1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
//===-- SemaBoundsSafety.cpp - Bounds Safety specific routines-*- C++ -*---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file declares semantic analysis functions specific to `-fbounds-safety`
/// (Bounds Safety) and also its attributes when used without `-fbounds-safety`
/// (e.g. `counted_by`)
///
//===----------------------------------------------------------------------===//
#include "clang/Lex/Lexer.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Sema.h"
namespace clang {
static CountAttributedType::DynamicCountPointerKind
getCountAttrKind(bool CountInBytes, bool OrNull) {
if (CountInBytes)
return OrNull ? CountAttributedType::SizedByOrNull
: CountAttributedType::SizedBy;
return OrNull ? CountAttributedType::CountedByOrNull
: CountAttributedType::CountedBy;
}
static const RecordDecl *GetEnclosingNamedOrTopAnonRecord(const FieldDecl *FD) {
const auto *RD = FD->getParent();
// An unnamed struct is anonymous struct only if it's not instantiated.
// However, the struct may not be fully processed yet to determine
// whether it's anonymous or not. In that case, this function treats it as
// an anonymous struct and tries to find a named parent.
while (RD && (RD->isAnonymousStructOrUnion() ||
(!RD->isCompleteDefinition() && RD->getName().empty()))) {
const auto *Parent = dyn_cast<RecordDecl>(RD->getParent());
if (!Parent)
break;
RD = Parent;
}
return RD;
}
enum class CountedByInvalidPointeeTypeKind {
INCOMPLETE,
SIZELESS,
FUNCTION,
FLEXIBLE_ARRAY_MEMBER,
VALID,
};
bool Sema::CheckCountedByAttrOnField(FieldDecl *FD, Expr *E, bool CountInBytes,
bool OrNull) {
// Check the context the attribute is used in
unsigned Kind = getCountAttrKind(CountInBytes, OrNull);
if (FD->getParent()->isUnion()) {
Diag(FD->getBeginLoc(), diag::err_count_attr_in_union)
<< Kind << FD->getSourceRange();
return true;
}
const auto FieldTy = FD->getType();
if (FieldTy->isArrayType() && (CountInBytes || OrNull)) {
Diag(FD->getBeginLoc(),
diag::err_count_attr_not_on_ptr_or_flexible_array_member)
<< Kind << FD->getLocation() << /* suggest counted_by */ 1;
return true;
}
if (!FieldTy->isArrayType() && !FieldTy->isPointerType()) {
Diag(FD->getBeginLoc(),
diag::err_count_attr_not_on_ptr_or_flexible_array_member)
<< Kind << FD->getLocation() << /* do not suggest counted_by */ 0;
return true;
}
LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
LangOptions::StrictFlexArraysLevelKind::IncompleteOnly;
if (FieldTy->isArrayType() &&
!Decl::isFlexibleArrayMemberLike(getASTContext(), FD, FieldTy,
StrictFlexArraysLevel, true)) {
Diag(FD->getBeginLoc(),
diag::err_counted_by_attr_on_array_not_flexible_array_member)
<< Kind << FD->getLocation();
return true;
}
CountedByInvalidPointeeTypeKind InvalidTypeKind =
CountedByInvalidPointeeTypeKind::VALID;
QualType PointeeTy;
int SelectPtrOrArr = 0;
if (FieldTy->isPointerType()) {
PointeeTy = FieldTy->getPointeeType();
SelectPtrOrArr = 0;
} else {
assert(FieldTy->isArrayType());
const ArrayType *AT = getASTContext().getAsArrayType(FieldTy);
PointeeTy = AT->getElementType();
SelectPtrOrArr = 1;
}
// Note: The `Decl::isFlexibleArrayMemberLike` check earlier on means
// only `PointeeTy->isStructureTypeWithFlexibleArrayMember()` is reachable
// when `FieldTy->isArrayType()`.
bool ShouldWarn = false;
if (PointeeTy->isAlwaysIncompleteType() && !CountInBytes) {
// In general using `counted_by` or `counted_by_or_null` on
// pointers where the pointee is an incomplete type are problematic. This is
// because it isn't possible to compute the pointer's bounds without knowing
// the pointee type size. At the same time it is common to forward declare
// types in header files.
