iterator type.
// - The loop variable must monotonically increase or decrease in the
// direction of its termination condition.
// - The loop trip count must be computable in constant time when entering the
// loop construct.
//
// For a C++ range-based for loop, the loop variable
// identified by the above conditions is the internal iterator, such as a
// pointer, that the compiler generates to iterate the range. it is not the
// variable declared by the for loop.
if (std::holds_alternative<RangeForInfo>(Info))
return checkRangeFor();
return checkFor();
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *OldFirst,
const Stmt *First, const Stmt *OldSecond,
const Stmt *Second, const Stmt *OldThird,
const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, OldFirst, OldSecond,
OldThird, First, Second, Third};
// Check if this is the top-level 'for' for a 'loop'. Else it will be checked
// as a part of the helper if a tile/collapse applies.
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnForStmtBegin(SourceLocation ForLoc, const Stmt *First,
const Stmt *Second, const Stmt *Third) {
if (!getLangOpts().OpenACC)
return;
ForStmtBeginChecker FSBC{*this, ForLoc, First, Second, Third};
// Check if this is the top-level 'for' for a 'loop'. Else it will be checked
// as a part of the helper if a tile/collapse applies.
if (!LoopInfo.TopLevelLoopSeen)
FSBC.check();
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *OldRangeFor,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC || OldRangeFor == nullptr || RangeFor == nullptr)
return;
ForStmtBeginChecker FSBC{*this, ForLoc,
cast_if_present<CXXForRangeStmt>(OldRangeFor),
cast_if_present<CXXForRangeStmt>(RangeFor)};
// Check if this is the top-level 'for' for a 'loop'. Else it will be checked
// as a part of the helper if a tile/collapse applies.
if (!LoopInfo.TopLevelLoopSeen) {
FSBC.check();
}
ForStmtBeginHelper(ForLoc, FSBC);
}
void SemaOpenACC::ActOnRangeForStmtBegin(SourceLocation ForLoc,
const Stmt *RangeFor) {
if (!getLangOpts().OpenACC || RangeFor == nullptr)
return;
ForStmtBeginChecker FSBC = {*this, ForLoc,
cast_if_present<CXXForRangeStmt>(RangeFor)};
// Check if this is the top-level 'for' for a 'loop'. Else it will be checked
// as a part of the helper if a tile/collapse applies.
if (!LoopInfo.TopLevelLoopSeen)
FSBC.check();
ForStmtBeginHelper(ForLoc, FSBC);
}
namespace {
SourceLocation FindInterveningCodeInLoop(const Stmt *CurStmt) {
// We should diagnose on anything except `CompoundStmt`, `NullStmt`,
// `ForStmt`, `CXXForRangeStmt`, since those are legal, and `WhileStmt` and
// `DoStmt`, as those are caught as a violation elsewhere.
// For `CompoundStmt` we need to search inside of it.
if (!CurStmt ||
isa<ForStmt, NullStmt, ForStmt, CXXForRangeStmt, WhileStmt, DoStmt>(
CurStmt))
return SourceLocation{};
// Any other construct is an error anyway, so it has already been diagnosed.
if (isa<OpenACCConstructStmt>(CurStmt))
return SourceLocation{};
// Search inside the compound statement, this allows for arbitrary nesting
// of compound statements, as long as there isn't any code inside.
if (const auto *CS = dyn_cast<CompoundStmt>(CurStmt)) {
for (const auto *ChildStmt : CS->children()) {
SourceLocation ChildStmtLoc = FindInterveningCodeInLoop(ChildStmt);
if (ChildStmtLoc.isValid())
return ChildStmtLoc;
}
// Empty/not invalid compound statements are legal.
return SourceLocation{};
}
return CurStmt->getBeginLoc();
}
} // namespace
void SemaOpenACC::ActOnForStmtEnd(SourceLocation ForLoc, StmtResult Body) {
if (!getLangOpts().OpenACC)
return;
// Set this to 'true' so if we find another one at this level we can diagnose.
