1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
//===- bolt/Core/GDBIndex.cpp - GDB Index support ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/GDBIndex.h"
using namespace llvm::bolt;
using namespace llvm::support::endian;
void GDBIndex::addGDBTypeUnitEntry(const GDBIndexTUEntry &&Entry) {
std::lock_guard<std::mutex> Lock(GDBIndexMutex);
if (!BC.getGdbIndexSection())
return;
GDBIndexTUEntryVector.emplace_back(Entry);
}
void GDBIndex::updateGdbIndexSection(
const CUOffsetMap &CUMap, const uint32_t NumCUs,
DebugARangesSectionWriter &ARangesSectionWriter) {
if (!BC.getGdbIndexSection())
return;
// See https://sourceware.org/gdb/onlinedocs/gdb/Index-Section-Format.html
// for .gdb_index section format.
StringRef GdbIndexContents = BC.getGdbIndexSection()->getContents();
const char *Data = GdbIndexContents.data();
// Parse the header.
const uint32_t Version = read32le(Data);
if (Version != 7 && Version != 8) {
errs() << "BOLT-ERROR: can only process .gdb_index versions 7 and 8\n";
exit(1);
}
// Some .gdb_index generators use file offsets while others use section
// offsets. Hence we can only rely on offsets relative to each other,
// and ignore their absolute values.
const uint32_t CUListOffset = read32le(Data + 4);
const uint32_t CUTypesOffset = read32le(Data + 8);
const uint32_t AddressTableOffset = read32le(Data + 12);
const uint32_t SymbolTableOffset = read32le(Data + 16);
const uint32_t ConstantPoolOffset = read32le(Data + 20);
Data += 24;
// Map CUs offsets to indices and verify existing index table.
std::map<uint32_t, uint32_t> OffsetToIndexMap;
const uint32_t CUListSize = CUTypesOffset - CUListOffset;
const uint32_t TUListSize = AddressTableOffset - CUTypesOffset;
const unsigned NUmCUsEncoded = CUListSize / 16;
unsigned MaxDWARFVersion = BC.DwCtx->getMaxVersion();
unsigned NumDWARF5TUs =
getGDBIndexTUEntryVector().size() - BC.DwCtx->getNumTypeUnits();
bool SkipTypeUnits = false;
// For DWARF5 Types are in .debug_info.
// LLD doesn't generate Types CU List, and in CU list offset
// only includes CUs.
// GDB 11+ includes only CUs in CU list and generates Types
// list.
// GDB 9 includes CUs and TUs in CU list and generates TYpes
// list. The NumCUs is CUs + TUs, so need to modify the check.
// For split-dwarf
// GDB-11, DWARF5: TU units from dwo are not included.
// GDB-11, DWARF4: TU units from dwo are included.
if (MaxDWARFVersion >= 5)
SkipTypeUnits = !TUListSize ? true
: ((NUmCUsEncoded + NumDWARF5TUs) ==
BC.DwCtx->getNumCompileUnits());
if (!((CUListSize == NumCUs * 16) ||
(CUListSize == (NumCUs + NumDWARF5TUs) * 16))) {
errs() << "BOLT-ERROR: .gdb_index: CU count mismatch\n";
exit(1);
}
DenseSet<uint64_t> OriginalOffsets;
for (unsigned Index = 0, Units = BC.DwCtx->getNumCompileUnits();
Index < Units; ++Index) {
const DWARFUnit *CU = BC.DwCtx->getUnitAtIndex(Index);
if (SkipTypeUnits && CU->isTypeUnit())
continue;
const uint64_t Offset = read64le(Data);
Data += 16;
if (CU->getOffset() != Offset) {
errs() << "BOLT-ERROR: .gdb_index CU offset mismatch\n";
exit(1);
}
OriginalOffsets.insert(Offset);
OffsetToIndexMap[Offset] = Index;
}
// Ignore old address table.
const uint32_t OldAddressTableSize = SymbolTableOffset - AddressTableOffset;
// Move Data to the beginning of symbol table.
