1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
|
//===--- SemaOpenACCClause.cpp - Semantic Analysis for OpenACC clause -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for OpenACC clauses.
///
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OpenACCClause.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Sema/SemaOpenACC.h"
using namespace clang;
namespace {
bool checkValidAfterDeviceType(
SemaOpenACC &S, const OpenACCDeviceTypeClause &DeviceTypeClause,
const SemaOpenACC::OpenACCParsedClause &NewClause) {
// OpenACC3.3: Section 2.4: Clauses that precede any device_type clause are
// default clauses. Clauses that follow a device_type clause up to the end of
// the directive or up to the next device_type clause are device-specific
// clauses for the device types specified in the device_type argument.
//
// The above implies that despite what the individual text says, these are
// valid.
if (NewClause.getClauseKind() == OpenACCClauseKind::DType ||
NewClause.getClauseKind() == OpenACCClauseKind::DeviceType)
return false;
// Implement check from OpenACC3.3: section 2.5.4:
// Only the async, wait, num_gangs, num_workers, and vector_length clauses may
// follow a device_type clause.
if (isOpenACCComputeDirectiveKind(NewClause.getDirectiveKind())) {
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Wait:
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::VectorLength:
return false;
default:
break;
}
} else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
// Implement check from OpenACC3.3: section 2.9:
// Only the collapse, gang, worker, vector, seq, independent, auto, and tile
// clauses may follow a device_type clause.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Collapse:
case OpenACCClauseKind::Gang:
case OpenACCClauseKind::Worker:
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Seq:
case OpenACCClauseKind::Independent:
case OpenACCClauseKind::Auto:
case OpenACCClauseKind::Tile:
return false;
default:
break;
}
} else if (isOpenACCCombinedDirectiveKind(NewClause.getDirectiveKind())) {
// This seems like it should be the union of 2.9 and 2.5.4 from above.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Wait:
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::VectorLength:
case OpenACCClauseKind::Collapse:
case OpenACCClauseKind::Gang:
case OpenACCClauseKind::Worker:
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Seq:
case OpenACCClauseKind::Independent:
case OpenACCClauseKind::Auto:
case OpenACCClauseKind::Tile:
return false;
default:
break;
}
} else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Data) {
// OpenACC3.3 section 2.6.5: Only the async and wait clauses may follow a
// device_type clause.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Wait:
return false;
default:
break;
}
} else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Set ||
NewClause.getDirectiveKind() == OpenACCDirectiveKind::Init ||
NewClause.getDirectiveKind() == OpenACCDirectiveKind::Shutdown) {
// There are no restrictions on 'set', 'init', or 'shutdown'.
return false;
} else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Update) {
// OpenACC3.3 section 2.14.4: Only the async and wait clauses may follow a
// device_type clause.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Wait:
return false;
default:
break;
}
} else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Routine) {
// OpenACC 3.3 section 2.15: Only the 'gang', 'worker', 'vector', 'seq', and
// 'bind' clauses may follow a device_type clause.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Gang:
case OpenACCClauseKind::Worker:
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Seq:
case OpenACCClauseKind::Bind:
return false;
default:
break;
}
}
S.Diag(NewClause.getBeginLoc(), diag::err_acc_clause_after_device_type)
<< NewClause.getClauseKind() << DeviceTypeClause.getClauseKind()
<< NewClause.getDirectiveKind();
S.Diag(DeviceTypeClause.getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Active << DeviceTypeClause.getClauseKind();
return true;
}
// GCC looks through linkage specs, but not the other transparent declaration
// contexts for 'declare' restrictions, so this helper function helps get us
// through that.
const DeclContext *removeLinkageSpecDC(const DeclContext *DC) {
while (isa<LinkageSpecDecl>(DC))
DC = DC->getParent();
return DC;
}
class SemaOpenACCClauseVisitor {
SemaOpenACC &SemaRef;
ASTContext &Ctx;
ArrayRef<const OpenACCClause *> ExistingClauses;
// OpenACC 3.3 2.9:
// A 'gang', 'worker', or 'vector' clause may not appear if a 'seq' clause
// appears.
bool
DiagGangWorkerVectorSeqConflict(SemaOpenACC::OpenACCParsedClause &Clause) {
if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Loop &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return false;
assert(Clause.getClauseKind() == OpenACCClauseKind::Gang ||
Clause.getClauseKind() == OpenACCClauseKind::Worker ||
Clause.getClauseKind() == OpenACCClauseKind::Vector);
const auto *Itr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCSeqClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_cannot_combine)
<< Clause.getClauseKind() << (*Itr)->getClauseKind()
<< Clause.getDirectiveKind();
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
return true;
}
return false;
}
OpenACCModifierKind
CheckModifierList(SemaOpenACC::OpenACCParsedClause &Clause,
OpenACCModifierKind Mods) {
auto CheckSingle = [=](OpenACCModifierKind CurMods,
OpenACCModifierKind ValidKinds,
OpenACCModifierKind Bit) {
if (!isOpenACCModifierBitSet(CurMods, Bit) ||
isOpenACCModifierBitSet(ValidKinds, Bit))
return CurMods;
SemaRef.Diag(Clause.getLParenLoc(), diag::err_acc_invalid_modifier)
<< Bit << Clause.getClauseKind();
return CurMods ^ Bit;
};
auto Check = [&](OpenACCModifierKind ValidKinds) {
if ((Mods | ValidKinds) == ValidKinds)
return Mods;
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Always);
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::AlwaysIn);
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::AlwaysOut);
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Readonly);
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Zero);
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Capture);
return Mods;
};
// The 'capture' modifier is only valid on copyin, copyout, and create on
// structured data or compute constructs (which also includes combined).
bool IsStructuredDataOrCompute =
Clause.getDirectiveKind() == OpenACCDirectiveKind::Data ||
isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) ||
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind());
switch (Clause.getClauseKind()) {
default:
llvm_unreachable("Only for copy, copyin, copyout, create");
case OpenACCClauseKind::Copy:
case OpenACCClauseKind::PCopy:
case OpenACCClauseKind::PresentOrCopy:
// COPY: Capture always
return Check(OpenACCModifierKind::Always | OpenACCModifierKind::AlwaysIn |
OpenACCModifierKind::AlwaysOut |
OpenACCModifierKind::Capture);
case OpenACCClauseKind::CopyIn:
case OpenACCClauseKind::PCopyIn:
case OpenACCClauseKind::PresentOrCopyIn:
// COPYIN: Capture only struct.data & compute
return Check(OpenACCModifierKind::Always | OpenACCModifierKind::AlwaysIn |
OpenACCModifierKind::Readonly |
(IsStructuredDataOrCompute ? OpenACCModifierKind::Capture
: OpenACCModifierKind::Invalid));
case OpenACCClauseKind::CopyOut:
case OpenACCClauseKind::PCopyOut:
case OpenACCClauseKind::PresentOrCopyOut:
// COPYOUT: Capture only struct.data & compute
return Check(OpenACCModifierKind::Always |
OpenACCModifierKind::AlwaysOut | OpenACCModifierKind::Zero |
(IsStructuredDataOrCompute ? OpenACCModifierKind::Capture
: OpenACCModifierKind::Invalid));
case OpenACCClauseKind::Create:
case OpenACCClauseKind::PCreate:
case OpenACCClauseKind::PresentOrCreate:
// CREATE: Capture only struct.data & compute
return Check(OpenACCModifierKind::Zero |
(IsStructuredDataOrCompute ? OpenACCModifierKind::Capture
: OpenACCModifierKind::Invalid));
}
llvm_unreachable("didn't return from switch above?");
}
// Helper for the 'routine' checks during 'new' clause addition. Precondition
// is that we already know the new clause is one of the prohbiited ones.
template <typename Pred>
bool
CheckValidRoutineNewClauseHelper(Pred HasPredicate,
SemaOpenACC::OpenACCParsedClause &Clause) {
if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Routine)
return false;
auto *FirstDeviceType =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCDeviceTypeClause>);
if (FirstDeviceType == ExistingClauses.end()) {
// If there isn't a device type yet, ANY duplicate is wrong.
auto *ExistingProhibitedClause =
llvm::find_if(ExistingClauses, HasPredicate);
if (ExistingProhibitedClause == ExistingClauses.end())
return false;
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_cannot_combine)
<< Clause.getClauseKind()
<< (*ExistingProhibitedClause)->getClauseKind()
<< Clause.getDirectiveKind();
SemaRef.Diag((*ExistingProhibitedClause)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*ExistingProhibitedClause)->getClauseKind();
return true;
}
// At this point we know that this is 'after' a device type. So this is an
// error if: 1- there is one BEFORE the 'device_type' 2- there is one
// between this and the previous 'device_type'.