LoopInfo.CurLevelHasLoopAlready = true;
if (!Body.isUsable())
return;
bool IsActiveCollapse = CollapseInfo.CurCollapseCount &&
*CollapseInfo.CurCollapseCount > 0 &&
!CollapseInfo.ActiveCollapse->hasForce();
bool IsActiveTile = TileInfo.CurTileCount && *TileInfo.CurTileCount > 0;
if (IsActiveCollapse || IsActiveTile) {
SourceLocation OtherStmtLoc = FindInterveningCodeInLoop(Body.get());
if (OtherStmtLoc.isValid() && IsActiveCollapse) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Collapse << CollapseInfo.DirectiveKind;
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (OtherStmtLoc.isValid() && IsActiveTile) {
Diag(OtherStmtLoc, diag::err_acc_intervening_code)
<< OpenACCClauseKind::Tile << TileInfo.DirectiveKind;
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
}
}
namespace {
// Helper that should mirror ActOnRoutineName to get the FunctionDecl out for
// magic-static checking.
FunctionDecl *getFunctionFromRoutineName(Expr *RoutineName) {
if (!RoutineName)
return nullptr;
RoutineName = RoutineName->IgnoreParenImpCasts();
if (isa<RecoveryExpr>(RoutineName)) {
// There is nothing we can do here, this isn't a function we can count on.
return nullptr;
} else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(
RoutineName)) {
// The lookup is dependent, so we'll have to figure this out later.
return nullptr;
} else if (auto *DRE = dyn_cast<DeclRefExpr>(RoutineName)) {
ValueDecl *VD = DRE->getDecl();
if (auto *FD = dyn_cast<FunctionDecl>(VD))
return FD;
// Allow lambdas.
if (auto *VarD = dyn_cast<VarDecl>(VD)) {
QualType VarDTy = VarD->getType();
if (!VarDTy.isNull()) {
if (auto *RD = VarDTy->getAsCXXRecordDecl()) {
if (RD->isGenericLambda())
return nullptr;
if (RD->isLambda())
return RD->getLambdaCallOperator();
} else if (VarDTy->isDependentType()) {
// We don't really know what this is going to be.
return nullptr;
}
}
return nullptr;
} else if (isa<OverloadExpr>(RoutineName)) {
return nullptr;
}
}
return nullptr;
}
} // namespace
ExprResult SemaOpenACC::ActOnRoutineName(Expr *RoutineName) {
assert(RoutineName && "Routine name cannot be null here");
RoutineName = RoutineName->IgnoreParenImpCasts();
if (isa<RecoveryExpr>(RoutineName)) {
// This has already been diagnosed, so we can skip it.
return ExprError();
} else if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(
RoutineName)) {
// These are dependent and we can't really check them, so delay until
// instantiation.
return RoutineName;
} else if (const auto *DRE = dyn_cast<DeclRefExpr>(RoutineName)) {
const ValueDecl *VD = DRE->getDecl();
if (isa<FunctionDecl>(VD))
return RoutineName;
// Allow lambdas.
if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
QualType VarDTy = VarD->getType();
if (!VarDTy.isNull()) {
if (const auto *RD = VarDTy->getAsCXXRecordDecl()) {
if (RD->isGenericLambda()) {
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_overload_set)
<< RoutineName;
return ExprError();
}
if (RD->isLambda())
return RoutineName;
} else if (VarDTy->isDependentType()) {
// If this is a dependent variable, it might be a lambda. So we just
// accept this and catch it next time.
return RoutineName;
}
}
}
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_not_func)
<< RoutineName;
return ExprError();
} else if (isa<OverloadExpr>(RoutineName)) {
// This happens in function templates, even when the template arguments are
// fully specified. We could possibly do some sort of matching to make sure
// that this is looked up/deduced, but GCC does not do this, so there
// doesn't seem to be a good reason for us to do it either.
