1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
|
//===- bolt/Passes/PAuthGadgetScanner.cpp ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass that looks for any AArch64 return instructions
// that may not be protected by PAuth authentication instructions when needed.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/PAuthGadgetScanner.h"
#include "bolt/Core/ParallelUtilities.h"
#include "bolt/Passes/DataflowAnalysis.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Format.h"
#include <memory>
#define DEBUG_TYPE "bolt-pauth-scanner"
namespace llvm {
namespace bolt {
raw_ostream &operator<<(raw_ostream &OS, const MCInstInBBReference &Ref) {
OS << "MCInstBBRef<";
if (Ref.BB == nullptr)
OS << "BB:(null)";
else
OS << "BB:" << Ref.BB->getName() << ":" << Ref.BBIndex;
OS << ">";
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const MCInstInBFReference &Ref) {
OS << "MCInstBFRef<";
if (Ref.BF == nullptr)
OS << "BF:(null)";
else
OS << "BF:" << Ref.BF->getPrintName() << ":" << Ref.getOffset();
OS << ">";
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const MCInstReference &Ref) {
switch (Ref.ParentKind) {
case MCInstReference::BasicBlockParent:
OS << Ref.U.BBRef;
return OS;
case MCInstReference::FunctionParent:
OS << Ref.U.BFRef;
return OS;
}
llvm_unreachable("");
}
namespace PAuthGadgetScanner {
[[maybe_unused]] static void traceInst(const BinaryContext &BC, StringRef Label,
const MCInst &MI) {
dbgs() << " " << Label << ": ";
BC.printInstruction(dbgs(), MI);
}
[[maybe_unused]] static void traceReg(const BinaryContext &BC, StringRef Label,
MCPhysReg Reg) {
dbgs() << " " << Label << ": ";
if (Reg == BC.MIB->getNoRegister())
dbgs() << "(none)";
else
dbgs() << BC.MRI->getName(Reg);
dbgs() << "\n";
}
[[maybe_unused]] static void traceRegMask(const BinaryContext &BC,
StringRef Label, BitVector Mask) {
dbgs() << " " << Label << ": ";
RegStatePrinter(BC).print(dbgs(), Mask);
dbgs() << "\n";
}
// Iterates over BinaryFunction's instructions like a range-based for loop:
//
// iterateOverInstrs(BF, [&](MCInstReference Inst) {
// // loop body
// });
template <typename T> static void iterateOverInstrs(BinaryFunction &BF, T Fn) {
if (BF.hasCFG()) {
for (BinaryBasicBlock &BB : BF)
for (int64_t I = 0, E = BB.size(); I < E; ++I)
Fn(MCInstInBBReference(&BB, I));
} else {
for (auto I : BF.instrs())
Fn(MCInstInBFReference(&BF, I.first));
}
}
// This class represents mapping from a set of arbitrary physical registers to
// consecutive array indexes.
class TrackedRegisters {
static constexpr uint16_t NoIndex = -1;
const std::vector<MCPhysReg> Registers;
std::vector<uint16_t> RegToIndexMapping;
static size_t getMappingSize(ArrayRef<MCPhysReg> RegsToTrack) {
if (RegsToTrack.empty())
return 0;
return 1 + *llvm::max_element(RegsToTrack);
}
public:
TrackedRegisters(ArrayRef<MCPhysReg> RegsToTrack)
: Registers(RegsToTrack),
RegToIndexMapping(getMappingSize(RegsToTrack), NoIndex) {
for (unsigned I = 0; I < RegsToTrack.size(); ++I)
RegToIndexMapping[RegsToTrack[I]] = I;
}
ArrayRef<MCPhysReg> getRegisters() const { return Registers; }
size_t getNumTrackedRegisters() const { return Registers.size(); }
bool empty() const { return Registers.empty(); }
bool isTracked(MCPhysReg Reg) const {
bool IsTracked = (unsigned)Reg < RegToIndexMapping.size() &&
RegToIndexMapping[Reg] != NoIndex;
assert(IsTracked == llvm::is_contained(Registers, Reg));
return IsTracked;
}
unsigned getIndex(MCPhysReg Reg) const {
assert(isTracked(Reg) && "Register is not tracked");
return RegToIndexMapping[Reg];
}
};
// The security property that is checked is:
// When a register is used as the address to jump to in a return instruction,
// that register must be safe-to-dereference. It must either
// (a) be safe-to-dereference at function entry and never be changed within this
// function, i.e. have the same value as when the function started, or
// (b) the last write to the register must be by an authentication instruction.
// This property is checked by using dataflow analysis to keep track of which
// registers have been written (def-ed), since last authenticated. For pac-ret,
// any return instruction using a register which is not safe-to-dereference is
// a gadget to be reported. For PAuthABI, probably at least any indirect control
// flow using such a register should be reported.
// Furthermore, when producing a diagnostic for a found non-pac-ret protected
// return, the analysis also lists the last instructions that wrote to the
// register used in the return instruction.
// The total set of registers used in return instructions in a given function is
// small. It almost always is just `X30`.
// In order to reduce the memory consumption of storing this additional state
// during the dataflow analysis, this is computed by running the dataflow
// analysis twice:
// 1. In the first run, the dataflow analysis only keeps track of the security
// property: i.e. which registers have been overwritten since the last
// time they've been authenticated.
// 2. If the first run finds any return instructions using a register last
// written by a non-authenticating instruction, the dataflow analysis will
// be run a second time. The first run will return which registers are used
// in the gadgets to be reported. This information is used in the second run
// to also track which instructions last wrote to those registers.
typedef SmallPtrSet<const MCInst *, 4> SetOfRelatedInsts;
/// A state representing which registers are safe to use by an instruction
/// at a given program point.