auto *BeforeDeviceType =
std::find_if(ExistingClauses.begin(), FirstDeviceType, HasPredicate);
// If there is one before the device_type (and we know we are after a
// device_type), than this is ill-formed.
if (BeforeDeviceType != FirstDeviceType) {
SemaRef.Diag(
Clause.getBeginLoc(),
diag::err_acc_clause_routine_cannot_combine_before_device_type)
<< Clause.getClauseKind() << (*BeforeDeviceType)->getClauseKind();
SemaRef.Diag((*BeforeDeviceType)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*BeforeDeviceType)->getClauseKind();
SemaRef.Diag((*FirstDeviceType)->getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Active
<< (*FirstDeviceType)->getClauseKind();
return true;
}
auto LastDeviceTypeItr =
std::find_if(ExistingClauses.rbegin(), ExistingClauses.rend(),
llvm::IsaPred<OpenACCDeviceTypeClause>);
// We already know there is one in the list, so it is nonsensical to not
// have one.
assert(LastDeviceTypeItr != ExistingClauses.rend());
// Get the device-type from-the-front (not reverse) iterator from the
// reverse iterator.
auto *LastDeviceType = LastDeviceTypeItr.base() - 1;
auto *ExistingProhibitedSinceLastDevice =
std::find_if(LastDeviceType, ExistingClauses.end(), HasPredicate);
// No prohibited ones since the last device-type.
if (ExistingProhibitedSinceLastDevice == ExistingClauses.end())
return false;
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_clause_routine_cannot_combine_same_device_type)
<< Clause.getClauseKind()
<< (*ExistingProhibitedSinceLastDevice)->getClauseKind();
SemaRef.Diag((*ExistingProhibitedSinceLastDevice)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*ExistingProhibitedSinceLastDevice)->getClauseKind();
SemaRef.Diag((*LastDeviceType)->getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Active << (*LastDeviceType)->getClauseKind();
return true;
}
// Routine has a pretty complicated set of rules for how device_type and the
// gang, worker, vector, and seq clauses work. So diagnose some of it here.
bool CheckValidRoutineGangWorkerVectorSeqNewClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (Clause.getClauseKind() != OpenACCClauseKind::Gang &&
Clause.getClauseKind() != OpenACCClauseKind::Vector &&
Clause.getClauseKind() != OpenACCClauseKind::Worker &&
Clause.getClauseKind() != OpenACCClauseKind::Seq)
return false;
auto ProhibitedPred = llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause,
OpenACCVectorClause, OpenACCSeqClause>;
return CheckValidRoutineNewClauseHelper(ProhibitedPred, Clause);
}
// Bind should have similar rules on a routine as gang/worker/vector/seq,
// except there is no 'must have 1' rule, so we can get all the checking done
// here.
bool
CheckValidRoutineBindNewClause(SemaOpenACC::OpenACCParsedClause &Clause) {
if (Clause.getClauseKind() != OpenACCClauseKind::Bind)
return false;
auto HasBindPred = llvm::IsaPred<OpenACCBindClause>;
return CheckValidRoutineNewClauseHelper(HasBindPred, Clause);
}
// For 'tile' and 'collapse', only allow 1 per 'device_type'.
// Also applies to num_worker, num_gangs, vector_length, and async.
// This does introspection into the actual device-types to prevent duplicates
// across device types as well.
template <typename TheClauseTy>
bool DisallowSinceLastDeviceType(SemaOpenACC::OpenACCParsedClause &Clause) {
auto LastDeviceTypeItr =
std::find_if(ExistingClauses.rbegin(), ExistingClauses.rend(),
llvm::IsaPred<OpenACCDeviceTypeClause>);
auto LastSinceDevTy =
std::find_if(ExistingClauses.rbegin(), LastDeviceTypeItr,
llvm::IsaPred<TheClauseTy>);
// In this case there is a duplicate since the last device_type/lack of a
// device_type. Diagnose these as duplicates.
if (LastSinceDevTy != LastDeviceTypeItr) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_clause_since_last_device_type)
<< Clause.getClauseKind() << Clause.getDirectiveKind()
<< (LastDeviceTypeItr != ExistingClauses.rend());
SemaRef.Diag((*LastSinceDevTy)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*LastSinceDevTy)->getClauseKind();
// Mention the last device_type as well.
if (LastDeviceTypeItr != ExistingClauses.rend())
SemaRef.Diag((*LastDeviceTypeItr)->getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Active
<< (*LastDeviceTypeItr)->getClauseKind();
return true;
}
// If this isn't in a device_type, and we didn't diagnose that there are
// dupes above, just give up, no sense in searching for previous device_type
// regions as they don't exist.
if (LastDeviceTypeItr == ExistingClauses.rend())
return false;
// The device-type that is active for us, so we can compare to the previous
// ones.
const auto &ActiveDeviceTypeClause =
cast<OpenACCDeviceTypeClause>(**LastDeviceTypeItr);
auto PrevDeviceTypeItr = LastDeviceTypeItr;
auto CurDevTypeItr = LastDeviceTypeItr;
while ((CurDevTypeItr = std::find_if(
std::next(PrevDeviceTypeItr), ExistingClauses.rend(),
llvm::IsaPred<OpenACCDeviceTypeClause>)) !=
ExistingClauses.rend()) {
// At this point, we know that we have a region between two device_types,
// as specified by CurDevTypeItr and PrevDeviceTypeItr.
auto CurClauseKindItr = std::find_if(PrevDeviceTypeItr, CurDevTypeItr,
llvm::IsaPred<TheClauseTy>);
// There are no clauses of the current kind between these device_types, so
// continue.
if (CurClauseKindItr == CurDevTypeItr) {
PrevDeviceTypeItr = CurDevTypeItr;
continue;
}
// At this point, we know that this device_type region has a collapse. So
// diagnose if the two device_types have any overlap in their
// architectures.
const auto &CurDeviceTypeClause =
cast<OpenACCDeviceTypeClause>(**CurDevTypeItr);
for (const DeviceTypeArgument &arg :
ActiveDeviceTypeClause.getArchitectures()) {
for (const DeviceTypeArgument &prevArg :
CurDeviceTypeClause.getArchitectures()) {
// This should catch duplicates * regions, duplicate same-text (thanks
// to identifier equiv.) and case insensitive dupes.
if (arg.getIdentifierInfo() == prevArg.getIdentifierInfo() ||
(arg.getIdentifierInfo() && prevArg.getIdentifierInfo() &&
StringRef{arg.getIdentifierInfo()->getName()}.equals_insensitive(
prevArg.getIdentifierInfo()->getName()))) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_clause_conflicts_prev_dev_type)
<< Clause.getClauseKind()
<< (arg.getIdentifierInfo() ? arg.getIdentifierInfo()->getName()
: "*");
// mention the active device type.
SemaRef.Diag(ActiveDeviceTypeClause.getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Active
<< ActiveDeviceTypeClause.getClauseKind();
// mention the previous clause.
SemaRef.Diag((*CurClauseKindItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*CurClauseKindItr)->getClauseKind();
// mention the previous device type.