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_overload_set)
<< RoutineName;
return ExprError();
}
Diag(RoutineName->getBeginLoc(), diag::err_acc_routine_not_func)
<< RoutineName;
return ExprError();
}
void SemaOpenACC::ActOnVariableDeclarator(VarDecl *VD) {
if (!getLangOpts().OpenACC || VD->isInvalidDecl() || !VD->isStaticLocal())
return;
// This cast should be safe, since a static-local can only happen in a
// function declaration.
auto *ContextDecl = cast<FunctionDecl>(getCurContext());
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
for (const auto *A : ContextDecl->attrs()) {
if (isa<OpenACCRoutineDeclAttr, OpenACCRoutineAnnotAttr>(A)) {
Diag(VD->getBeginLoc(), diag::err_acc_magic_static_in_routine);
Diag(A->getLocation(), diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return;
}
}
MagicStaticLocs.insert({ContextDecl->getCanonicalDecl(), VD->getBeginLoc()});
}
void SemaOpenACC::CheckLastRoutineDeclNameConflict(const NamedDecl *ND) {
// OpenACC 3.3 A.3.4
// When a procedure with that name is in scope and it is not the same
// procedure as the immediately following procedure declaration or
// definition, the resolution of the name can be confusing. Implementations
// should then issue a compile-time warning diagnostic even though the
// application is conforming.
// If we haven't created one, also can't diagnose.
if (!LastRoutineDecl)
return;
// If the currently created function doesn't have a name, we can't diagnose on
// a match.
if (!ND->getDeclName().isIdentifier())
return;
// If the two are in different decl contexts, it doesn't make sense to
// diagnose.
if (LastRoutineDecl->getDeclContext() != ND->getLexicalDeclContext())
return;
// If we don't have a referenced thing yet, we can't diagnose.
FunctionDecl *RoutineTarget =
getFunctionFromRoutineName(LastRoutineDecl->getFunctionReference());
if (!RoutineTarget)
return;
// If the Routine target doesn't have a name, we can't diagnose.
if (!RoutineTarget->getDeclName().isIdentifier())
return;
// Of course don't diagnose if the names don't match.
if (ND->getName() != RoutineTarget->getName())
return;
long NDLine = SemaRef.SourceMgr.getSpellingLineNumber(ND->getBeginLoc());
long LastLine =
SemaRef.SourceMgr.getSpellingLineNumber(LastRoutineDecl->getBeginLoc());
// Do some line-number math to make sure they are within a line of eachother.
// Comments or newlines can be inserted to clarify intent.
if (NDLine - LastLine > 1)
return;
// Don't warn if it actually DOES apply to this function via redecls.
if (ND->getCanonicalDecl() == RoutineTarget->getCanonicalDecl())
return;
Diag(LastRoutineDecl->getFunctionReference()->getBeginLoc(),
diag::warn_acc_confusing_routine_name);
Diag(RoutineTarget->getBeginLoc(), diag::note_previous_decl) << ND;
}
void SemaOpenACC::ActOnVariableInit(VarDecl *VD, QualType InitType) {
if (!VD || !getLangOpts().OpenACC || InitType.isNull())
return;
// To avoid double-diagnostic, just diagnose this during instantiation. We'll
// get 1 warning per instantiation, but this permits us to be more sensible
// for cases where the lookup is confusing.
if (VD->getLexicalDeclContext()->isDependentContext())
return;
const auto *RD = InitType->getAsCXXRecordDecl();
// If this isn't a lambda, no sense in diagnosing.
if (!RD || !RD->isLambda())
return;
CheckLastRoutineDeclNameConflict(VD);
}
void SemaOpenACC::ActOnFunctionDeclarator(FunctionDecl *FD) {
if (!FD || !getLangOpts().OpenACC)
return;
CheckLastRoutineDeclNameConflict(FD);
}
bool SemaOpenACC::ActOnStartStmtDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc,
ArrayRef<const OpenACCClause *> Clauses) {
// Declaration directives an appear in a statement location, so call into that
// function here.
if (K == OpenACCDirectiveKind::Declare || K == OpenACCDirectiveKind::Routine)
return ActOnStartDeclDirective(K, StartLoc, Clauses);
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
// OpenACC 3.3 2.9.1:
// Intervening code must not contain other OpenACC directives or calls to API
// routines.