///
/// To simplify reasoning, let's stick with the following approach:
/// * when state is updated by the data-flow analysis, the sub-, super- and
/// overlapping registers are marked as needed
/// * when the particular instruction is checked if it represents a gadget,
/// the specific bit of BitVector should be usable to answer this.
///
/// For example, on AArch64:
/// * An AUTIZA X0 instruction marks both X0 and W0 (as well as W0_HI) as
/// safe-to-dereference. It does not change the state of X0_X1, for example,
/// as super-registers partially retain their old, unsafe values.
/// * LDR X1, [X0] marks as unsafe both X1 itself and anything it overlaps
/// with: W1, W1_HI, X0_X1 and so on.
/// * RET (which is implicitly RET X30) is a protected return if and only if
/// X30 is safe-to-dereference - the state computed for sub- and
/// super-registers is not inspected.
struct SrcState {
/// A BitVector containing the registers that are either authenticated
/// (assuming failed authentication is permitted to produce an invalid
/// address, provided it generates an error on memory access) or whose
/// value is known not to be attacker-controlled under Pointer Authentication
/// threat model. The registers in this set are either
/// * not clobbered since being authenticated, or
/// * trusted at function entry and were not clobbered yet, or
/// * contain a safely materialized address.
BitVector SafeToDerefRegs;
/// A BitVector containing the registers that are either authenticated
/// *successfully* or whose value is known not to be attacker-controlled
/// under Pointer Authentication threat model.
/// The registers in this set are either
/// * authenticated and then checked to be authenticated successfully
/// (and not clobbered since then), or
/// * trusted at function entry and were not clobbered yet, or
/// * contain a safely materialized address.
BitVector TrustedRegs;
/// A vector of sets, only used in the second data flow run.
/// Each element in the vector represents one of the registers for which we
/// track the set of last instructions that wrote to this register. For
/// pac-ret analysis, the expectation is that almost all return instructions
/// only use register `X30`, and therefore, this vector will probably have
/// length 1 in the second run.
std::vector<SetOfRelatedInsts> LastInstWritingReg;
/// Construct an empty state.
SrcState() {}
SrcState(unsigned NumRegs, unsigned NumRegsToTrack)
: SafeToDerefRegs(NumRegs), TrustedRegs(NumRegs),
LastInstWritingReg(NumRegsToTrack) {}
SrcState &merge(const SrcState &StateIn) {
if (StateIn.empty())
return *this;
if (empty())
return (*this = StateIn);
SafeToDerefRegs &= StateIn.SafeToDerefRegs;
TrustedRegs &= StateIn.TrustedRegs;
for (unsigned I = 0; I < LastInstWritingReg.size(); ++I)
for (const MCInst *J : StateIn.LastInstWritingReg[I])
LastInstWritingReg[I].insert(J);
return *this;
}
/// Returns true if this object does not store state of any registers -
/// neither safe, nor unsafe ones.
bool empty() const { return SafeToDerefRegs.empty(); }
bool operator==(const SrcState &RHS) const {
return SafeToDerefRegs == RHS.SafeToDerefRegs &&
TrustedRegs == RHS.TrustedRegs &&
LastInstWritingReg == RHS.LastInstWritingReg;
}
bool operator!=(const SrcState &RHS) const { return !((*this) == RHS); }
};
static void printInstsShort(raw_ostream &OS,
ArrayRef<SetOfRelatedInsts> Insts) {
OS << "Insts: ";
for (unsigned I = 0; I < Insts.size(); ++I) {
auto &Set = Insts[I];
OS << "[" << I << "](";
for (const MCInst *MCInstP : Set)
OS << MCInstP << " ";
OS << ")";
}
}
static raw_ostream &operator<<(raw_ostream &OS, const SrcState &S) {
OS << "src-state<";
if (S.empty()) {
OS << "empty";
} else {
OS << "SafeToDerefRegs: " << S.SafeToDerefRegs << ", ";
OS << "TrustedRegs: " << S.TrustedRegs << ", ";
printInstsShort(OS, S.LastInstWritingReg);
}
OS << ">";
return OS;
}
class SrcStatePrinter {
public:
void print(raw_ostream &OS, const SrcState &State) const;
explicit SrcStatePrinter(const BinaryContext &BC) : BC(BC) {}
private:
const BinaryContext &BC;
};
void SrcStatePrinter::print(raw_ostream &OS, const SrcState &S) const {
RegStatePrinter RegStatePrinter(BC);
OS << "src-state<";
if (S.empty()) {
assert(S.SafeToDerefRegs.empty());
assert(S.TrustedRegs.empty());
assert(S.LastInstWritingReg.empty());
OS << "empty";
} else {
OS << "SafeToDerefRegs: ";
RegStatePrinter.print(OS, S.SafeToDerefRegs);
OS << ", TrustedRegs: ";
RegStatePrinter.print(OS, S.TrustedRegs);
OS << ", ";
printInstsShort(OS, S.LastInstWritingReg);
}
OS << ">";
}
/// Computes which registers are safe to be used by control flow and signing
/// instructions.
///
/// This is the base class for two implementations: a dataflow-based analysis
/// which is intended to be used for most functions and a simplified CFG-unaware
/// version for functions without reconstructed CFG.
class SrcSafetyAnalysis {
public:
SrcSafetyAnalysis(BinaryFunction &BF, ArrayRef<MCPhysReg> RegsToTrackInstsFor)
: BC(BF.getBinaryContext()), NumRegs(BC.MRI->getNumRegs()),
RegsToTrackInstsFor(RegsToTrackInstsFor) {}
virtual ~SrcSafetyAnalysis() {}
static std::shared_ptr<SrcSafetyAnalysis>
create(BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId,
ArrayRef<MCPhysReg> RegsToTrackInstsFor);
virtual void run() = 0;
virtual const SrcState &getStateBefore(const MCInst &Inst) const = 0;
protected:
BinaryContext &BC;
const unsigned NumRegs;
/// RegToTrackInstsFor is the set of registers for which the dataflow analysis
/// must compute which the last set of instructions writing to it are.
const TrackedRegisters RegsToTrackInstsFor;
/// Stores information about the detected instruction sequences emitted to
/// check an authenticated pointer. Specifically, if such sequence is detected
/// in a basic block, it maps the last instruction of that basic block to
/// (CheckedRegister, FirstInstOfTheSequence) pair, see the description of
/// MCPlusBuilder::getAuthCheckedReg(BB) method.