SemaRef.Diag(CurDeviceTypeClause.getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Applies
<< CurDeviceTypeClause.getClauseKind();
return true;
}
}
}
PrevDeviceTypeItr = CurDevTypeItr;
}
return false;
}
public:
SemaOpenACCClauseVisitor(SemaOpenACC &S,
ArrayRef<const OpenACCClause *> ExistingClauses)
: SemaRef(S), Ctx(S.getASTContext()), ExistingClauses(ExistingClauses) {}
OpenACCClause *Visit(SemaOpenACC::OpenACCParsedClause &Clause) {
if (SemaRef.DiagnoseAllowedOnceClauses(
Clause.getDirectiveKind(), Clause.getClauseKind(),
Clause.getBeginLoc(), ExistingClauses) ||
SemaRef.DiagnoseExclusiveClauses(Clause.getDirectiveKind(),
Clause.getClauseKind(),
Clause.getBeginLoc(), ExistingClauses))
return nullptr;
if (CheckValidRoutineGangWorkerVectorSeqNewClause(Clause) ||
CheckValidRoutineBindNewClause(Clause))
return nullptr;
switch (Clause.getClauseKind()) {
case OpenACCClauseKind::Shortloop:
llvm_unreachable("Shortloop shouldn't be generated in clang");
case OpenACCClauseKind::Invalid:
return nullptr;
#define VISIT_CLAUSE(CLAUSE_NAME) \
case OpenACCClauseKind::CLAUSE_NAME: \
return Visit##CLAUSE_NAME##Clause(Clause);
#define CLAUSE_ALIAS(ALIAS, CLAUSE_NAME, DEPRECATED) \
case OpenACCClauseKind::ALIAS: \
if (DEPRECATED) \
SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_deprecated_alias_name) \
<< Clause.getClauseKind() << OpenACCClauseKind::CLAUSE_NAME; \
return Visit##CLAUSE_NAME##Clause(Clause);
#include "clang/Basic/OpenACCClauses.def"
}
llvm_unreachable("Invalid clause kind");
}
#define VISIT_CLAUSE(CLAUSE_NAME) \
OpenACCClause *Visit##CLAUSE_NAME##Clause( \
SemaOpenACC::OpenACCParsedClause &Clause);
#include "clang/Basic/OpenACCClauses.def"
};
OpenACCClause *SemaOpenACCClauseVisitor::VisitDefaultClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Don't add an invalid clause to the AST.
if (Clause.getDefaultClauseKind() == OpenACCDefaultClauseKind::Invalid)
return nullptr;
return OpenACCDefaultClause::Create(
Ctx, Clause.getDefaultClauseKind(), Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitTileClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCTileClause>(Clause))
return nullptr;
llvm::SmallVector<Expr *> NewSizeExprs;
// Make sure these are all positive constant expressions or *.
for (Expr *E : Clause.getIntExprs()) {
ExprResult Res = SemaRef.CheckTileSizeExpr(E);
if (!Res.isUsable())
return nullptr;
NewSizeExprs.push_back(Res.get());
}
return OpenACCTileClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), NewSizeExprs,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitIfClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// The parser has ensured that we have a proper condition expr, so there
// isn't really much to do here.
// If the 'if' clause is true, it makes the 'self' clause have no effect,
// diagnose that here. This only applies on compute/combined constructs.
if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Update) {
const auto *Itr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCSelfClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_if_self_conflict);
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
}
}
return OpenACCIfClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getConditionExpr(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitSelfClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// If the 'if' clause is true, it makes the 'self' clause have no effect,
// diagnose that here. This only applies on compute/combined constructs.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Update)
return OpenACCSelfClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
const auto *Itr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCIfClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_if_self_conflict);
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
}
return OpenACCSelfClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getConditionExpr(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitNumGangsClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCNumGangsClause>(Clause))
return nullptr;
// num_gangs requires at least 1 int expr in all forms. Diagnose here, but
// allow us to continue, an empty clause might be useful for future
// diagnostics.
if (Clause.getIntExprs().empty())
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_num_gangs_num_args)
<< /*NoArgs=*/0;
unsigned MaxArgs =
(Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel ||
Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop)
? 3
: 1;
// The max number of args differs between parallel and other constructs.
// Again, allow us to continue for the purposes of future diagnostics.
if (Clause.getIntExprs().size() > MaxArgs)
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_num_gangs_num_args)
<< /*NoArgs=*/1 << Clause.getDirectiveKind() << MaxArgs
<< Clause.getIntExprs().size();
// OpenACC 3.3 Section 2.9.11: A reduction clause may not appear on a loop
// directive that has a gang clause and is within a compute construct that has
// a num_gangs clause with more than one explicit argument.
if (Clause.getIntExprs().size() > 1 &&
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())) {
auto *GangClauseItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCGangClause>);
auto *ReductionClauseItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (GangClauseItr != ExistingClauses.end() &&
ReductionClauseItr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_gang_reduction_numgangs_conflict)
<< OpenACCClauseKind::Reduction << OpenACCClauseKind::Gang
<< Clause.getDirectiveKind() << /*is on combined directive=*/1;
SemaRef.Diag((*ReductionClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*ReductionClauseItr)->getClauseKind();
SemaRef.Diag((*GangClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*GangClauseItr)->getClauseKind();
return nullptr;
}
}
// OpenACC 3.3 Section 2.5.4:
// A reduction clause may not appear on a parallel construct with a
// num_gangs clause that has more than one argument.
if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel ||
Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop) &&
Clause.getIntExprs().size() > 1) {
auto *Parallel =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (Parallel != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_reduction_num_gangs_conflict)
<< /*>1 arg in first loc=*/1 << Clause.getClauseKind()
<< Clause.getDirectiveKind() << OpenACCClauseKind::Reduction;
SemaRef.Diag((*Parallel)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*Parallel)->getClauseKind();
return nullptr;
}
}
// OpenACC 3.3 Section 2.9.2:
// An argument with no keyword or with the 'num' keyword is allowed only when
// the 'num_gangs' does not appear on the 'kernel' construct.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) {
auto GangClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCGangClause>);
for (auto *GC : GangClauses) {
if (cast<OpenACCGangClause>(GC)->hasExprOfKind(OpenACCGangKind::Num)) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_num_arg_conflict_reverse)
<< OpenACCClauseKind::NumGangs << OpenACCClauseKind::Gang
<< /*Num argument*/ 1;
SemaRef.Diag(GC->getBeginLoc(), diag::note_acc_previous_clause_here)
<< GC->getClauseKind();
return nullptr;
}
}
}
return OpenACCNumGangsClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitNumWorkersClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCNumWorkersClause>(Clause))
return nullptr;
// OpenACC 3.3 Section 2.9.2:
// An argument is allowed only when the 'num_workers' does not appear on the
// kernels construct.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) {
auto WorkerClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCWorkerClause>);
for (auto *WC : WorkerClauses) {
if (cast<OpenACCWorkerClause>(WC)->hasIntExpr()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_num_arg_conflict_reverse)
<< OpenACCClauseKind::NumWorkers << OpenACCClauseKind::Worker
<< /*num argument*/ 0;
SemaRef.Diag(WC->getBeginLoc(), diag::note_acc_previous_clause_here)
<< WC->getClauseKind();
return nullptr;
}
}
}
assert(Clause.getIntExprs().size() == 1 &&
"Invalid number of expressions for NumWorkers");
return OpenACCNumWorkersClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs()[0],
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitVectorLengthClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCVectorLengthClause>(Clause))
return nullptr;
// OpenACC 3.3 Section 2.9.4:
// An argument is allowed only when the 'vector_length' does not appear on the
// 'kernels' construct.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) {
auto VectorClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCVectorClause>);
for (auto *VC : VectorClauses) {
if (cast<OpenACCVectorClause>(VC)->hasIntExpr()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_num_arg_conflict_reverse)
<< OpenACCClauseKind::VectorLength << OpenACCClauseKind::Vector
<< /*num argument*/ 0;
SemaRef.Diag(VC->getBeginLoc(), diag::note_acc_previous_clause_here)
<< VC->getClauseKind();
return nullptr;
}
}
}
assert(Clause.getIntExprs().size() == 1 &&
"Invalid number of expressions for NumWorkers");
return OpenACCVectorLengthClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs()[0],
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitAsyncClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCAsyncClause>(Clause))
return nullptr;
assert(Clause.getNumIntExprs() < 2 &&
"Invalid number of expressions for Async");
return OpenACCAsyncClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceNumClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
assert(Clause.getNumIntExprs() == 1 &&
"Invalid number of expressions for device_num");
return OpenACCDeviceNumClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs()[0],
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDefaultAsyncClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
assert(Clause.getNumIntExprs() == 1 &&
"Invalid number of expressions for default_async");
return OpenACCDefaultAsyncClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs()[0],
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitPrivateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCPrivateClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitFirstPrivateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCFirstPrivateClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitNoCreateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCNoCreateClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitPresentClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
return nullptr;
return OpenACCPresentClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitHostClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCHostClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCDeviceClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
OpenACCModifierKind NewMods =
CheckModifierList(Clause, Clause.getModifierList());
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, NewMods))
return nullptr;
return OpenACCCopyClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getModifierList(), Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitLinkClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
return nullptr;
Clause.setVarListDetails(SemaRef.CheckLinkClauseVarList(Clause.getVarList()),
OpenACCModifierKind::Invalid);
return OpenACCLinkClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceResidentClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
return nullptr;
return OpenACCDeviceResidentClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyInClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
OpenACCModifierKind NewMods =
CheckModifierList(Clause, Clause.getModifierList());
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, NewMods))
return nullptr;
return OpenACCCopyInClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getModifierList(), Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyOutClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
OpenACCModifierKind NewMods =
CheckModifierList(Clause, Clause.getModifierList());
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, NewMods))
return nullptr;
return OpenACCCopyOutClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getModifierList(), Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCreateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
OpenACCModifierKind NewMods =
CheckModifierList(Clause, Clause.getModifierList());
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, NewMods))
return nullptr;
return OpenACCCreateClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getModifierList(), Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitAttachClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, but we
// still have to make sure it is a pointer type.