//
// ALL constructs are ill-formed if there is an active 'collapse'
if (CollapseInfo.CurCollapseCount && *CollapseInfo.CurCollapseCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << CollapseInfo.DirectiveKind
<< OpenACCClauseKind::Collapse << K;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (TileInfo.CurTileCount && *TileInfo.CurTileCount > 0) {
Diag(StartLoc, diag::err_acc_invalid_in_loop)
<< /*OpenACC Construct*/ 0 << TileInfo.DirectiveKind
<< OpenACCClauseKind::Tile << K;
assert(TileInfo.ActiveTile && "Tile count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(), diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
if (DiagnoseRequiredClauses(K, StartLoc, Clauses))
return true;
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/true);
}
StmtResult SemaOpenACC::ActOnEndStmtDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc,
SourceLocation LParenLoc, SourceLocation MiscLoc, ArrayRef<Expr *> Exprs,
OpenACCAtomicKind AtomicKind, SourceLocation RParenLoc,
SourceLocation EndLoc, ArrayRef<OpenACCClause *> Clauses,
StmtResult AssocStmt) {
switch (K) {
case OpenACCDirectiveKind::Invalid:
return StmtError();
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels: {
return OpenACCComputeConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop: {
return OpenACCCombinedConstruct::Create(
getASTContext(), K, StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Loop: {
return OpenACCLoopConstruct::Create(
getASTContext(), ActiveComputeConstructInfo.Kind, StartLoc, DirLoc,
EndLoc, Clauses, AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Data: {
return OpenACCDataConstruct::Create(
getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::EnterData: {
return OpenACCEnterDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::ExitData: {
return OpenACCExitDataConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::HostData: {
return OpenACCHostDataConstruct::Create(
getASTContext(), StartLoc, DirLoc, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Wait: {
return OpenACCWaitConstruct::Create(
getASTContext(), StartLoc, DirLoc, LParenLoc, Exprs.front(), MiscLoc,
Exprs.drop_front(), RParenLoc, EndLoc, Clauses);
}
case OpenACCDirectiveKind::Init: {
return OpenACCInitConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Shutdown: {
return OpenACCShutdownConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Set: {
return OpenACCSetConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Update: {
return OpenACCUpdateConstruct::Create(getASTContext(), StartLoc, DirLoc,
EndLoc, Clauses);
}
case OpenACCDirectiveKind::Atomic: {
return OpenACCAtomicConstruct::Create(
getASTContext(), StartLoc, DirLoc, AtomicKind, EndLoc, Clauses,
AssocStmt.isUsable() ? AssocStmt.get() : nullptr);
}
case OpenACCDirectiveKind::Cache: {
assert(Clauses.empty() && "Cache doesn't allow clauses");
return OpenACCCacheConstruct::Create(getASTContext(), StartLoc, DirLoc,
LParenLoc, MiscLoc, Exprs, RParenLoc,
EndLoc);
}
case OpenACCDirectiveKind::Routine:
llvm_unreachable("routine shouldn't handled here");
case OpenACCDirectiveKind::Declare: {
// Declare and routine arei declaration directives, but can be used here as
// long as we wrap it in a DeclStmt. So make sure we do that here.
DeclGroupRef DR = ActOnEndDeclDirective(K, StartLoc, DirLoc, LParenLoc,
RParenLoc, EndLoc, Clauses);
return SemaRef.ActOnDeclStmt(DeclGroupPtrTy::make(DR), StartLoc, EndLoc);
}
}
llvm_unreachable("Unhandled case in directive handling?");
}
StmtResult SemaOpenACC::ActOnAssociatedStmt(
SourceLocation DirectiveLoc, OpenACCDirectiveKind K,
OpenACCAtomicKind AtKind, ArrayRef<const OpenACCClause *> Clauses,
StmtResult AssocStmt) {
switch (K) {
default:
llvm_unreachable("Unimplemented associated statement application");
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Cache:
llvm_unreachable(
"these don't have associated statements, so shouldn't get here");
case OpenACCDirectiveKind::Atomic:
return CheckAtomicAssociatedStmt(DirectiveLoc, AtKind, AssocStmt);
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::HostData:
// There really isn't any checking here that could happen. As long as we
// have a statement to associate, this should be fine.