///
/// As the detection of such sequences requires iterating over the adjacent
/// instructions, it should be done before calling computeNext(), which
/// operates on separate instructions.
DenseMap<const MCInst *, std::pair<MCPhysReg, const MCInst *>>
CheckerSequenceInfo;
SetOfRelatedInsts &lastWritingInsts(SrcState &S, MCPhysReg Reg) const {
unsigned Index = RegsToTrackInstsFor.getIndex(Reg);
return S.LastInstWritingReg[Index];
}
const SetOfRelatedInsts &lastWritingInsts(const SrcState &S,
MCPhysReg Reg) const {
unsigned Index = RegsToTrackInstsFor.getIndex(Reg);
return S.LastInstWritingReg[Index];
}
SrcState createEntryState() {
SrcState S(NumRegs, RegsToTrackInstsFor.getNumTrackedRegisters());
for (MCPhysReg Reg : BC.MIB->getTrustedLiveInRegs())
S.TrustedRegs |= BC.MIB->getAliases(Reg, /*OnlySmaller=*/true);
S.SafeToDerefRegs = S.TrustedRegs;
return S;
}
/// Computes a reasonably pessimistic estimation of the register state when
/// the previous instruction is not known for sure. Takes the set of registers
/// which are trusted at function entry and removes all registers that can be
/// clobbered inside this function.
SrcState computePessimisticState(BinaryFunction &BF) {
BitVector ClobberedRegs(NumRegs);
iterateOverInstrs(BF, [&](MCInstReference Inst) {
BC.MIB->getClobberedRegs(Inst, ClobberedRegs);
// If this is a call instruction, no register is safe anymore, unless
// it is a tail call. Ignore tail calls for the purpose of estimating the
// worst-case scenario, assuming no instructions are executed in the
// caller after this point anyway.
if (BC.MIB->isCall(Inst) && !BC.MIB->isTailCall(Inst))
ClobberedRegs.set();
});
SrcState S = createEntryState();
S.SafeToDerefRegs.reset(ClobberedRegs);
S.TrustedRegs.reset(ClobberedRegs);
return S;
}
BitVector getClobberedRegs(const MCInst &Point) const {
BitVector Clobbered(NumRegs);
// Assume a call can clobber all registers, including callee-saved
// registers. There's a good chance that callee-saved registers will be
// saved on the stack at some point during execution of the callee.
// Therefore they should also be considered as potentially modified by an
// attacker/written to.
// Also, not all functions may respect the AAPCS ABI rules about
// caller/callee-saved registers.
if (BC.MIB->isCall(Point))
Clobbered.set();
else
BC.MIB->getClobberedRegs(Point, Clobbered);
return Clobbered;
}
// Returns all registers that can be treated as if they are written by an
// authentication instruction.
SmallVector<MCPhysReg> getRegsMadeSafeToDeref(const MCInst &Point,
const SrcState &Cur) const {
SmallVector<MCPhysReg> Regs;
// A signed pointer can be authenticated, or
bool Dummy = false;
if (auto AutReg = BC.MIB->getWrittenAuthenticatedReg(Point, Dummy))
Regs.push_back(*AutReg);
// ... a safe address can be materialized, or
if (auto NewAddrReg = BC.MIB->getMaterializedAddressRegForPtrAuth(Point))
Regs.push_back(*NewAddrReg);
// ... an address can be updated in a safe manner, producing the result
// which is as trusted as the input address.
if (auto DstAndSrc = BC.MIB->analyzeAddressArithmeticsForPtrAuth(Point)) {
if (Cur.SafeToDerefRegs[DstAndSrc->second])
Regs.push_back(DstAndSrc->first);
}
return Regs;
}
// Returns all registers made trusted by this instruction.
SmallVector<MCPhysReg> getRegsMadeTrusted(const MCInst &Point,
const SrcState &Cur) const {
SmallVector<MCPhysReg> Regs;
// An authenticated pointer can be checked, or
std::optional<MCPhysReg> CheckedReg =
BC.MIB->getAuthCheckedReg(Point, /*MayOverwrite=*/false);
if (CheckedReg && Cur.SafeToDerefRegs[*CheckedReg])
Regs.push_back(*CheckedReg);
// ... a pointer can be authenticated by an instruction that always checks
// the pointer, or
bool IsChecked = false;
std::optional<MCPhysReg> AutReg =
BC.MIB->getWrittenAuthenticatedReg(Point, IsChecked);
if (AutReg && IsChecked)
Regs.push_back(*AutReg);
if (CheckerSequenceInfo.contains(&Point)) {
MCPhysReg CheckedReg;
const MCInst *FirstCheckerInst;
std::tie(CheckedReg, FirstCheckerInst) = CheckerSequenceInfo.at(&Point);
// FirstCheckerInst should belong to the same basic block (see the
// assertion in DataflowSrcSafetyAnalysis::run()), meaning it was
// deterministically processed a few steps before this instruction.
const SrcState &StateBeforeChecker = getStateBefore(*FirstCheckerInst);
if (StateBeforeChecker.SafeToDerefRegs[CheckedReg])
Regs.push_back(CheckedReg);
}
// ... a safe address can be materialized, or
if (auto NewAddrReg = BC.MIB->getMaterializedAddressRegForPtrAuth(Point))
Regs.push_back(*NewAddrReg);
// ... an address can be updated in a safe manner, producing the result
// which is as trusted as the input address.