llvm::SmallVector<Expr *> VarList{Clause.getVarList()};
llvm::erase_if(VarList, [&](Expr *E) {
return SemaRef.CheckVarIsPointerType(OpenACCClauseKind::Attach, E);
});
Clause.setVarListDetails(VarList, OpenACCModifierKind::Invalid);
return OpenACCAttachClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDetachClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, but we
// still have to make sure it is a pointer type.
llvm::SmallVector<Expr *> VarList{Clause.getVarList()};
llvm::erase_if(VarList, [&](Expr *E) {
return SemaRef.CheckVarIsPointerType(OpenACCClauseKind::Detach, E);
});
Clause.setVarListDetails(VarList, OpenACCModifierKind::Invalid);
return OpenACCDetachClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDeleteClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCDeleteClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitUseDeviceClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable or array, so nothing
// left to do here.
return OpenACCUseDeviceClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDevicePtrClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, but we
// still have to make sure it is a pointer type.
llvm::SmallVector<Expr *> VarList{Clause.getVarList()};
llvm::erase_if(VarList, [&](Expr *E) {
return SemaRef.CheckVarIsPointerType(OpenACCClauseKind::DevicePtr, E);
});
Clause.setVarListDetails(VarList, OpenACCModifierKind::Invalid);
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
return nullptr;
return OpenACCDevicePtrClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitWaitClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
return OpenACCWaitClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getDevNumExpr(),
Clause.getQueuesLoc(), Clause.getQueueIdExprs(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceTypeClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Based on discussions, having more than 1 'architecture' on a 'set' is
// nonsensical, so we're going to fix the standard to reflect this. Implement
// the limitation, since the Dialect requires this.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Set &&
Clause.getDeviceTypeArchitectures().size() > 1) {
SemaRef.Diag(Clause.getDeviceTypeArchitectures()[1].getLoc(),
diag::err_acc_device_type_multiple_archs);
return nullptr;
}
// The list of valid device_type values. Flang also has these hardcoded in
// openacc_parsers.cpp, as there does not seem to be a reliable backend
// source. The list below is sourced from Flang, though NVC++ supports only
// 'nvidia', 'host', 'multicore', and 'default'.
const std::array<llvm::StringLiteral, 6> ValidValues{
"default", "nvidia", "acc_device_nvidia", "radeon", "host", "multicore"};
// As an optimization, we have a manually maintained list of valid values
// below, rather than trying to calculate from above. These should be kept in
// sync if/when the above list ever changes.
std::string ValidValuesString =
"'default', 'nvidia', 'acc_device_nvidia', 'radeon', 'host', 'multicore'";
llvm::SmallVector<DeviceTypeArgument> Architectures{
Clause.getDeviceTypeArchitectures()};
// The parser has ensured that we either have a single entry of just '*'
// (represented by a nullptr IdentifierInfo), or a list.
bool Diagnosed = false;
auto FilterPred = [&](const DeviceTypeArgument &Arch) {
// The '*' case.
if (!Arch.getIdentifierInfo())
return false;
return llvm::find_if(ValidValues, [&](StringRef RHS) {
return Arch.getIdentifierInfo()->getName().equals_insensitive(RHS);
}) == ValidValues.end();
};
auto Diagnose = [&](const DeviceTypeArgument &Arch) {
Diagnosed = SemaRef.Diag(Arch.getLoc(), diag::err_acc_invalid_default_type)
<< Arch.getIdentifierInfo() << Clause.getClauseKind()
<< ValidValuesString;
};
// There aren't stable enumertor versions of 'for-each-then-erase', so do it
// here. We DO keep track of whether we diagnosed something to make sure we
// don't do the 'erase_if' in the event that the first list didn't find
// anything.
llvm::for_each(llvm::make_filter_range(Architectures, FilterPred), Diagnose);
if (Diagnosed)
llvm::erase_if(Architectures, FilterPred);
return OpenACCDeviceTypeClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Architectures, Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitAutoClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
return OpenACCAutoClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitNoHostClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
return OpenACCNoHostClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitIndependentClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
return OpenACCIndependentClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
ExprResult CheckGangStaticExpr(SemaOpenACC &S, Expr *E) {
if (isa<OpenACCAsteriskSizeExpr>(E))
return E;
return S.ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Gang,
E->getBeginLoc(), E);
}
bool IsOrphanLoop(OpenACCDirectiveKind DK, OpenACCDirectiveKind AssocKind) {
return DK == OpenACCDirectiveKind::Loop &&
AssocKind == OpenACCDirectiveKind::Invalid;
}
bool HasAssocKind(OpenACCDirectiveKind DK, OpenACCDirectiveKind AssocKind) {
return DK == OpenACCDirectiveKind::Loop &&
AssocKind != OpenACCDirectiveKind::Invalid;
}
ExprResult DiagIntArgInvalid(SemaOpenACC &S, Expr *E, OpenACCGangKind GK,
OpenACCClauseKind CK, OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind) {
S.Diag(E->getBeginLoc(), diag::err_acc_int_arg_invalid)
<< GK << CK << IsOrphanLoop(DK, AssocKind) << DK
<< HasAssocKind(DK, AssocKind) << AssocKind;
return ExprError();
}
ExprResult DiagIntArgInvalid(SemaOpenACC &S, Expr *E, StringRef TagKind,
OpenACCClauseKind CK, OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind) {
S.Diag(E->getBeginLoc(), diag::err_acc_int_arg_invalid)
<< TagKind << CK << IsOrphanLoop(DK, AssocKind) << DK
<< HasAssocKind(DK, AssocKind) << AssocKind;
return ExprError();
}
ExprResult CheckGangDimExpr(SemaOpenACC &S, Expr *E) {
// OpenACC 3.3 2.9.2: When the parent compute construct is a parallel
// construct, or an orphaned loop construct, the gang clause behaves as
// follows. ... The dim argument must be a constant positive integer value
// 1, 2, or 3.
// -also-
// OpenACC 3.3 2.15: The 'dim' argument must be a constant positive integer
// with value 1, 2, or 3.
if (!E)
return ExprError();
ExprResult Res = S.ActOnIntExpr(OpenACCDirectiveKind::Invalid,
OpenACCClauseKind::Gang, E->getBeginLoc(), E);
if (!Res.isUsable())
return Res;
if (Res.get()->isInstantiationDependent())
return Res;
std::optional<llvm::APSInt> ICE =
Res.get()->getIntegerConstantExpr(S.getASTContext());
if (!ICE || *ICE <= 0 || ICE > 3) {
S.Diag(Res.get()->getBeginLoc(), diag::err_acc_gang_dim_value)
<< ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
return ExprError();
}
return ExprResult{
ConstantExpr::Create(S.getASTContext(), Res.get(), APValue{*ICE})};
}
ExprResult CheckGangParallelExpr(SemaOpenACC &S, OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind,
OpenACCGangKind GK, Expr *E) {
switch (GK) {
case OpenACCGangKind::Static:
return CheckGangStaticExpr(S, E);
case OpenACCGangKind::Num:
// OpenACC 3.3 2.9.2: When the parent compute construct is a parallel
// construct, or an orphaned loop construct, the gang clause behaves as
// follows. ... The num argument is not allowed.
return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
case OpenACCGangKind::Dim:
return CheckGangDimExpr(S, E);
}
llvm_unreachable("Unknown gang kind in gang parallel check");
}
ExprResult CheckGangKernelsExpr(SemaOpenACC &S,
ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind,
OpenACCGangKind GK, Expr *E) {
switch (GK) {
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The dim argument is
// not allowed.
case OpenACCGangKind::Dim:
return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
case OpenACCGangKind::Num: {
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... An argument with no
// keyword or with num keyword is only allowed when num_gangs does not
// appear on the kernels construct. ... The region of a loop with the gang
// clause may not contain another loop with a gang clause unless within a
// nested compute region.
// If this is a 'combined' construct, search the list of existing clauses.