//
// E.g.:
//
// struct Handle;
// struct Wrapper {
// size_t size;
// struct Handle* __counted_by(count) handles;
// }
//
// To allow the above code pattern but still prevent the pointee type from
// being incomplete in places where bounds checks are needed the following
// scheme is used:
//
// * When the pointee type might not always be an incomplete type (i.e.
// a type that is currently incomplete but might be completed later
// on in the translation unit) the attribute is allowed by this method
// but later uses of the FieldDecl are checked that the pointee type
// is complete see `BoundsSafetyCheckAssignmentToCountAttrPtr`,
// `BoundsSafetyCheckInitialization`, and
// `BoundsSafetyCheckUseOfCountAttrPtr`
//
// * When the pointee type is always an incomplete type (e.g.
// `void`) the attribute is disallowed by this method because we know the
// type can never be completed so there's no reason to allow it.
InvalidTypeKind = CountedByInvalidPointeeTypeKind::INCOMPLETE;
} else if (PointeeTy->isSizelessType()) {
InvalidTypeKind = CountedByInvalidPointeeTypeKind::SIZELESS;
} else if (PointeeTy->isFunctionType()) {
InvalidTypeKind = CountedByInvalidPointeeTypeKind::FUNCTION;
} else if (PointeeTy->isStructureTypeWithFlexibleArrayMember()) {
if (FieldTy->isArrayType() && !getLangOpts().BoundsSafety) {
// This is a workaround for the Linux kernel that has already adopted
// `counted_by` on a FAM where the pointee is a struct with a FAM. This
// should be an error because computing the bounds of the array cannot be
// done correctly without manually traversing every struct object in the
// array at runtime. To allow the code to be built this error is
// downgraded to a warning.
ShouldWarn = true;
}
InvalidTypeKind = CountedByInvalidPointeeTypeKind::FLEXIBLE_ARRAY_MEMBER;
}
if (InvalidTypeKind != CountedByInvalidPointeeTypeKind::VALID) {
unsigned DiagID = ShouldWarn
? diag::warn_counted_by_attr_elt_type_unknown_size
: diag::err_counted_by_attr_pointee_unknown_size;
Diag(FD->getBeginLoc(), DiagID)
<< SelectPtrOrArr << PointeeTy << (int)InvalidTypeKind
<< (ShouldWarn ? 1 : 0) << Kind << FD->getSourceRange();
return true;
}
// Check the expression
if (!E->getType()->isIntegerType() || E->getType()->isBooleanType()) {
Diag(E->getBeginLoc(), diag::err_count_attr_argument_not_integer)
<< Kind << E->getSourceRange();
return true;
}
auto *DRE = dyn_cast<DeclRefExpr>(E);
if (!DRE) {
Diag(E->getBeginLoc(),
diag::err_count_attr_only_support_simple_decl_reference)
<< Kind << E->getSourceRange();
return true;
}
auto *CountDecl = DRE->getDecl();
FieldDecl *CountFD = dyn_cast<FieldDecl>(CountDecl);
if (auto *IFD = dyn_cast<IndirectFieldDecl>(CountDecl)) {
CountFD = IFD->getAnonField();
}
if (!CountFD) {
Diag(E->getBeginLoc(), diag::err_count_attr_must_be_in_structure)
<< CountDecl << Kind << E->getSourceRange();
Diag(CountDecl->getBeginLoc(),
diag::note_flexible_array_counted_by_attr_field)
<< CountDecl << CountDecl->getSourceRange();
return true;
}
if (FD->getParent() != CountFD->getParent()) {
if (CountFD->getParent()->isUnion()) {
Diag(CountFD->getBeginLoc(), diag::err_count_attr_refer_to_union)
<< Kind << CountFD->getSourceRange();
return true;
}
// Whether CountRD is an anonymous struct is not determined at this
// point. Thus, an additional diagnostic in case it's not anonymous struct
// is done later in `Parser::ParseStructDeclaration`.