if (auto DstAndSrc = BC.MIB->analyzeAddressArithmeticsForPtrAuth(Point)) {
if (Cur.TrustedRegs[DstAndSrc->second])
Regs.push_back(DstAndSrc->first);
}
return Regs;
}
SrcState computeNext(const MCInst &Point, const SrcState &Cur) {
if (BC.MIB->isCFI(Point))
return Cur;
SrcStatePrinter P(BC);
LLVM_DEBUG({
dbgs() << " SrcSafetyAnalysis::ComputeNext(";
BC.InstPrinter->printInst(&Point, 0, "", *BC.STI, dbgs());
dbgs() << ", ";
P.print(dbgs(), Cur);
dbgs() << ")\n";
});
// If this instruction is reachable, a non-empty state will be propagated
// to it from the entry basic block sooner or later. Until then, it is both
// more efficient and easier to reason about to skip computeNext().
if (Cur.empty()) {
LLVM_DEBUG(
{ dbgs() << "Skipping computeNext(Point, Cur) as Cur is empty.\n"; });
return SrcState();
}
// First, compute various properties of the instruction, taking the state
// before its execution into account, if necessary.
BitVector Clobbered = getClobberedRegs(Point);
SmallVector<MCPhysReg> NewSafeToDerefRegs =
getRegsMadeSafeToDeref(Point, Cur);
SmallVector<MCPhysReg> NewTrustedRegs = getRegsMadeTrusted(Point, Cur);
// Ideally, being trusted is a strictly stronger property than being
// safe-to-dereference. To simplify the computation of Next state, enforce
// this for NewSafeToDerefRegs and NewTrustedRegs. Additionally, this
// fixes the properly for "cumulative" register states in tricky cases
// like the following:
//
// ; LR is safe to dereference here
// mov x16, x30 ; start of the sequence, LR is s-t-d right before
// xpaclri ; clobbers LR, LR is not safe anymore
// cmp x30, x16
// b.eq 1f ; end of the sequence: LR is marked as trusted
// brk 0x1234
// 1:
// ; at this point LR would be marked as trusted,
// ; but not safe-to-dereference
//
for (auto TrustedReg : NewTrustedRegs) {
if (!is_contained(NewSafeToDerefRegs, TrustedReg))
NewSafeToDerefRegs.push_back(TrustedReg);
}
// Then, compute the state after this instruction is executed.
SrcState Next = Cur;
Next.SafeToDerefRegs.reset(Clobbered);
Next.TrustedRegs.reset(Clobbered);
// Keep track of this instruction if it writes to any of the registers we
// need to track that for:
for (MCPhysReg Reg : RegsToTrackInstsFor.getRegisters())
if (Clobbered[Reg])
lastWritingInsts(Next, Reg) = {&Point};
// After accounting for clobbered registers in general, override the state
// according to authentication and other *special cases* of clobbering.
// The sub-registers are also safe-to-dereference now, but not their
// super-registers (as they retain untrusted register units).
BitVector NewSafeSubregs(NumRegs);
for (MCPhysReg SafeReg : NewSafeToDerefRegs)
NewSafeSubregs |= BC.MIB->getAliases(SafeReg, /*OnlySmaller=*/true);
for (MCPhysReg Reg : NewSafeSubregs.set_bits()) {
Next.SafeToDerefRegs.set(Reg);
if (RegsToTrackInstsFor.isTracked(Reg))
lastWritingInsts(Next, Reg).clear();
}
// Process new trusted registers.
for (MCPhysReg TrustedReg : NewTrustedRegs)
Next.TrustedRegs |= BC.MIB->getAliases(TrustedReg, /*OnlySmaller=*/true);
LLVM_DEBUG({
dbgs() << " .. result: (";
P.print(dbgs(), Next);
dbgs() << ")\n";
});
return Next;
}
public:
std::vector<MCInstReference>
getLastClobberingInsts(const MCInst &Inst, BinaryFunction &BF,
MCPhysReg ClobberedReg) const {
const SrcState &S = getStateBefore(Inst);
std::vector<MCInstReference> Result;
for (const MCInst *Inst : lastWritingInsts(S, ClobberedReg)) {
MCInstReference Ref = MCInstReference::get(Inst, BF);
assert(Ref && "Expected Inst to be found");
Result.push_back(Ref);
}
return Result;
}
};
class DataflowSrcSafetyAnalysis
: public SrcSafetyAnalysis,
public DataflowAnalysis<DataflowSrcSafetyAnalysis, SrcState,
/*Backward=*/false, SrcStatePrinter> {
using DFParent = DataflowAnalysis<DataflowSrcSafetyAnalysis, SrcState, false,
SrcStatePrinter>;
friend DFParent;
using SrcSafetyAnalysis::BC;
using SrcSafetyAnalysis::computeNext;
// Pessimistic initial state for basic blocks without any predecessors
// (not needed for most functions, thus initialized lazily).