// Else we need to search the containing 'kernel'.
auto Collection = isOpenACCCombinedDirectiveKind(DK)
? ExistingClauses
: S.getActiveComputeConstructInfo().Clauses;
const auto *Itr =
llvm::find_if(Collection, llvm::IsaPred<OpenACCNumGangsClause>);
if (Itr != Collection.end()) {
S.Diag(E->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< "num" << OpenACCClauseKind::Gang << DK
<< HasAssocKind(DK, AssocKind) << AssocKind
<< OpenACCClauseKind::NumGangs;
S.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
return ExprError();
}
return ExprResult{E};
}
case OpenACCGangKind::Static:
return CheckGangStaticExpr(S, E);
}
llvm_unreachable("Unknown gang kind in gang kernels check");
}
ExprResult CheckGangSerialExpr(SemaOpenACC &S, OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind,
OpenACCGangKind GK, Expr *E) {
switch (GK) {
// 'dim' and 'num' don't really make sense on serial, and GCC rejects them
// too, so we disallow them too.
case OpenACCGangKind::Dim:
case OpenACCGangKind::Num:
return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
case OpenACCGangKind::Static:
return CheckGangStaticExpr(S, E);
}
llvm_unreachable("Unknown gang kind in gang serial check");
}
ExprResult CheckGangRoutineExpr(SemaOpenACC &S, OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind,
OpenACCGangKind GK, Expr *E) {
switch (GK) {
// Only 'dim' is allowed on a routine, so diallow num and static.
case OpenACCGangKind::Num:
case OpenACCGangKind::Static:
return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
case OpenACCGangKind::Dim:
return CheckGangDimExpr(S, E);
}
llvm_unreachable("Unknown gang kind in gang serial check");
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitVectorClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DiagGangWorkerVectorSeqConflict(Clause))
return nullptr;
Expr *IntExpr =
Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr;
if (IntExpr) {
switch (Clause.getDirectiveKind()) {
default:
llvm_unreachable("Invalid directive kind for this clause");
case OpenACCDirectiveKind::Loop:
switch (SemaRef.getActiveComputeConstructInfo().Kind) {
case OpenACCDirectiveKind::Invalid:
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
// No restriction on when 'parallel' can contain an argument.
break;
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::SerialLoop:
// GCC disallows this, and there is no real good reason for us to permit
// it, so disallow until we come up with a use case that makes sense.
DiagIntArgInvalid(SemaRef, IntExpr, "length", OpenACCClauseKind::Vector,
Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind);
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::KernelsLoop: {
const auto *Itr =
llvm::find_if(SemaRef.getActiveComputeConstructInfo().Clauses,
llvm::IsaPred<OpenACCVectorLengthClause>);
if (Itr != SemaRef.getActiveComputeConstructInfo().Clauses.end()) {
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< "length" << OpenACCClauseKind::Vector
<< Clause.getDirectiveKind()
<< HasAssocKind(Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind)
<< SemaRef.getActiveComputeConstructInfo().Kind
<< OpenACCClauseKind::VectorLength;
SemaRef.Diag((*Itr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
IntExpr = nullptr;
}
break;
}
default:
llvm_unreachable("Non compute construct in active compute construct");
}
break;
case OpenACCDirectiveKind::KernelsLoop: {
const auto *Itr = llvm::find_if(ExistingClauses,
llvm::IsaPred<OpenACCVectorLengthClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< "length" << OpenACCClauseKind::Vector
<< Clause.getDirectiveKind()
<< HasAssocKind(Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind)
<< SemaRef.getActiveComputeConstructInfo().Kind
<< OpenACCClauseKind::VectorLength;
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
IntExpr = nullptr;
}
break;
}
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Routine:
DiagIntArgInvalid(SemaRef, IntExpr, "length", OpenACCClauseKind::Vector,
Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind);
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::ParallelLoop:
break;
case OpenACCDirectiveKind::Invalid:
// This can happen when the directive was not recognized, but we continued
// anyway. Since there is a lot of stuff that can happen (including
// 'allow anything' in the parallel loop case), just skip all checking and
// continue.
break;
}
}
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
// OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not
// contain a loop with a gang, worker, or vector clause unless within a
// nested compute region.
if (SemaRef.LoopVectorClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Vector << OpenACCClauseKind::Vector
<< /*skip kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopVectorClauseLoc,
diag::note_acc_previous_clause_here)
<< "vector";
return nullptr;
}
}
return OpenACCVectorClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), IntExpr,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitWorkerClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DiagGangWorkerVectorSeqConflict(Clause))
return nullptr;
Expr *IntExpr =
Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr;
if (IntExpr) {
switch (Clause.getDirectiveKind()) {
default:
llvm_unreachable("Invalid directive kind for this clause");
case OpenACCDirectiveKind::Invalid:
// This can happen in cases where the directive was not recognized but we
// continued anyway. Kernels allows kind of any integer argument, so we
// can assume it is that (rather than marking the argument invalid like
// with parallel/serial/routine), and just continue as if nothing
// happened. We'll skip the 'kernels' checking vs num-workers, since this
// MIGHT be something else.
break;
case OpenACCDirectiveKind::Loop:
switch (SemaRef.getActiveComputeConstructInfo().Kind) {
case OpenACCDirectiveKind::Invalid:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
DiagIntArgInvalid(SemaRef, IntExpr, OpenACCGangKind::Num,
OpenACCClauseKind::Worker, Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind);
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Kernels: {
const auto *Itr =
llvm::find_if(SemaRef.getActiveComputeConstructInfo().Clauses,
llvm::IsaPred<OpenACCNumWorkersClause>);
if (Itr != SemaRef.getActiveComputeConstructInfo().Clauses.end()) {
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< "num" << OpenACCClauseKind::Worker << Clause.getDirectiveKind()
<< HasAssocKind(Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind)
<< SemaRef.getActiveComputeConstructInfo().Kind
<< OpenACCClauseKind::NumWorkers;
SemaRef.Diag((*Itr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
IntExpr = nullptr;
}
break;
}
default:
llvm_unreachable("Non compute construct in active compute construct");
}
break;
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Routine:
DiagIntArgInvalid(SemaRef, IntExpr, OpenACCGangKind::Num,
OpenACCClauseKind::Worker, Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind);
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::KernelsLoop: {
const auto *Itr = llvm::find_if(ExistingClauses,
llvm::IsaPred<OpenACCNumWorkersClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< "num" << OpenACCClauseKind::Worker << Clause.getDirectiveKind()
<< HasAssocKind(Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind)
<< SemaRef.getActiveComputeConstructInfo().Kind
<< OpenACCClauseKind::NumWorkers;
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
IntExpr = nullptr;
}
}
}
}
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
// OpenACC 3.3 2.9.3: The region of a loop with a 'worker' clause may not
// contain a loop with a gang or worker clause unless within a nested
// compute region.
if (SemaRef.LoopWorkerClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Worker << OpenACCClauseKind::Worker
<< /*skip kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopWorkerClauseLoc,
diag::note_acc_previous_clause_here)
<< "worker";
return nullptr;
}
// OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not
// contain a loop with a gang, worker, or vector clause unless within a
// nested compute region.
if (SemaRef.LoopVectorClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Worker << OpenACCClauseKind::Vector
<< /*skip kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopVectorClauseLoc,
diag::note_acc_previous_clause_here)
<< "vector";
return nullptr;
}
}
return OpenACCWorkerClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), IntExpr,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitGangClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DiagGangWorkerVectorSeqConflict(Clause))
return nullptr;
// OpenACC 3.3 Section 2.9.11: A reduction clause may not appear on a loop
// directive that has a gang clause and is within a compute construct that has
// a num_gangs clause with more than one explicit argument.
if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop &&
SemaRef.getActiveComputeConstructInfo().Kind !=
OpenACCDirectiveKind::Invalid) ||
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())) {
// num_gangs clause on the active compute construct.
auto ActiveComputeConstructContainer =
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())
? ExistingClauses
: SemaRef.getActiveComputeConstructInfo().Clauses;
auto *NumGangsClauseItr = llvm::find_if(
ActiveComputeConstructContainer, llvm::IsaPred<OpenACCNumGangsClause>);
if (NumGangsClauseItr != ActiveComputeConstructContainer.end() &&
cast<OpenACCNumGangsClause>(*NumGangsClauseItr)->getIntExprs().size() >
1) {
auto *ReductionClauseItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (ReductionClauseItr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_gang_reduction_numgangs_conflict)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Reduction
<< Clause.getDirectiveKind()
<< isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind());
SemaRef.Diag((*ReductionClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*ReductionClauseItr)->getClauseKind();
SemaRef.Diag((*NumGangsClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*NumGangsClauseItr)->getClauseKind();
return nullptr;
}
}
}
llvm::SmallVector<OpenACCGangKind> GangKinds;
llvm::SmallVector<Expr *> IntExprs;
// Store the existing locations, so we can do duplicate checking. Index is
// the int-value of the OpenACCGangKind enum.