// OpenACC 3.3 Section 6:
// Structured Block: in C or C++, an executable statement, possibly
// compound, with a single entry at the top and a single exit at the
// bottom.
// FIXME: Should we reject DeclStmt's here? The standard isn't clear, and
// an interpretation of it is to allow this and treat the initializer as
// the 'structured block'.
return AssocStmt;
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
if (!AssocStmt.isUsable())
return StmtError();
if (!isa<CXXForRangeStmt, ForStmt>(AssocStmt.get())) {
Diag(AssocStmt.get()->getBeginLoc(), diag::err_acc_loop_not_for_loop)
<< K;
Diag(DirectiveLoc, diag::note_acc_construct_here) << K;
return StmtError();
}
if (!CollapseInfo.CollapseDepthSatisfied || !TileInfo.TileDepthSatisfied) {
if (!CollapseInfo.CollapseDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Collapse;
assert(CollapseInfo.ActiveCollapse && "Collapse count without object?");
Diag(CollapseInfo.ActiveCollapse->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Collapse;
}
if (!TileInfo.TileDepthSatisfied) {
Diag(DirectiveLoc, diag::err_acc_insufficient_loops)
<< OpenACCClauseKind::Tile;
assert(TileInfo.ActiveTile && "Collapse count without object?");
Diag(TileInfo.ActiveTile->getBeginLoc(),
diag::note_acc_active_clause_here)
<< OpenACCClauseKind::Tile;
}
return StmtError();
}
return AssocStmt.get();
}
llvm_unreachable("Invalid associated statement application");
}
namespace {
// Routine has some pretty complicated set of rules for how device_type
// interacts with 'gang', 'worker', 'vector', and 'seq'. Enforce part of it
// here.
bool CheckValidRoutineGangWorkerVectorSeqClauses(
SemaOpenACC &SemaRef, SourceLocation DirectiveLoc,
ArrayRef<const OpenACCClause *> Clauses) {
auto RequiredPred = llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause,
OpenACCVectorClause, OpenACCSeqClause>;
// The clause handling has assured us that there is no duplicates. That is,
// if there is 1 before a device_type, there are none after a device_type.
// If not, there is at most 1 applying to each device_type.
// What is left to legalize is that either:
// 1- there is 1 before the first device_type.
// 2- there is 1 AFTER each device_type.
auto *FirstDeviceType =
llvm::find_if(Clauses, llvm::IsaPred<OpenACCDeviceTypeClause>);
// If there is 1 before the first device_type (or at all if no device_type),
// we are legal.
auto *ClauseItr =
std::find_if(Clauses.begin(), FirstDeviceType, RequiredPred);
if (ClauseItr != FirstDeviceType)
return false;
// If there IS no device_type, and no clause, diagnose.
if (FirstDeviceType == Clauses.end())
return SemaRef.Diag(DirectiveLoc, diag::err_acc_construct_one_clause_of)
<< OpenACCDirectiveKind::Routine
<< "'gang', 'seq', 'vector', or 'worker'";
// Else, we have to check EACH device_type group. PrevDeviceType is the
// device-type before the current group.
auto *PrevDeviceType = FirstDeviceType;
while (PrevDeviceType != Clauses.end()) {
auto *NextDeviceType =
std::find_if(std::next(PrevDeviceType), Clauses.end(),
llvm::IsaPred<OpenACCDeviceTypeClause>);
ClauseItr = std::find_if(PrevDeviceType, NextDeviceType, RequiredPred);
if (ClauseItr == NextDeviceType)
return SemaRef.Diag((*PrevDeviceType)->getBeginLoc(),
diag::err_acc_clause_routine_one_of_in_region);
PrevDeviceType = NextDeviceType;
}
return false;
}
} // namespace
bool SemaOpenACC::ActOnStartDeclDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc,
ArrayRef<const OpenACCClause *> Clauses) {
// OpenCC3.3 2.1 (line 889)
// A program must not depend on the order of evaluation of expressions in
// clause arguments or on any side effects of the evaluations.