SrcState PessimisticState;
public:
DataflowSrcSafetyAnalysis(BinaryFunction &BF,
MCPlusBuilder::AllocatorIdTy AllocId,
ArrayRef<MCPhysReg> RegsToTrackInstsFor)
: SrcSafetyAnalysis(BF, RegsToTrackInstsFor), DFParent(BF, AllocId) {}
const SrcState &getStateBefore(const MCInst &Inst) const override {
return DFParent::getStateBefore(Inst).get();
}
void run() override {
for (BinaryBasicBlock &BB : Func) {
if (auto CheckerInfo = BC.MIB->getAuthCheckedReg(BB)) {
MCPhysReg CheckedReg = CheckerInfo->first;
MCInst &FirstInst = *CheckerInfo->second;
MCInst &LastInst = *BB.getLastNonPseudoInstr();
LLVM_DEBUG({
dbgs() << "Found pointer checking sequence in " << BB.getName()
<< ":\n";
traceReg(BC, "Checked register", CheckedReg);
traceInst(BC, "First instruction", FirstInst);
traceInst(BC, "Last instruction", LastInst);
});
(void)CheckedReg;
(void)FirstInst;
assert(llvm::any_of(BB, [&](MCInst &I) { return &I == &FirstInst; }) &&
"Data-flow analysis expects the checker not to cross BBs");
CheckerSequenceInfo[&LastInst] = *CheckerInfo;
}
}
DFParent::run();
}
protected:
void preflight() {}
SrcState getStartingStateAtBB(const BinaryBasicBlock &BB) {
if (BB.isEntryPoint())
return createEntryState();
// If a basic block without any predecessors is found in an optimized code,
// this likely means that some CFG edges were not detected. Pessimistically
// assume any register that can ever be clobbered in this function to be
// unsafe before this basic block.
// Warn about this fact in FunctionAnalysis::findUnsafeUses(), as it likely
// means imprecise CFG information.
if (BB.pred_empty()) {
if (PessimisticState.empty())
PessimisticState = computePessimisticState(*BB.getParent());
return PessimisticState;
}
return SrcState();
}
SrcState getStartingStateAtPoint(const MCInst &Point) { return SrcState(); }
void doConfluence(SrcState &StateOut, const SrcState &StateIn) {
SrcStatePrinter P(BC);
LLVM_DEBUG({
dbgs() << " DataflowSrcSafetyAnalysis::Confluence(\n";
dbgs() << " State 1: ";
P.print(dbgs(), StateOut);
dbgs() << "\n";
dbgs() << " State 2: ";
P.print(dbgs(), StateIn);
dbgs() << ")\n";
});
StateOut.merge(StateIn);
LLVM_DEBUG({
dbgs() << " merged state: ";
P.print(dbgs(), StateOut);
dbgs() << "\n";
});
}
StringRef getAnnotationName() const { return "DataflowSrcSafetyAnalysis"; }
};
/// A helper base class for implementing a simplified counterpart of a dataflow
/// analysis for functions without CFG information.
template <typename StateTy> class CFGUnawareAnalysis {
BinaryContext &BC;
BinaryFunction &BF;
MCPlusBuilder::AllocatorIdTy AllocId;
unsigned StateAnnotationIndex;
void cleanStateAnnotations() {
for (auto &I : BF.instrs())
BC.MIB->removeAnnotation(I.second, StateAnnotationIndex);
}
protected:
CFGUnawareAnalysis(BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId,
StringRef AnnotationName)
: BC(BF.getBinaryContext()), BF(BF), AllocId(AllocId) {
StateAnnotationIndex = BC.MIB->getOrCreateAnnotationIndex(AnnotationName);
}
void setState(MCInst &Inst, const StateTy &S) {
// Check if we need to remove an old annotation (this is the case if
// this is the second, detailed run of the analysis).
if (BC.MIB->hasAnnotation(Inst, StateAnnotationIndex))
BC.MIB->removeAnnotation(Inst, StateAnnotationIndex);
// Attach the state.
BC.MIB->addAnnotation(Inst, StateAnnotationIndex, S, AllocId);
}
const StateTy &getState(const MCInst &Inst) const {
return BC.MIB->getAnnotationAs<StateTy>(Inst, StateAnnotationIndex);
}
virtual ~CFGUnawareAnalysis() { cleanStateAnnotations(); }
};
// A simplified implementation of DataflowSrcSafetyAnalysis for functions
// lacking CFG information.
//
// Let assume the instructions can only be executed linearly unless there is
// a label to jump to - this should handle both directly jumping to a location
// encoded as an immediate operand of a branch instruction, as well as saving a
// branch destination somewhere and passing it to an indirect branch instruction
// later, provided no arithmetic is performed on the destination address:
//
// ; good: the destination is directly encoded into the branch instruction
// cbz x0, some_label
//
// ; good: the branch destination is first stored and then used as-is
// adr x1, some_label
// br x1
//
// ; bad: some clever arithmetic is performed manually
// adr x1, some_label
// add x1, x1, #4
// br x1
// ...
// some_label:
// ; pessimistically reset the state as we are unsure where we came from
// ...
// ret
// JTI0:
// .byte some_label - Ltmp0 ; computing offsets using labels may probably
// work too, provided enough information is
// retained by the assembler and linker
//
// Then, a function can be split into a number of disjoint contiguous sequences
// of instructions without labels in between. These sequences can be processed
// the same way basic blocks are processed by data-flow analysis, with the same
// pessimistic estimation of the initial state at the start of each sequence
// (except the first instruction of the function).
class CFGUnawareSrcSafetyAnalysis : public SrcSafetyAnalysis,
public CFGUnawareAnalysis<SrcState> {
using SrcSafetyAnalysis::BC;
BinaryFunction &BF;
public:
CFGUnawareSrcSafetyAnalysis(BinaryFunction &BF,
MCPlusBuilder::AllocatorIdTy AllocId,
ArrayRef<MCPhysReg> RegsToTrackInstsFor)
: SrcSafetyAnalysis(BF, RegsToTrackInstsFor),
CFGUnawareAnalysis(BF, AllocId, "CFGUnawareSrcSafetyAnalysis"), BF(BF) {
}
void run() override {
const SrcState DefaultState = computePessimisticState(BF);
SrcState S = createEntryState();
for (auto &I : BF.instrs()) {
MCInst &Inst = I.second;
if (BC.MIB->isCFI(Inst))
continue;
// If there is a label before this instruction, it is possible that it
// can be jumped-to, thus conservatively resetting S. As an exception,
// let's ignore any labels at the beginning of the function, as at least
// one label is expected there.
if (BF.hasLabelAt(I.first) && &Inst != &BF.instrs().begin()->second) {
LLVM_DEBUG({
traceInst(BC, "Due to label, resetting the state before", Inst);
});
S = DefaultState;
}
// Attach the state *before* this instruction executes.
setState(Inst, S);
// Compute the state after this instruction executes.