SourceLocation ExistingElemLoc[3];
for (unsigned I = 0; I < Clause.getIntExprs().size(); ++I) {
OpenACCGangKind GK = Clause.getGangKinds()[I];
ExprResult ER =
SemaRef.CheckGangExpr(ExistingClauses, Clause.getDirectiveKind(), GK,
Clause.getIntExprs()[I]);
if (!ER.isUsable())
continue;
// OpenACC 3.3 2.9: 'gang-arg-list' may have at most one num, one dim, and
// one static argument.
if (ExistingElemLoc[static_cast<unsigned>(GK)].isValid()) {
SemaRef.Diag(ER.get()->getBeginLoc(), diag::err_acc_gang_multiple_elt)
<< static_cast<unsigned>(GK);
SemaRef.Diag(ExistingElemLoc[static_cast<unsigned>(GK)],
diag::note_acc_previous_expr_here);
continue;
}
ExistingElemLoc[static_cast<unsigned>(GK)] = ER.get()->getBeginLoc();
GangKinds.push_back(GK);
IntExprs.push_back(ER.get());
}
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
if (SemaRef.LoopGangClauseOnKernel.Loc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Gang
<< /*kernels construct info*/ 1
<< SemaRef.LoopGangClauseOnKernel.DirKind;
SemaRef.Diag(SemaRef.LoopGangClauseOnKernel.Loc,
diag::note_acc_previous_clause_here)
<< "gang";
return nullptr;
}
// OpenACC 3.3 2.9.3: The region of a loop with a 'worker' clause may not
// contain a loop with a gang or worker clause unless within a nested
// compute region.
if (SemaRef.LoopWorkerClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Worker
<< /*!kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopWorkerClauseLoc,
diag::note_acc_previous_clause_here)
<< "worker";
return nullptr;
}
// OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not
// contain a loop with a gang, worker, or vector clause unless within a
// nested compute region.
if (SemaRef.LoopVectorClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Vector
<< /*!kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopVectorClauseLoc,
diag::note_acc_previous_clause_here)
<< "vector";
return nullptr;
}
}
return SemaRef.CheckGangClause(Clause.getDirectiveKind(), ExistingClauses,
Clause.getBeginLoc(), Clause.getLParenLoc(),
GangKinds, IntExprs, Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitFinalizeClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// There isn't anything to do here, this is only valid on one construct, and
// has no associated rules.
return OpenACCFinalizeClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitIfPresentClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// There isn't anything to do here, this is only valid on one construct, and
// has no associated rules.
return OpenACCIfPresentClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitSeqClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// OpenACC 3.3 2.9:
// A 'gang', 'worker', or 'vector' clause may not appear if a 'seq' clause
// appears.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop ||
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())) {
const auto *Itr = llvm::find_if(
ExistingClauses, llvm::IsaPred<OpenACCGangClause, OpenACCVectorClause,
OpenACCWorkerClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_cannot_combine)
<< Clause.getClauseKind() << (*Itr)->getClauseKind()
<< Clause.getDirectiveKind();
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
return nullptr;
}
}
return OpenACCSeqClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitReductionClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// OpenACC 3.3 Section 2.9.11: A reduction clause may not appear on a loop
// directive that has a gang clause and is within a compute construct that has
// a num_gangs clause with more than one explicit argument.
if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop &&
SemaRef.getActiveComputeConstructInfo().Kind !=
OpenACCDirectiveKind::Invalid) ||
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())) {
// num_gangs clause on the active compute construct.
auto ActiveComputeConstructContainer =
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())
? ExistingClauses
: SemaRef.getActiveComputeConstructInfo().Clauses;
auto *NumGangsClauseItr = llvm::find_if(
ActiveComputeConstructContainer, llvm::IsaPred<OpenACCNumGangsClause>);
if (NumGangsClauseItr != ActiveComputeConstructContainer.end() &&
cast<OpenACCNumGangsClause>(*NumGangsClauseItr)->getIntExprs().size() >
1) {
auto *GangClauseItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCGangClause>);
if (GangClauseItr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_gang_reduction_numgangs_conflict)
<< OpenACCClauseKind::Reduction << OpenACCClauseKind::Gang
<< Clause.getDirectiveKind()
<< isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind());
SemaRef.Diag((*GangClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*GangClauseItr)->getClauseKind();
SemaRef.Diag((*NumGangsClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*NumGangsClauseItr)->getClauseKind();
return nullptr;
}
}
}
// OpenACC3.3 Section 2.9.11: If a variable is involved in a reduction that
// spans multiple nested loops where two or more of those loops have
// associated loop directives, a reduction clause containing that variable
// must appear on each of those loop directives.
//
// This can't really be implemented in the CFE, as this requires a level of
// rechability/useage analysis that we're not really wanting to get into.
// Additionally, I'm alerted that this restriction is one that the middle-end
// can just 'figure out' as an extension and isn't really necessary.
//
// OpenACC3.3 Section 2.9.11: Every 'var' in a reduction clause appearing on
// an orphaned loop construct must be private.
//
// This again is something we cannot really diagnose, as it requires we see
// all the uses/scopes of all variables referenced. The middle end/MLIR might
// be able to diagnose this.
// OpenACC 3.3 Section 2.5.4:
// A reduction clause may not appear on a parallel construct with a
// num_gangs clause that has more than one argument.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel ||
Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop) {
auto NumGangsClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCNumGangsClause>);
for (auto *NGC : NumGangsClauses) {
unsigned NumExprs =
cast<OpenACCNumGangsClause>(NGC)->getIntExprs().size();
if (NumExprs > 1) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_reduction_num_gangs_conflict)
<< /*>1 arg in first loc=*/0 << Clause.getClauseKind()
<< Clause.getDirectiveKind() << OpenACCClauseKind::NumGangs;
SemaRef.Diag(NGC->getBeginLoc(), diag::note_acc_previous_clause_here)
<< NGC->getClauseKind();
return nullptr;
}
}
}
SmallVector<Expr *> ValidVars;
for (Expr *Var : Clause.getVarList()) {
ExprResult Res = SemaRef.CheckReductionVar(Clause.getDirectiveKind(),
Clause.getReductionOp(), Var);
if (Res.isUsable())
ValidVars.push_back(Res.get());
}
return SemaRef.CheckReductionClause(
ExistingClauses, Clause.getDirectiveKind(), Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getReductionOp(), ValidVars,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCollapseClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCCollapseClause>(Clause))
return nullptr;
ExprResult LoopCount = SemaRef.CheckCollapseLoopCount(Clause.getLoopCount());
if (!LoopCount.isUsable())
return nullptr;
return OpenACCCollapseClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.isForce(),
LoopCount.get(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitBindClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (std::holds_alternative<StringLiteral *>(Clause.getBindDetails()))
return OpenACCBindClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(),
std::get<StringLiteral *>(Clause.getBindDetails()), Clause.getEndLoc());
return OpenACCBindClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(),
std::get<IdentifierInfo *>(Clause.getBindDetails()), Clause.getEndLoc());
}
// Return true if the two vars refer to the same variable, for the purposes of
// equality checking.
bool areVarsEqual(Expr *VarExpr1, Expr *VarExpr2) {
if (VarExpr1->isInstantiationDependent() ||
VarExpr2->isInstantiationDependent())
return false;
VarExpr1 = VarExpr1->IgnoreParenCasts();
VarExpr2 = VarExpr2->IgnoreParenCasts();
// Legal expressions can be: Scalar variable reference, sub-array, array
// element, or composite variable member.