SemaRef.DiscardCleanupsInEvaluationContext();
SemaRef.PopExpressionEvaluationContext();
if (DiagnoseRequiredClauses(K, StartLoc, Clauses))
return true;
if (K == OpenACCDirectiveKind::Routine &&
CheckValidRoutineGangWorkerVectorSeqClauses(*this, StartLoc, Clauses))
return true;
return diagnoseConstructAppertainment(*this, K, StartLoc, /*IsStmt=*/false);
}
DeclGroupRef SemaOpenACC::ActOnEndDeclDirective(
OpenACCDirectiveKind K, SourceLocation StartLoc, SourceLocation DirLoc,
SourceLocation LParenLoc, SourceLocation RParenLoc, SourceLocation EndLoc,
ArrayRef<OpenACCClause *> Clauses) {
switch (K) {
default:
case OpenACCDirectiveKind::Invalid:
return DeclGroupRef{};
case OpenACCDirectiveKind::Declare: {
// OpenACC3.3 2.13: At least one clause must appear on a declare directive.
if (Clauses.empty()) {
Diag(EndLoc, diag::err_acc_declare_required_clauses);
// No reason to add this to the AST, as we would just end up trying to
// instantiate this, which would double-diagnose here, which we wouldn't
// want to do.
return DeclGroupRef{};
}
auto *DeclareDecl = OpenACCDeclareDecl::Create(
getASTContext(), getCurContext(), StartLoc, DirLoc, EndLoc, Clauses);
DeclareDecl->setAccess(AS_public);
getCurContext()->addDecl(DeclareDecl);
return DeclGroupRef{DeclareDecl};
}
case OpenACCDirectiveKind::Routine:
llvm_unreachable("routine shouldn't be handled here");
}
llvm_unreachable("unhandled case in directive handling?");
}
namespace {
// Given the decl on the next line, figure out if it is one that is acceptable
// to `routine`, or looks like the sort of decl we should be diagnosing against.
FunctionDecl *LegalizeNextParsedDecl(Decl *D) {
if (!D)
return nullptr;
// Functions are per-fact acceptable as-is.
if (auto *FD = dyn_cast<FunctionDecl>(D))
return FD;
// Function templates are functions, so attach to the templated decl.
if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D))
return FTD->getTemplatedDecl();
if (auto *FD = dyn_cast<FieldDecl>(D)) {
auto *RD =
FD->getType().isNull() ? nullptr : FD->getType()->getAsCXXRecordDecl();
if (RD && RD->isGenericLambda())
return RD->getDependentLambdaCallOperator()->getTemplatedDecl();
if (RD && RD->isLambda())
return RD->getLambdaCallOperator();
}
// VarDecl we can look at the init instead of the type of the variable, this
// makes us more tolerant of the 'auto' deduced type.
if (auto *VD = dyn_cast<VarDecl>(D)) {
Expr *Init = VD->getInit();
if (!Init || Init->getType().isNull())
return nullptr;
const auto *RD = Init->getType()->getAsCXXRecordDecl();
if (RD && RD->isGenericLambda())
return RD->getDependentLambdaCallOperator()->getTemplatedDecl();
if (RD && RD->isLambda())
return RD->getLambdaCallOperator();
// FIXME: We could try harder in the case where this is a dependent thing
// that ends up being a lambda (that is, the init is an unresolved lookup
// expr), but we can't attach to the call/lookup expr. If we instead try to
// attach to the VarDecl, when we go to instantiate it, attributes are
// instantiated before the init, so we can't actually see the type at any
// point where it would be relevant/able to be checked. We could perhaps do
// some sort of 'after-init' instantiation/checking here, but that doesn't
// seem valuable for a situation that other compilers don't handle.