S = computeNext(Inst, S);
}
}
const SrcState &getStateBefore(const MCInst &Inst) const override {
return getState(Inst);
}
};
std::shared_ptr<SrcSafetyAnalysis>
SrcSafetyAnalysis::create(BinaryFunction &BF,
MCPlusBuilder::AllocatorIdTy AllocId,
ArrayRef<MCPhysReg> RegsToTrackInstsFor) {
if (BF.hasCFG())
return std::make_shared<DataflowSrcSafetyAnalysis>(BF, AllocId,
RegsToTrackInstsFor);
return std::make_shared<CFGUnawareSrcSafetyAnalysis>(BF, AllocId,
RegsToTrackInstsFor);
}
/// A state representing which registers are safe to be used as the destination
/// operand of an authentication instruction.
///
/// Similar to SrcState, it is the responsibility of the analysis to take
/// register aliasing into account.
///
/// Depending on the implementation (such as whether FEAT_FPAC is implemented
/// by an AArch64 CPU or not), it may be possible that an authentication
/// instruction returns an invalid pointer on failure instead of terminating
/// the program immediately (assuming the program will crash as soon as that
/// pointer is dereferenced). Since few bits are usually allocated for the PAC
/// field (such as less than 16 bits on a typical AArch64 system), an attacker
/// can try every possible signature and guess the correct one if there is a
/// gadget that tells whether the particular pointer has a correct signature
/// (a so called "authentication oracle"). For that reason, it should be
/// impossible for an attacker to test if a pointer is correctly signed -
/// either the program should be terminated on authentication failure or
/// the result of authentication should not be accessible to an attacker.
///
/// Considering the instructions in forward order as they are executed, a
/// restricted set of operations can be allowed on any register containing a
/// value derived from the result of an authentication instruction until that
/// value is checked not to contain the result of a failed authentication.
/// In DstSafetyAnalysis, these rules are adapted, so that the safety property
/// for a register is computed by iterating the instructions in backward order.
/// Then the resulting properties are used at authentication instruction sites
/// to check output registers and report the particular instruction if it writes
/// to an unsafe register.
///
/// Another approach would be to simulate the above rules as-is, iterating over
/// the instructions in forward direction. To make it possible to report the
/// particular instructions as oracles, this would probably require tracking
/// references to these instructions for each register currently containing
/// sensitive data.
///
/// In DstSafetyAnalysis, the source register Xn of an instruction Inst is safe
/// if at least one of the following is true:
/// * Inst checks if Xn contains the result of a successful authentication and
/// terminates the program on failure. Note that Inst can either naturally
/// dereference Xn (load, branch, return, etc. instructions) or be the first
/// instruction of an explicit checking sequence.
/// * Inst performs safe address arithmetic AND both source and result
/// registers, as well as any temporary registers, must be safe after
/// execution of Inst (temporaries are not used on AArch64 and thus not
/// currently supported/allowed).
/// See MCPlusBuilder::analyzeAddressArithmeticsForPtrAuth for the details.
/// * Inst fully overwrites Xn with a constant.
struct DstState {
/// The set of registers whose values cannot be inspected by an attacker in
/// a way usable as an authentication oracle. The results of authentication
/// instructions should only be written to such registers.
BitVector CannotEscapeUnchecked;
/// A vector of sets, only used on the second analysis run.
/// Each element in this vector represents one of the tracked registers.
/// For each such register we track the set of first instructions that leak
/// the authenticated pointer before it was checked. This is intended to
/// provide clues on which instruction made the particular register unsafe.
///
/// Please note that the mapping from MCPhysReg values to indexes in this
/// vector is provided by RegsToTrackInstsFor field of DstSafetyAnalysis.
std::vector<SetOfRelatedInsts> FirstInstLeakingReg;
/// Constructs an empty state.
DstState() {}
DstState(unsigned NumRegs, unsigned NumRegsToTrack)
: CannotEscapeUnchecked(NumRegs), FirstInstLeakingReg(NumRegsToTrack) {}
DstState &merge(const DstState &StateIn) {
if (StateIn.empty())
return *this;
if (empty())
return (*this = StateIn);
CannotEscapeUnchecked &= StateIn.CannotEscapeUnchecked;
for (unsigned I = 0; I < FirstInstLeakingReg.size(); ++I)
for (const MCInst *J : StateIn.FirstInstLeakingReg[I])
FirstInstLeakingReg[I].insert(J);
return *this;
}
/// Returns true if this object does not store state of any registers -
/// neither safe, nor unsafe ones.
bool empty() const { return CannotEscapeUnchecked.empty(); }
bool operator==(const DstState &RHS) const {
return CannotEscapeUnchecked == RHS.CannotEscapeUnchecked &&
FirstInstLeakingReg == RHS.FirstInstLeakingReg;
}
bool operator!=(const DstState &RHS) const { return !((*this) == RHS); }
};
static raw_ostream &operator<<(raw_ostream &OS, const DstState &S) {
OS << "dst-state<";
if (S.empty()) {
OS << "empty";
} else {
OS << "CannotEscapeUnchecked: " << S.CannotEscapeUnchecked << ", ";
printInstsShort(OS, S.FirstInstLeakingReg);
}
OS << ">";
return OS;
}
class DstStatePrinter {
public:
void print(raw_ostream &OS, const DstState &S) const;
explicit DstStatePrinter(const BinaryContext &BC) : BC(BC) {}
private:
const BinaryContext &BC;
};
void DstStatePrinter::print(raw_ostream &OS, const DstState &S) const {
RegStatePrinter RegStatePrinter(BC);
OS << "dst-state<";
if (S.empty()) {
assert(S.CannotEscapeUnchecked.empty());
assert(S.FirstInstLeakingReg.empty());
OS << "empty";
} else {
OS << "CannotEscapeUnchecked: ";
RegStatePrinter.print(OS, S.CannotEscapeUnchecked);
OS << ", ";
printInstsShort(OS, S.FirstInstLeakingReg);
}
OS << ">";
}
/// Computes which registers are safe to be written to by auth instructions.
