1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
//=== BuiltinFunctionChecker.cpp --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker evaluates "standalone" clang builtin functions that are not
// just special-cased variants of well-known non-builtin functions.
// Builtin functions like __builtin_memcpy and __builtin_alloca should be
// evaluated by the same checker that handles their non-builtin variant to
// ensure that the two variants are handled consistently.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
using namespace clang;
using namespace ento;
using namespace taint;
namespace {
QualType getSufficientTypeForOverflowOp(CheckerContext &C, const QualType &T) {
// Calling a builtin with a non-integer type result produces compiler error.
assert(T->isIntegerType());
ASTContext &ACtx = C.getASTContext();
unsigned BitWidth = ACtx.getIntWidth(T);
return ACtx.getIntTypeForBitwidth(BitWidth * 2, T->isSignedIntegerType());
}
QualType getOverflowBuiltinResultType(const CallEvent &Call) {
// Calling a builtin with an incorrect argument count produces compiler error.
assert(Call.getNumArgs() == 3);
return Call.getArgExpr(2)->getType()->getPointeeType();
}
QualType getOverflowBuiltinResultType(const CallEvent &Call, CheckerContext &C,
unsigned BI) {
// Calling a builtin with an incorrect argument count produces compiler error.
assert(Call.getNumArgs() == 3);
ASTContext &ACtx = C.getASTContext();
switch (BI) {
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_sadd_overflow:
return ACtx.IntTy;
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_saddl_overflow:
return ACtx.LongTy;
case Builtin::BI__builtin_smulll_overflow:
case Builtin::BI__builtin_ssubll_overflow:
case Builtin::BI__builtin_saddll_overflow:
return ACtx.LongLongTy;
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_uadd_overflow:
return ACtx.UnsignedIntTy;
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_uaddl_overflow:
return ACtx.UnsignedLongTy;
case Builtin::BI__builtin_umulll_overflow:
case Builtin::BI__builtin_usubll_overflow:
case Builtin::BI__builtin_uaddll_overflow:
return ACtx.UnsignedLongLongTy;
case Builtin::BI__builtin_mul_overflow:
case Builtin::BI__builtin_sub_overflow:
case Builtin::BI__builtin_add_overflow:
return getOverflowBuiltinResultType(Call);
default:
assert(false && "Unknown overflow builtin");
return ACtx.IntTy;
}
}
class BuiltinFunctionChecker : public Checker<eval::Call> {
public:
bool evalCall(const CallEvent &Call, CheckerContext &C) const;
void handleOverflowBuiltin(const CallEvent &Call, CheckerContext &C,
BinaryOperator::Opcode Op,
QualType ResultType) const;
const NoteTag *createBuiltinOverflowNoteTag(CheckerContext &C,
bool BothFeasible, SVal Arg1,
SVal Arg2, SVal Result) const;
ProgramStateRef initStateAftetBuiltinOverflow(CheckerContext &C,
ProgramStateRef State,
const CallEvent &Call,
SVal RetCal,
bool IsOverflow) const;
std::pair<bool, bool> checkOverflow(CheckerContext &C, SVal RetVal,
QualType Res) const;
private:
// From: clang/include/clang/Basic/Builtins.def
// C++ standard library builtins in namespace 'std'.
const CallDescriptionSet BuiltinLikeStdFunctions{
{CDM::SimpleFunc, {"std", "addressof"}}, //
{CDM::SimpleFunc, {"std", "__addressof"}}, //
{CDM::SimpleFunc, {"std", "as_const"}}, //
{CDM::SimpleFunc, {"std", "forward"}}, //
{CDM::SimpleFunc, {"std", "forward_like"}}, //
{CDM::SimpleFunc, {"std", "move"}}, //
{CDM::SimpleFunc, {"std", "move_if_noexcept"}}, //
};
bool isBuiltinLikeFunction(const CallEvent &Call) const;
};
} // namespace
const NoteTag *BuiltinFunctionChecker::createBuiltinOverflowNoteTag(
CheckerContext &C, bool overflow, SVal Arg1, SVal Arg2, SVal Result) const {
return C.getNoteTag([Result, Arg1, Arg2, overflow](PathSensitiveBugReport &BR,
llvm::raw_ostream &OS) {
if (!BR.isInteresting(Result))
return;
// Propagate interestingness to input arguments if result is interesting.