// Sub-array.
if (isa<ArraySectionExpr>(VarExpr1)) {
auto *Expr2AS = dyn_cast<ArraySectionExpr>(VarExpr2);
if (!Expr2AS)
return false;
auto *Expr1AS = cast<ArraySectionExpr>(VarExpr1);
if (!areVarsEqual(Expr1AS->getBase(), Expr2AS->getBase()))
return false;
// We could possibly check to see if the ranges aren't overlapping, but it
// isn't clear that the rules allow this.
return true;
}
// Array-element.
if (isa<ArraySubscriptExpr>(VarExpr1)) {
auto *Expr2AS = dyn_cast<ArraySubscriptExpr>(VarExpr2);
if (!Expr2AS)
return false;
auto *Expr1AS = cast<ArraySubscriptExpr>(VarExpr1);
if (!areVarsEqual(Expr1AS->getBase(), Expr2AS->getBase()))
return false;
// We could possibly check to see if the elements referenced aren't the
// same, but it isn't clear by reading of the standard that this is allowed
// (and that the 'var' refered to isn't the array).
return true;
}
// Scalar variable reference, or composite variable.
if (isa<DeclRefExpr>(VarExpr1)) {
auto *Expr2DRE = dyn_cast<DeclRefExpr>(VarExpr2);
if (!Expr2DRE)
return false;
auto *Expr1DRE = cast<DeclRefExpr>(VarExpr1);
return Expr1DRE->getDecl()->getMostRecentDecl() ==
Expr2DRE->getDecl()->getMostRecentDecl();
}
llvm_unreachable("Unknown variable type encountered");
}
} // namespace
OpenACCClause *
SemaOpenACC::ActOnClause(ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCParsedClause &Clause) {
if (Clause.getClauseKind() == OpenACCClauseKind::Invalid)
return nullptr;
if (DiagnoseAllowedClauses(Clause.getDirectiveKind(), Clause.getClauseKind(),
Clause.getBeginLoc()))
return nullptr;
//// Diagnose that we don't support this clause on this directive.
// if (!doesClauseApplyToDirective(Clause.getDirectiveKind(),
// Clause.getClauseKind())) {
// Diag(Clause.getBeginLoc(), diag::err_acc_clause_appertainment)
// << Clause.getDirectiveKind() << Clause.getClauseKind();
// return nullptr;
// }
if (const auto *DevTypeClause = llvm::find_if(
ExistingClauses, llvm::IsaPred<OpenACCDeviceTypeClause>);
DevTypeClause != ExistingClauses.end()) {
if (checkValidAfterDeviceType(
*this, *cast<OpenACCDeviceTypeClause>(*DevTypeClause), Clause))
return nullptr;
}
SemaOpenACCClauseVisitor Visitor{*this, ExistingClauses};
OpenACCClause *Result = Visitor.Visit(Clause);
assert((!Result || Result->getClauseKind() == Clause.getClauseKind()) &&
"Created wrong clause?");
return Result;
}
/// OpenACC 3.3 section 2.5.15:
/// At a mininmum, the supported data types include ... the numerical data types
/// in C, C++, and Fortran.
///
/// If the reduction var is a composite variable, each
/// member of the composite variable must be a supported datatype for the
/// reduction operation.
ExprResult SemaOpenACC::CheckReductionVar(OpenACCDirectiveKind DirectiveKind,
OpenACCReductionOperator ReductionOp,
Expr *VarExpr) {
VarExpr = VarExpr->IgnoreParenCasts();
auto TypeIsValid = [](QualType Ty) {
return Ty->isDependentType() || Ty->isScalarType();
};
if (isa<ArraySectionExpr>(VarExpr)) {
Expr *ASExpr = VarExpr;
QualType BaseTy = ArraySectionExpr::getBaseOriginalType(ASExpr);
QualType EltTy = getASTContext().getBaseElementType(BaseTy);
if (!TypeIsValid(EltTy)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_type)
<< EltTy << /*Sub array base type*/ 1;
return ExprError();
}
} else if (auto *RD = VarExpr->getType()->getAsRecordDecl()) {
if (!RD->isStruct() && !RD->isClass()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*not class or struct*/ 0 << VarExpr->getType();
return ExprError();
}
if (!RD->isCompleteDefinition()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*incomplete*/ 1 << VarExpr->getType();
return ExprError();
}
if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
CXXRD && !CXXRD->isAggregate()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*aggregate*/ 2 << VarExpr->getType();
return ExprError();
}
for (FieldDecl *FD : RD->fields()) {
if (!TypeIsValid(FD->getType())) {
Diag(VarExpr->getExprLoc(),
diag::err_acc_reduction_composite_member_type);
Diag(FD->getLocation(), diag::note_acc_reduction_composite_member_loc);
return ExprError();
}
}
} else if (!TypeIsValid(VarExpr->getType())) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_type)
<< VarExpr->getType() << /*Sub array base type*/ 0;
return ExprError();
}
// OpenACC3.3: 2.9.11: Reduction clauses on nested constructs for the same
// reduction 'var' must have the same reduction operator.
if (!VarExpr->isInstantiationDependent()) {
for (const OpenACCReductionClause *RClause : ActiveReductionClauses) {
if (RClause->getReductionOp() == ReductionOp)
break;
for (Expr *OldVarExpr : RClause->getVarList()) {
if (OldVarExpr->isInstantiationDependent())
continue;
if (areVarsEqual(VarExpr, OldVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_reduction_op_mismatch)
<< ReductionOp << RClause->getReductionOp();
Diag(OldVarExpr->getExprLoc(), diag::note_acc_previous_clause_here)
<< RClause->getClauseKind();
return ExprError();
}
}
}
}
return VarExpr;
}
ExprResult SemaOpenACC::CheckTileSizeExpr(Expr *SizeExpr) {
if (!SizeExpr)
return ExprError();
assert((SizeExpr->isInstantiationDependent() ||
SizeExpr->getType()->isIntegerType()) &&
"size argument non integer?");
// If dependent, or an asterisk, the expression is fine.
if (SizeExpr->isInstantiationDependent() ||
isa<OpenACCAsteriskSizeExpr>(SizeExpr))
return ExprResult{SizeExpr};
std::optional<llvm::APSInt> ICE =
SizeExpr->getIntegerConstantExpr(getASTContext());
// OpenACC 3.3 2.9.8
// where each tile size is a constant positive integer expression or asterisk.
if (!ICE || *ICE <= 0) {
Diag(SizeExpr->getBeginLoc(), diag::err_acc_size_expr_value)
<< ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
return ExprError();
}
return ExprResult{
ConstantExpr::Create(getASTContext(), SizeExpr, APValue{*ICE})};
}
ExprResult SemaOpenACC::CheckCollapseLoopCount(Expr *LoopCount) {
if (!LoopCount)
return ExprError();
assert((LoopCount->isInstantiationDependent() ||
LoopCount->getType()->isIntegerType()) &&
"Loop argument non integer?");
// If this is dependent, there really isn't anything we can check.
if (LoopCount->isInstantiationDependent())
return ExprResult{LoopCount};
std::optional<llvm::APSInt> ICE =
LoopCount->getIntegerConstantExpr(getASTContext());
// OpenACC 3.3: 2.9.1
// The argument to the collapse clause must be a constant positive integer
// expression.
if (!ICE || *ICE <= 0) {
Diag(LoopCount->getBeginLoc(), diag::err_acc_collapse_loop_count)
<< ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
return ExprError();
}
return ExprResult{
ConstantExpr::Create(getASTContext(), LoopCount, APValue{*ICE})};
}
ExprResult
SemaOpenACC::CheckGangExpr(ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCDirectiveKind DK, OpenACCGangKind GK,
Expr *E) {
// There are two cases for the enforcement here: the 'current' directive is a
// 'loop', where we need to check the active compute construct kind, or the
// current directive is a 'combined' construct, where we have to check the
// current one.
switch (DK) {
case OpenACCDirectiveKind::ParallelLoop:
return CheckGangParallelExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
E);
case OpenACCDirectiveKind::SerialLoop:
return CheckGangSerialExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
E);
case OpenACCDirectiveKind::KernelsLoop:
return CheckGangKernelsExpr(*this, ExistingClauses, DK,
ActiveComputeConstructInfo.Kind, GK, E);
case OpenACCDirectiveKind::Routine:
return CheckGangRoutineExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
E);
case OpenACCDirectiveKind::Loop:
switch (ActiveComputeConstructInfo.Kind) {
case OpenACCDirectiveKind::Invalid:
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
return CheckGangParallelExpr(*this, DK, ActiveComputeConstructInfo.Kind,
GK, E);
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Serial:
return CheckGangSerialExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
E);
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Kernels:
return CheckGangKernelsExpr(*this, ExistingClauses, DK,
ActiveComputeConstructInfo.Kind, GK, E);
default:
llvm_unreachable("Non compute construct in active compute construct?");
}
case OpenACCDirectiveKind::Invalid:
// This can happen in cases where the the directive was not recognized but
// we continued anyway. Since the validity checking is all-over the place
// (it can be a star/integer, or a constant expr depending on the tag), we
// just give up and return an ExprError here.