///
/// This is the base class for two implementations: a dataflow-based analysis
/// which is intended to be used for most functions and a simplified CFG-unaware
/// version for functions without reconstructed CFG.
class DstSafetyAnalysis {
public:
DstSafetyAnalysis(BinaryFunction &BF, ArrayRef<MCPhysReg> RegsToTrackInstsFor)
: BC(BF.getBinaryContext()), NumRegs(BC.MRI->getNumRegs()),
RegsToTrackInstsFor(RegsToTrackInstsFor) {}
virtual ~DstSafetyAnalysis() {}
static std::shared_ptr<DstSafetyAnalysis>
create(BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocId,
ArrayRef<MCPhysReg> RegsToTrackInstsFor);
virtual void run() = 0;
virtual const DstState &getStateAfter(const MCInst &Inst) const = 0;
protected:
BinaryContext &BC;
const unsigned NumRegs;
const TrackedRegisters RegsToTrackInstsFor;
/// Stores information about the detected instruction sequences emitted to
/// check an authenticated pointer. Specifically, if such sequence is detected
/// in a basic block, it maps the first instruction of that sequence to the
/// register being checked.
///
/// As the detection of such sequences requires iterating over the adjacent
/// instructions, it should be done before calling computeNext(), which
/// operates on separate instructions.
DenseMap<const MCInst *, MCPhysReg> RegCheckedAt;
SetOfRelatedInsts &firstLeakingInsts(DstState &S, MCPhysReg Reg) const {
unsigned Index = RegsToTrackInstsFor.getIndex(Reg);
return S.FirstInstLeakingReg[Index];
}
const SetOfRelatedInsts &firstLeakingInsts(const DstState &S,
MCPhysReg Reg) const {
unsigned Index = RegsToTrackInstsFor.getIndex(Reg);
return S.FirstInstLeakingReg[Index];
}
/// Creates a state with all registers marked unsafe (not to be confused
/// with empty state).
DstState createUnsafeState() {
return DstState(NumRegs, RegsToTrackInstsFor.getNumTrackedRegisters());
}
/// Returns the set of registers that can be leaked by this instruction.
/// A register is considered leaked if it has any intersection with any
/// register read by Inst. This is similar to how the set of clobbered
/// registers is computed, but taking input operands instead of outputs.
BitVector getLeakedRegs(const MCInst &Inst) const {
BitVector Leaked(NumRegs);
// Assume a call can read all registers.
if (BC.MIB->isCall(Inst)) {
Leaked.set();
return Leaked;
}
// Compute the set of registers overlapping with any register used by
// this instruction.
const MCInstrDesc &Desc = BC.MII->get(Inst.getOpcode());
for (MCPhysReg Reg : Desc.implicit_uses())
Leaked |= BC.MIB->getAliases(Reg, /*OnlySmaller=*/false);
for (const MCOperand &Op : BC.MIB->useOperands(Inst)) {
if (Op.isReg())
Leaked |= BC.MIB->getAliases(Op.getReg(), /*OnlySmaller=*/false);
}
return Leaked;
}
SmallVector<MCPhysReg> getRegsMadeProtected(const MCInst &Inst,
const BitVector &LeakedRegs,
const DstState &Cur) const {
SmallVector<MCPhysReg> Regs;
// A pointer can be checked, or
if (auto CheckedReg =
BC.MIB->getAuthCheckedReg(Inst, /*MayOverwrite=*/true))
Regs.push_back(*CheckedReg);
if (RegCheckedAt.contains(&Inst))
Regs.push_back(RegCheckedAt.at(&Inst));
// ... it can be used as a branch target, or
if (BC.MIB->isIndirectBranch(Inst) || BC.MIB->isIndirectCall(Inst)) {
bool IsAuthenticated;
MCPhysReg BranchDestReg =
BC.MIB->getRegUsedAsIndirectBranchDest(Inst, IsAuthenticated);
assert(BranchDestReg != BC.MIB->getNoRegister());
if (!IsAuthenticated)
Regs.push_back(BranchDestReg);
}
// ... it can be used as a return target, or
if (BC.MIB->isReturn(Inst)) {
bool IsAuthenticated = false;
std::optional<MCPhysReg> RetReg =
BC.MIB->getRegUsedAsRetDest(Inst, IsAuthenticated);
if (RetReg && !IsAuthenticated)
Regs.push_back(*RetReg);
}
// ... an address can be updated in a safe manner, or
if (auto DstAndSrc = BC.MIB->analyzeAddressArithmeticsForPtrAuth(Inst)) {
MCPhysReg DstReg, SrcReg;
std::tie(DstReg, SrcReg) = *DstAndSrc;
// Note that *all* registers containing the derived values must be safe,
// both source and destination ones. No temporaries are supported at now.
if (Cur.CannotEscapeUnchecked[SrcReg] &&
Cur.CannotEscapeUnchecked[DstReg])
Regs.push_back(SrcReg);
}
// ... the register can be overwritten in whole with a constant: for that
// purpose, look for the instructions with no register inputs (neither
// explicit nor implicit ones) and no side effects (to rule out reading
// not modelled locations).