BR.markInteresting(Arg1);
BR.markInteresting(Arg2);
if (overflow)
OS << "Assuming overflow";
else
OS << "Assuming no overflow";
});
}
std::pair<bool, bool>
BuiltinFunctionChecker::checkOverflow(CheckerContext &C, SVal RetVal,
QualType Res) const {
// Calling a builtin with a non-integer type result produces compiler error.
assert(Res->isIntegerType());
unsigned BitWidth = C.getASTContext().getIntWidth(Res);
bool IsUnsigned = Res->isUnsignedIntegerType();
SValBuilder &SVB = C.getSValBuilder();
BasicValueFactory &VF = SVB.getBasicValueFactory();
auto MinValType = llvm::APSInt::getMinValue(BitWidth, IsUnsigned);
auto MaxValType = llvm::APSInt::getMaxValue(BitWidth, IsUnsigned);
nonloc::ConcreteInt MinVal{VF.getValue(MinValType)};
nonloc::ConcreteInt MaxVal{VF.getValue(MaxValType)};
ProgramStateRef State = C.getState();
SVal IsLeMax = SVB.evalBinOp(State, BO_LE, RetVal, MaxVal, Res);
SVal IsGeMin = SVB.evalBinOp(State, BO_GE, RetVal, MinVal, Res);
auto [MayNotOverflow, MayOverflow] =
State->assume(IsLeMax.castAs<DefinedOrUnknownSVal>());
auto [MayNotUnderflow, MayUnderflow] =
State->assume(IsGeMin.castAs<DefinedOrUnknownSVal>());
return {MayOverflow || MayUnderflow, MayNotOverflow && MayNotUnderflow};
}
ProgramStateRef BuiltinFunctionChecker::initStateAftetBuiltinOverflow(
CheckerContext &C, ProgramStateRef State, const CallEvent &Call,
SVal RetVal, bool IsOverflow) const {
SValBuilder &SVB = C.getSValBuilder();
SVal Arg1 = Call.getArgSVal(0);
SVal Arg2 = Call.getArgSVal(1);
auto BoolTy = C.getASTContext().BoolTy;
ProgramStateRef NewState =
State->BindExpr(Call.getOriginExpr(), C.getLocationContext(),
SVB.makeTruthVal(IsOverflow, BoolTy));
if (auto L = Call.getArgSVal(2).getAs<Loc>()) {
NewState = NewState->bindLoc(*L, RetVal, C.getLocationContext());
// Propagate taint if any of the arguments were tainted
if (isTainted(State, Arg1) || isTainted(State, Arg2))
NewState = addTaint(NewState, *L);
}
return NewState;
}
void BuiltinFunctionChecker::handleOverflowBuiltin(const CallEvent &Call,
CheckerContext &C,
BinaryOperator::Opcode Op,
QualType ResultType) const {
// Calling a builtin with an incorrect argument count produces compiler error.