return ExprError();
default:
llvm_unreachable("Invalid directive kind for a Gang clause");
}
llvm_unreachable("Compute construct directive not handled?");
}
OpenACCClause *
SemaOpenACC::CheckGangClause(OpenACCDirectiveKind DirKind,
ArrayRef<const OpenACCClause *> ExistingClauses,
SourceLocation BeginLoc, SourceLocation LParenLoc,
ArrayRef<OpenACCGangKind> GangKinds,
ArrayRef<Expr *> IntExprs, SourceLocation EndLoc) {
// Reduction isn't possible on 'routine' so we don't bother checking it here.
if (DirKind != OpenACCDirectiveKind::Routine) {
// OpenACC 3.3 2.9.11: A reduction clause may not appear on a loop directive
// that has a gang clause with a dim: argument whose value is greater
// than 1.
const auto *ReductionItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (ReductionItr != ExistingClauses.end()) {
const auto GangZip = llvm::zip_equal(GangKinds, IntExprs);
const auto GangItr = llvm::find_if(GangZip, [](const auto &Tuple) {
return std::get<0>(Tuple) == OpenACCGangKind::Dim;
});
if (GangItr != GangZip.end()) {
const Expr *DimExpr = std::get<1>(*GangItr);
assert((DimExpr->isInstantiationDependent() ||
isa<ConstantExpr>(DimExpr)) &&
"Improperly formed gang argument");
if (const auto *DimVal = dyn_cast<ConstantExpr>(DimExpr);
DimVal && DimVal->getResultAsAPSInt() > 1) {
Diag(DimVal->getBeginLoc(), diag::err_acc_gang_reduction_conflict)
<< /*gang/reduction=*/0 << DirKind;
Diag((*ReductionItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*ReductionItr)->getClauseKind();
return nullptr;
}
}
}
}
return OpenACCGangClause::Create(getASTContext(), BeginLoc, LParenLoc,
GangKinds, IntExprs, EndLoc);
}
OpenACCClause *SemaOpenACC::CheckReductionClause(
ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCDirectiveKind DirectiveKind, SourceLocation BeginLoc,
SourceLocation LParenLoc, OpenACCReductionOperator ReductionOp,
ArrayRef<Expr *> Vars, SourceLocation EndLoc) {
if (DirectiveKind == OpenACCDirectiveKind::Loop ||
isOpenACCCombinedDirectiveKind(DirectiveKind)) {
// OpenACC 3.3 2.9.11: A reduction clause may not appear on a loop directive
// that has a gang clause with a dim: argument whose value is greater
// than 1.
const auto GangClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCGangClause>);
for (auto *GC : GangClauses) {
const auto *GangClause = cast<OpenACCGangClause>(GC);
for (unsigned I = 0; I < GangClause->getNumExprs(); ++I) {
std::pair<OpenACCGangKind, const Expr *> EPair = GangClause->getExpr(I);
if (EPair.first != OpenACCGangKind::Dim)
continue;
if (const auto *DimVal = dyn_cast<ConstantExpr>(EPair.second);
DimVal && DimVal->getResultAsAPSInt() > 1) {
Diag(BeginLoc, diag::err_acc_gang_reduction_conflict)
<< /*reduction/gang=*/1 << DirectiveKind;
Diag(GangClause->getBeginLoc(), diag::note_acc_previous_clause_here)
<< GangClause->getClauseKind();
return nullptr;
}
}
}
}
auto *Ret = OpenACCReductionClause::Create(
getASTContext(), BeginLoc, LParenLoc, ReductionOp, Vars, EndLoc);
return Ret;
}
llvm::SmallVector<Expr *>
SemaOpenACC::CheckLinkClauseVarList(ArrayRef<Expr *> VarExprs) {
const DeclContext *DC = removeLinkageSpecDC(getCurContext());
// Link has no special restrictions on its var list unless it is not at NS/TU
// scope.
if (isa<NamespaceDecl, TranslationUnitDecl>(DC))
return llvm::SmallVector<Expr *>(VarExprs);
llvm::SmallVector<Expr *> NewVarList;
for (Expr *VarExpr : VarExprs) {
if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(VarExpr)) {
NewVarList.push_back(VarExpr);
continue;
}
// Field decls can't be global, nor extern, and declare can't refer to
// non-static fields in class-scope, so this always fails the scope check.
// BUT for now we add this so it gets diagnosed by the general 'declare'
// rules.
if (isa<MemberExpr>(VarExpr)) {
NewVarList.push_back(VarExpr);
continue;
}
const auto *DRE = cast<DeclRefExpr>(VarExpr);
const VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl());
if (!Var || !Var->hasExternalStorage())
Diag(VarExpr->getBeginLoc(), diag::err_acc_link_not_extern);
else
NewVarList.push_back(VarExpr);
}
return NewVarList;
}
bool SemaOpenACC::CheckDeclareClause(SemaOpenACC::OpenACCParsedClause &Clause,
OpenACCModifierKind Mods) {
if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Declare)
return false;
const DeclContext *DC = removeLinkageSpecDC(getCurContext());
// Whether this is 'create', 'copyin', 'deviceptr', 'device_resident', or
// 'link', which have 2 special rules.
bool IsSpecialClause =
Clause.getClauseKind() == OpenACCClauseKind::Create ||
Clause.getClauseKind() == OpenACCClauseKind::CopyIn ||
Clause.getClauseKind() == OpenACCClauseKind::DevicePtr ||
Clause.getClauseKind() == OpenACCClauseKind::DeviceResident ||
Clause.getClauseKind() == OpenACCClauseKind::Link;
// OpenACC 3.3 2.13:
// In C or C++ global or namespace scope, only 'create',
// 'copyin', 'deviceptr', 'device_resident', or 'link' clauses are
// allowed.
if (!IsSpecialClause && isa<NamespaceDecl, TranslationUnitDecl>(DC)) {
return Diag(Clause.getBeginLoc(), diag::err_acc_declare_clause_at_global)
<< Clause.getClauseKind();
}
llvm::SmallVector<Expr *> FilteredVarList;
const DeclaratorDecl *CurDecl = nullptr;
for (Expr *VarExpr : Clause.getVarList()) {
if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(VarExpr)) {
// There isn't really anything we can do here, so we add them anyway and
// we can check them again when we instantiate this.
} else if (const auto *MemExpr = dyn_cast<MemberExpr>(VarExpr)) {
FieldDecl *FD =
cast<FieldDecl>(MemExpr->getMemberDecl()->getCanonicalDecl());
CurDecl = FD;
if (removeLinkageSpecDC(
FD->getLexicalDeclContext()->getPrimaryContext()) != DC) {
Diag(MemExpr->getBeginLoc(), diag::err_acc_declare_same_scope)
<< Clause.getClauseKind();
continue;
}
} else {
const auto *DRE = cast<DeclRefExpr>(VarExpr);
if (const auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
CurDecl = Var->getCanonicalDecl();
// OpenACC3.3 2.13:
// A 'declare' directive must be in the same scope as the declaration of
// any var that appears in the clauses of the directive or any scope
// within a C/C++ function.
// We can't really check 'scope' here, so we check declaration context,
// which is a reasonable approximation, but misses scopes inside of
// functions.
if (removeLinkageSpecDC(
Var->getLexicalDeclContext()->getPrimaryContext()) != DC) {
Diag(VarExpr->getBeginLoc(), diag::err_acc_declare_same_scope)
<< Clause.getClauseKind();
continue;
}
// OpenACC3.3 2.13:
// C and C++ extern variables may only appear in 'create',
// 'copyin', 'deviceptr', 'device_resident', or 'link' clauses on a
// 'declare' directive.
if (!IsSpecialClause && Var->hasExternalStorage()) {
Diag(VarExpr->getBeginLoc(), diag::err_acc_declare_extern)
<< Clause.getClauseKind();
continue;
}
}
// OpenACC3.3 2.13:
// A var may appear at most once in all the clauses of declare
// directives for a function, subroutine, program, or module.
if (CurDecl) {
auto [Itr, Inserted] = DeclareVarReferences.try_emplace(CurDecl);
if (!Inserted) {
Diag(VarExpr->getBeginLoc(), diag::err_acc_multiple_references)
<< Clause.getClauseKind();
Diag(Itr->second, diag::note_acc_previous_reference);
continue;
} else {
Itr->second = VarExpr->getBeginLoc();
}
}
}
FilteredVarList.push_back(VarExpr);
}
Clause.setVarListDetails(FilteredVarList, Mods);
return false;
}
|