auto *RD = GetEnclosingNamedOrTopAnonRecord(FD);
auto *CountRD = GetEnclosingNamedOrTopAnonRecord(CountFD);
if (RD != CountRD) {
Diag(E->getBeginLoc(), diag::err_count_attr_param_not_in_same_struct)
<< CountFD << Kind << FieldTy->isArrayType() << E->getSourceRange();
Diag(CountFD->getBeginLoc(),
diag::note_flexible_array_counted_by_attr_field)
<< CountFD << CountFD->getSourceRange();
return true;
}
}
return false;
}
static void EmitIncompleteCountedByPointeeNotes(Sema &S,
const CountAttributedType *CATy,
NamedDecl *IncompleteTyDecl) {
assert(IncompleteTyDecl == nullptr || isa<TypeDecl>(IncompleteTyDecl));
if (IncompleteTyDecl) {
// Suggest completing the pointee type if its a named typed (i.e.
// IncompleteTyDecl isn't nullptr). Suggest this first as it is more likely
// to be the correct fix.
//
// Note the `IncompleteTyDecl` type is the underlying type which might not
// be the same as `CATy->getPointeeType()` which could be a typedef.
//
// The diagnostic printed will be at the location of the underlying type but
// the diagnostic text will print the type of `CATy->getPointeeType()` which
// could be a typedef name rather than the underlying type. This is ok
// though because the diagnostic will print the underlying type name too.
S.Diag(IncompleteTyDecl->getBeginLoc(),
diag::note_counted_by_consider_completing_pointee_ty)
<< CATy->getPointeeType();
}
// Suggest using __sized_by(_or_null) instead of __counted_by(_or_null) as
// __sized_by(_or_null) doesn't have the complete type restriction.
//
// We use the source range of the expression on the CountAttributedType as an
// approximation for the source range of the attribute. This isn't quite right
// but isn't easy to fix right now.
//
// TODO: Implement logic to find the relevant TypeLoc for the attribute and
// get the SourceRange from that (#113582).
//
// TODO: We should emit a fix-it here.
SourceRange AttrSrcRange = CATy->getCountExpr()->getSourceRange();
S.Diag(AttrSrcRange.getBegin(), diag::note_counted_by_consider_using_sized_by)
<< CATy->isOrNull() << AttrSrcRange;
}
static std::tuple<const CountAttributedType *, QualType>
GetCountedByAttrOnIncompletePointee(QualType Ty, NamedDecl **ND) {
auto *CATy = Ty->getAs<CountAttributedType>();
// Incomplete pointee type is only a problem for
// counted_by/counted_by_or_null
if (!CATy || CATy->isCountInBytes())
return {};
auto PointeeTy = CATy->getPointeeType();
if (PointeeTy.isNull()) {
// Reachable if `CountAttributedType` wraps an IncompleteArrayType
return {};
}
if (!PointeeTy->isIncompleteType(ND))
return {};
return {CATy, PointeeTy};
}
/// Perform Checks for assigning to a `__counted_by` or
/// `__counted_by_or_null` pointer type \param LHSTy where the pointee type
/// is incomplete which is invalid.
///
/// \param S The Sema instance.
/// \param LHSTy The type being assigned to. Checks will only be performed if
/// the type is a `counted_by` or `counted_by_or_null ` pointer.
/// \param RHSExpr The expression being assigned from.
/// \param Action The type assignment being performed
/// \param Loc The SourceLocation to use for error diagnostics
/// \param Assignee The ValueDecl being assigned. This is used to compute
/// the name of the assignee. If the assignee isn't known this can
/// be set to nullptr.
/// \param ShowFullyQualifiedAssigneeName If set to true when using \p
/// Assignee to compute the name of the assignee use the fully
/// qualified name, otherwise use the unqualified name.