assert(Call.getNumArgs() == 3);
ProgramStateRef State = C.getState();
SValBuilder &SVB = C.getSValBuilder();
SVal Arg1 = Call.getArgSVal(0);
SVal Arg2 = Call.getArgSVal(1);
SVal RetValMax = SVB.evalBinOp(State, Op, Arg1, Arg2,
getSufficientTypeForOverflowOp(C, ResultType));
SVal RetVal = SVB.evalBinOp(State, Op, Arg1, Arg2, ResultType);
auto [Overflow, NotOverflow] = checkOverflow(C, RetValMax, ResultType);
if (NotOverflow) {
auto NewState =
initStateAftetBuiltinOverflow(C, State, Call, RetVal, false);
C.addTransition(NewState, createBuiltinOverflowNoteTag(
C, /*overflow=*/false, Arg1, Arg2, RetVal));
}
if (Overflow) {
auto NewState = initStateAftetBuiltinOverflow(C, State, Call, RetVal, true);
C.addTransition(NewState, createBuiltinOverflowNoteTag(C, /*overflow=*/true,
Arg1, Arg2, RetVal));
}
}
bool BuiltinFunctionChecker::isBuiltinLikeFunction(
const CallEvent &Call) const {
const auto *FD = llvm::dyn_cast_or_null<FunctionDecl>(Call.getDecl());
if (!FD || FD->getNumParams() != 1)
return false;
if (QualType RetTy = FD->getReturnType();
!RetTy->isPointerType() && !RetTy->isReferenceType())
return false;
if (QualType ParmTy = FD->getParamDecl(0)->getType();
!ParmTy->isPointerType() && !ParmTy->isReferenceType())
return false;
return BuiltinLikeStdFunctions.contains(Call);
}
bool BuiltinFunctionChecker::evalCall(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef state = C.getState();
const auto *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
if (!FD)
return false;
const LocationContext *LCtx = C.getLocationContext();
const Expr *CE = Call.getOriginExpr();
if (isBuiltinLikeFunction(Call)) {
C.addTransition(state->BindExpr(CE, LCtx, Call.getArgSVal(0)));
return true;
}
unsigned BI = FD->getBuiltinID();
switch (BI) {
default:
return false;
case Builtin::BI__builtin_mul_overflow:
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow:
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
handleOverflowBuiltin(Call, C, BO_Mul,
getOverflowBuiltinResultType(Call, C, BI));
return true;
case Builtin::BI__builtin_sub_overflow:
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
handleOverflowBuiltin(Call, C, BO_Sub,
getOverflowBuiltinResultType(Call, C, BI));
return true;
case Builtin::BI__builtin_add_overflow:
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
handleOverflowBuiltin(Call, C, BO_Add,
getOverflowBuiltinResultType(Call, C, BI));
return true;
case Builtin::BI__builtin_unpredictable:
case Builtin::BI__builtin_expect:
case Builtin::BI__builtin_expect_with_probability:
case Builtin::BI__builtin_assume_aligned:
case Builtin::BI__builtin_addressof:
case Builtin::BI__builtin_function_start: {
// For __builtin_unpredictable, __builtin_expect,
// __builtin_expect_with_probability and __builtin_assume_aligned,
// just return the value of the subexpression.
// __builtin_addressof is going from a reference to a pointer, but those
// are represented the same way in the analyzer.
assert (Call.getNumArgs() > 0);
SVal Arg = Call.getArgSVal(0);
C.addTransition(state->BindExpr(CE, LCtx, Arg));
return true;
}
case Builtin::BI__builtin_dynamic_object_size:
case Builtin::BI__builtin_object_size:
case Builtin::BI__builtin_constant_p: {
// This must be resolvable at compile time, so we defer to the constant
// evaluator for a value.
SValBuilder &SVB = C.getSValBuilder();
SVal V = UnknownVal();
Expr::EvalResult EVResult;
if (CE->EvaluateAsInt(EVResult, C.getASTContext(), Expr::SE_NoSideEffects)) {
// Make sure the result has the correct type.
llvm::APSInt Result = EVResult.Val.getInt();
BasicValueFactory &BVF = SVB.getBasicValueFactory();
BVF.getAPSIntType(CE->getType()).apply(Result);
V = SVB.makeIntVal(Result);
}
if (FD->getBuiltinID() == Builtin::BI__builtin_constant_p) {
// If we didn't manage to figure out if the value is constant or not,
// it is safe to assume that it's not constant and unsafe to assume
// that it's constant.
if (V.isUnknown())
V = SVB.makeIntVal(0, CE->getType());
}
C.addTransition(state->BindExpr(CE, LCtx, V));
return true;
}
}
}
void ento::registerBuiltinFunctionChecker(CheckerManager &mgr) {
mgr.registerChecker<BuiltinFunctionChecker>();
}
bool ento::shouldRegisterBuiltinFunctionChecker(const CheckerManager &mgr) {
return true;
}
|