Data += SymbolTableOffset - CUTypesOffset;
// Calculate the size of the new address table.
uint32_t NewAddressTableSize = 0;
for (const auto &CURangesPair : ARangesSectionWriter.getCUAddressRanges()) {
const SmallVector<DebugAddressRange, 2> &Ranges = CURangesPair.second;
NewAddressTableSize += Ranges.size() * 20;
}
// Difference between old and new table (and section) sizes.
// Could be negative.
int32_t Delta = NewAddressTableSize - OldAddressTableSize;
size_t NewGdbIndexSize = GdbIndexContents.size() + Delta;
// Free'd by ExecutableFileMemoryManager.
auto *NewGdbIndexContents = new uint8_t[NewGdbIndexSize];
uint8_t *Buffer = NewGdbIndexContents;
write32le(Buffer, Version);
write32le(Buffer + 4, CUListOffset);
write32le(Buffer + 8, CUTypesOffset);
write32le(Buffer + 12, AddressTableOffset);
write32le(Buffer + 16, SymbolTableOffset + Delta);
write32le(Buffer + 20, ConstantPoolOffset + Delta);
Buffer += 24;
using MapEntry = std::pair<uint32_t, CUInfo>;
std::vector<MapEntry> CUVector(CUMap.begin(), CUMap.end());
// Need to sort since we write out all of TUs in .debug_info before CUs.
std::sort(CUVector.begin(), CUVector.end(),
[](const MapEntry &E1, const MapEntry &E2) -> bool {
return E1.second.Offset < E2.second.Offset;
});
// Writing out CU List <Offset, Size>
for (auto &CUInfo : CUVector) {
// Skipping TU for DWARF5 when they are not included in CU list.
if (!OriginalOffsets.count(CUInfo.first))
continue;
write64le(Buffer, CUInfo.second.Offset);
// Length encoded in CU doesn't contain first 4 bytes that encode length.
write64le(Buffer + 8, CUInfo.second.Length + 4);
Buffer += 16;
}
sortGDBIndexTUEntryVector();
// Rewrite TU CU List, since abbrevs can be different.
// Entry example:
// 0: offset = 0x00000000, type_offset = 0x0000001e, type_signature =
// 0x418503b8111e9a7b Spec says " triplet, the first value is the CU offset,
// the second value is the type offset in the CU, and the third value is the
// type signature" Looking at what is being generated by gdb-add-index. The
// first entry is TU offset, second entry is offset from it, and third entry
// is the type signature.
if (TUListSize)
for (const GDBIndexTUEntry &Entry : getGDBIndexTUEntryVector()) {
write64le(Buffer, Entry.UnitOffset);
write64le(Buffer + 8, Entry.TypeDIERelativeOffset);
write64le(Buffer + 16, Entry.TypeHash);
Buffer += sizeof(GDBIndexTUEntry);
}
// Generate new address table.
for (const std::pair<const uint64_t, DebugAddressRangesVector> &CURangesPair :
ARangesSectionWriter.getCUAddressRanges()) {
const uint32_t CUIndex = OffsetToIndexMap[CURangesPair.first];
const DebugAddressRangesVector &Ranges = CURangesPair.second;
for (const DebugAddressRange &Range : Ranges) {
write64le(Buffer, Range.LowPC);
write64le(Buffer + 8, Range.HighPC);
write32le(Buffer + 16, CUIndex);
Buffer += 20;
}
}
const size_t TrailingSize =
GdbIndexContents.data() + GdbIndexContents.size() - Data;
assert(Buffer + TrailingSize == NewGdbIndexContents + NewGdbIndexSize &&
"size calculation error");
// Copy over the rest of the original data.
memcpy(Buffer, Data, TrailingSize);
// Register the new section.
BC.registerOrUpdateNoteSection(".gdb_index", NewGdbIndexContents,
NewGdbIndexSize);
}
|