}
return nullptr;
}
void CreateRoutineDeclAttr(SemaOpenACC &SemaRef, SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> Clauses,
ValueDecl *AddTo) {
OpenACCRoutineDeclAttr *A =
OpenACCRoutineDeclAttr::Create(SemaRef.getASTContext(), DirLoc);
A->Clauses.assign(Clauses.begin(), Clauses.end());
AddTo->addAttr(A);
}
} // namespace
// Variant that adds attributes, because this is the unnamed case.
void SemaOpenACC::CheckRoutineDecl(SourceLocation DirLoc,
ArrayRef<const OpenACCClause *> Clauses,
Decl *NextParsedDecl) {
FunctionDecl *NextParsedFDecl = LegalizeNextParsedDecl(NextParsedDecl);
if (!NextParsedFDecl) {
// If we don't have a valid 'next thing', just diagnose.
SemaRef.Diag(DirLoc, diag::err_acc_decl_for_routine);
return;
}
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
if (auto Itr = MagicStaticLocs.find(NextParsedFDecl->getCanonicalDecl());
Itr != MagicStaticLocs.end()) {
Diag(Itr->second, diag::err_acc_magic_static_in_routine);
Diag(DirLoc, diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return;
}
auto BindItr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCBindClause>);
for (auto *A : NextParsedFDecl->attrs()) {
// OpenACC 3.3 2.15:
// If a procedure has a bind clause on both the declaration and definition
// than they both must bind to the same name.
if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(A)) {
auto OtherBindItr =
llvm::find_if(RA->Clauses, llvm::IsaPred<OpenACCBindClause>);
if (OtherBindItr != RA->Clauses.end() &&
(*cast<OpenACCBindClause>(*BindItr)) !=
(*cast<OpenACCBindClause>(*OtherBindItr))) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_unnamed_bind);
Diag((*OtherBindItr)->getEndLoc(), diag::note_acc_previous_clause_here)
<< (*BindItr)->getClauseKind();
return;
}
}
// OpenACC 3.3 2.15:
// A bind clause may not bind to a routine name that has a visible bind
// clause.
// We take the combo of these two 2.15 restrictions to mean that the
// 'declaration'/'definition' quote is an exception to this. So we're going
// to disallow mixing of the two types entirely.
if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(A);
RA && RA->getRange().getEnd().isValid()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag(RA->getRange().getEnd(), diag::note_acc_previous_clause_here)
<< "bind";
return;
}
}
CreateRoutineDeclAttr(*this, DirLoc, Clauses, NextParsedFDecl);
}
// Variant that adds a decl, because this is the named case.
OpenACCRoutineDecl *SemaOpenACC::CheckRoutineDecl(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *FuncRef, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc) {
assert(LParenLoc.isValid());
if (FunctionDecl *FD = getFunctionFromRoutineName(FuncRef)) {
// OpenACC 3.3 2.15:
// In C and C++, function static variables are not supported in functions to
// which a routine directive applies.
if (auto Itr = MagicStaticLocs.find(FD->getCanonicalDecl());
Itr != MagicStaticLocs.end()) {
Diag(Itr->second, diag::err_acc_magic_static_in_routine);
Diag(DirLoc, diag::note_acc_construct_here)
<< OpenACCDirectiveKind::Routine;
return nullptr;
}
// OpenACC 3.3 2.15:
// A bind clause may not bind to a routine name that has a visible bind
// clause.
auto BindItr = llvm::find_if(Clauses, llvm::IsaPred<OpenACCBindClause>);
SourceLocation BindLoc;
if (BindItr != Clauses.end()) {
BindLoc = (*BindItr)->getBeginLoc();
// Since this is adding a 'named' routine, we aren't allowed to combine
// with ANY other visible bind clause. Error if we see either.