///
/// \returns True iff no diagnostic where emitted, false otherwise.
static bool CheckAssignmentToCountAttrPtrWithIncompletePointeeTy(
Sema &S, QualType LHSTy, Expr *RHSExpr, AssignmentAction Action,
SourceLocation Loc, const ValueDecl *Assignee,
bool ShowFullyQualifiedAssigneeName) {
NamedDecl *IncompleteTyDecl = nullptr;
auto [CATy, PointeeTy] =
GetCountedByAttrOnIncompletePointee(LHSTy, &IncompleteTyDecl);
if (!CATy)
return true;
std::string AssigneeStr;
if (Assignee) {
if (ShowFullyQualifiedAssigneeName) {
AssigneeStr = Assignee->getQualifiedNameAsString();
} else {
AssigneeStr = Assignee->getNameAsString();
}
}
S.Diag(Loc, diag::err_counted_by_on_incomplete_type_on_assign)
<< static_cast<int>(Action) << AssigneeStr << (AssigneeStr.size() > 0)
<< isa<ImplicitValueInitExpr>(RHSExpr) << LHSTy
<< CATy->getAttributeName(/*WithMacroPrefix=*/true) << PointeeTy
<< CATy->isOrNull() << RHSExpr->getSourceRange();
EmitIncompleteCountedByPointeeNotes(S, CATy, IncompleteTyDecl);
return false; // check failed
}
bool Sema::BoundsSafetyCheckAssignmentToCountAttrPtr(
QualType LHSTy, Expr *RHSExpr, AssignmentAction Action, SourceLocation Loc,
const ValueDecl *Assignee, bool ShowFullyQualifiedAssigneeName) {
return CheckAssignmentToCountAttrPtrWithIncompletePointeeTy(
*this, LHSTy, RHSExpr, Action, Loc, Assignee,
ShowFullyQualifiedAssigneeName);
}
bool Sema::BoundsSafetyCheckInitialization(const InitializedEntity &Entity,
const InitializationKind &Kind,
AssignmentAction Action,
QualType LHSType, Expr *RHSExpr) {
auto SL = Kind.getLocation();
// Note: We don't call `BoundsSafetyCheckAssignmentToCountAttrPtr` here
// because we need conditionalize what is checked. In downstream
// Clang `counted_by` is supported on variable definitions and in that
// implementation an error diagnostic will be emitted on the variable
// definition if the pointee is an incomplete type. To avoid warning about the
// same problem twice (once when the variable is defined, once when Sema
// checks the initializer) we skip checking the initializer if it's a
// variable.
if (Action == AssignmentAction::Initializing &&
Entity.getKind() != InitializedEntity::EK_Variable) {
if (!CheckAssignmentToCountAttrPtrWithIncompletePointeeTy(
*this, LHSType, RHSExpr, Action, SL,
dyn_cast_or_null<ValueDecl>(Entity.getDecl()),
/*ShowFullQualifiedAssigneeName=*/true)) {
return false;
}
}
return true;
}
bool Sema::BoundsSafetyCheckUseOfCountAttrPtr(const Expr *E) {
QualType T = E->getType();
if (!T->isPointerType())
return true;
NamedDecl *IncompleteTyDecl = nullptr;
auto [CATy, PointeeTy] =
GetCountedByAttrOnIncompletePointee(T, &IncompleteTyDecl);
if (!CATy)
return true;
// Generate a string for the diagnostic that describes the "use".
// The string is specialized for direct calls to produce a better
// diagnostic.
SmallString<64> UseStr;
bool IsDirectCall = false;
if (const auto *CE = dyn_cast<CallExpr>(E->IgnoreParens())) {
if (const auto *FD = CE->getDirectCallee()) {
UseStr = FD->getName();
IsDirectCall = true;
}
}
if (!IsDirectCall) {
llvm::raw_svector_ostream SS(UseStr);
E->printPretty(SS, nullptr, getPrintingPolicy());
}
Diag(E->getBeginLoc(), diag::err_counted_by_on_incomplete_type_on_use)
<< IsDirectCall << UseStr << T << PointeeTy
<< CATy->getAttributeName(/*WithMacroPrefix=*/true) << CATy->isOrNull()
<< E->getSourceRange();
EmitIncompleteCountedByPointeeNotes(*this, CATy, IncompleteTyDecl);
return false;
}
} // namespace clang
|