for (auto *A : FD->attrs()) {
if (auto *RA = dyn_cast<OpenACCRoutineDeclAttr>(A)) {
auto OtherBindItr =
llvm::find_if(RA->Clauses, llvm::IsaPred<OpenACCBindClause>);
if (OtherBindItr != RA->Clauses.end()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag((*OtherBindItr)->getEndLoc(),
diag::note_acc_previous_clause_here)
<< (*BindItr)->getClauseKind();
return nullptr;
}
}
if (auto *RA = dyn_cast<OpenACCRoutineAnnotAttr>(A);
RA && RA->getRange().getEnd().isValid()) {
Diag((*BindItr)->getBeginLoc(), diag::err_acc_duplicate_bind);
Diag(RA->getRange().getEnd(), diag::note_acc_previous_clause_here)
<< (*BindItr)->getClauseKind();
return nullptr;
}
}
}
// Set the end-range to the 'bind' clause here, so we can look it up
// later.
auto *RAA = OpenACCRoutineAnnotAttr::CreateImplicit(getASTContext(),
{DirLoc, BindLoc});
FD->addAttr(RAA);
// In case we are referencing not the 'latest' version, make sure we add
// the attribute to all declarations.
while (FD != FD->getMostRecentDecl()) {
FD = FD->getMostRecentDecl();
FD->addAttr(RAA);
}
}
LastRoutineDecl = OpenACCRoutineDecl::Create(
getASTContext(), getCurContext(), StartLoc, DirLoc, LParenLoc, FuncRef,
RParenLoc, EndLoc, Clauses);
LastRoutineDecl->setAccess(AS_public);
getCurContext()->addDecl(LastRoutineDecl);
return LastRoutineDecl;
}
DeclGroupRef SemaOpenACC::ActOnEndRoutineDeclDirective(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *ReferencedFunc, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc,
DeclGroupPtrTy NextDecl) {
assert((!ReferencedFunc || !NextDecl) &&
"Only one of these should be filled");
if (LParenLoc.isInvalid()) {
Decl *NextLineDecl = nullptr;
if (NextDecl && NextDecl.get().isSingleDecl())
NextLineDecl = NextDecl.get().getSingleDecl();
CheckRoutineDecl(DirLoc, Clauses, NextLineDecl);
return NextDecl.get();
}
return DeclGroupRef{CheckRoutineDecl(
StartLoc, DirLoc, LParenLoc, ReferencedFunc, RParenLoc, Clauses, EndLoc)};
}
StmtResult SemaOpenACC::ActOnEndRoutineStmtDirective(
SourceLocation StartLoc, SourceLocation DirLoc, SourceLocation LParenLoc,
Expr *ReferencedFunc, SourceLocation RParenLoc,
ArrayRef<const OpenACCClause *> Clauses, SourceLocation EndLoc,
Stmt *NextStmt) {
assert((!ReferencedFunc || !NextStmt) &&
"Only one of these should be filled");
if (LParenLoc.isInvalid()) {
Decl *NextLineDecl = nullptr;
if (NextStmt)
if (DeclStmt *DS = dyn_cast<DeclStmt>(NextStmt); DS && DS->isSingleDecl())
NextLineDecl = DS->getSingleDecl();
CheckRoutineDecl(DirLoc, Clauses, NextLineDecl);
return NextStmt;
}
DeclGroupRef DR{CheckRoutineDecl(StartLoc, DirLoc, LParenLoc, ReferencedFunc,
RParenLoc, Clauses, EndLoc)};
return SemaRef.ActOnDeclStmt(DeclGroupPtrTy::make(DR), StartLoc, EndLoc);
}
OpenACCRoutineDeclAttr *
SemaOpenACC::mergeRoutineDeclAttr(const OpenACCRoutineDeclAttr &Old) {
OpenACCRoutineDeclAttr *New =
OpenACCRoutineDeclAttr::Create(getASTContext(), Old.getLocation());
// We should jsut be able to copy these, there isn't really any
// merging/inheriting we have to do, so no worry about doing a deep copy.
New->Clauses = Old.Clauses;
return New;
}
ExprResult
SemaOpenACC::BuildOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return OpenACCAsteriskSizeExpr::Create(getASTContext(), AsteriskLoc);
}
ExprResult
SemaOpenACC::ActOnOpenACCAsteriskSizeExpr(SourceLocation AsteriskLoc) {
return BuildOpenACCAsteriskSizeExpr(AsteriskLoc);
}
|