const MCInstrDesc &Desc = BC.MII->get(Inst.getOpcode());
bool HasExplicitSrcRegs = llvm::any_of(BC.MIB->useOperands(Inst),
[](auto Op) { return Op.isReg(); });
if (!Desc.hasUnmodeledSideEffects() && !HasExplicitSrcRegs &&
Desc.implicit_uses().empty()) {
for (const MCOperand &Def : BC.MIB->defOperands(Inst))
Regs.push_back(Def.getReg());
}
return Regs;
}
DstState computeNext(const MCInst &Point, const DstState &Cur) {
if (BC.MIB->isCFI(Point))
return Cur;
DstStatePrinter P(BC);
LLVM_DEBUG({
dbgs() << " DstSafetyAnalysis::ComputeNext(";
BC.InstPrinter->printInst(&Point, 0, "", *BC.STI, dbgs());
dbgs() << ", ";
P.print(dbgs(), Cur);
dbgs() << ")\n";
});
// If this instruction is reachable by the analysis, a non-empty state will
// be propagated to it sooner or later. Until then, skip computeNext().
if (Cur.empty()) {
LLVM_DEBUG(
{ dbgs() << "Skipping computeNext(Point, Cur) as Cur is empty.\n"; });
return DstState();
}
// First, compute various properties of the instruction, taking the state
// after its execution into account, if necessary.
BitVector LeakedRegs = getLeakedRegs(Point);
SmallVector<MCPhysReg> NewProtectedRegs =
getRegsMadeProtected(Point, LeakedRegs, Cur);
// Then, compute the state before this instruction is executed.
DstState Next = Cur;
Next.CannotEscapeUnchecked.reset(LeakedRegs);
for (MCPhysReg Reg : RegsToTrackInstsFor.getRegisters()) {
if (LeakedRegs[Reg])
firstLeakingInsts(Next, Reg) = {&Point};
}
BitVector NewProtectedSubregs(NumRegs);
for (MCPhysReg Reg : NewProtectedRegs)
NewProtectedSubregs |= BC.MIB->getAliases(Reg, /*OnlySmaller=*/true);
Next.CannotEscapeUnchecked |= NewProtectedSubregs;
for (MCPhysReg Reg : RegsToTrackInstsFor.getRegisters()) {
if (NewProtectedSubregs[Reg])
firstLeakingInsts(Next, Reg).clear();
}
LLVM_DEBUG({
dbgs() << " .. result: (";
P.print(dbgs(), Next);
dbgs() << ")\n";
});
return Next;
}
public:
std::vector<MCInstReference> getLeakingInsts(const MCInst &Inst,
BinaryFunction &BF,
MCPhysReg LeakedReg) const {
const DstState &S = getStateAfter(Inst);
std::vector<MCInstReference> Result;
for (const MCInst *Inst : firstLeakingInsts(S, LeakedReg)) {
MCInstReference Ref = MCInstReference::get(Inst, BF);
assert(Ref && "Expected Inst to be found");
Result.push_back(Ref);
}
return Result;
}
};
class DataflowDstSafetyAnalysis
: public DstSafetyAnalysis,
public DataflowAnalysis<DataflowDstSafetyAnalysis, DstState,
/*Backward=*/true, DstStatePrinter> {
using DFParent = DataflowAnalysis<DataflowDstSafetyAnalysis, DstState, true,
DstStatePrinter>;
friend DFParent;
using DstSafetyAnalysis::BC;
using DstSafetyAnalysis::computeNext;
public:
DataflowDstSafetyAnalysis(BinaryFunction &BF,
MCPlusBuilder::AllocatorIdTy AllocId,
ArrayRef<MCPhysReg> RegsToTrackInstsFor)
: DstSafetyAnalysis(BF, RegsToTrackInstsFor), DFParent(BF, AllocId) {}
const DstState &getStateAfter(const MCInst &Inst) const override {
// The dataflow analysis base class iterates backwards over the
// instructions, thus "after" vs. "before" difference.
return DFParent::getStateBefore(Inst).get();
}
void run() override {
for (BinaryBasicBlock &BB : Func) {
if (auto CheckerInfo = BC.MIB->getAuthCheckedReg(BB)) {
LLVM_DEBUG({
dbgs() << "Found pointer checking sequence in " << BB.getName()
<< ":\n";
traceReg(BC, "Checked register", CheckerInfo->first);
traceInst(BC, "First instruction", *CheckerInfo->second);
});
RegCheckedAt[CheckerInfo->second] = CheckerInfo->first;
}
}
DFParent::run();
}
protected:
void preflight() {}
DstState getStartingStateAtBB(const BinaryBasicBlock &BB) {
// In general, the initial state should be empty, not everything-is-unsafe,
// to give a chance for some meaningful state to be propagated to BB from
// an indirectly reachable "exit basic block" ending with a return or tail
// call instruction.
//
// A basic block without any successors, on the other hand, can be
// pessimistically initialized to everything-is-unsafe: this will naturally
// handle both return and tail call instructions and is harmless for
// internal indirect branch instructions (such as computed gotos).
if (BB.succ_empty())
return createUnsafeState();
return DstState();
}
DstState getStartingStateAtPoint(const MCInst &Point) { return DstState(); }
void doConfluence(DstState &StateOut, const DstState &StateIn) {
DstStatePrinter P(BC);
LLVM_DEBUG({
dbgs() << " DataflowDstSafetyAnalysis::Confluence(\n";
dbgs() << " State 1: ";
P.print(dbgs(), StateOut);
dbgs() << "\n";
dbgs() << " State 2: ";
P.print(dbgs(), StateIn);
dbgs() << ")\n";
});
StateOut.merge(StateIn);
LLVM_DEBUG({
dbgs() << " merged state: ";
P.print(dbgs(), StateOut);
dbgs() << "\n";
});
}
StringRef getAnnotationName() const { return "DataflowDstSafetyAnalysis"; }
};
class CFGUnawareDstSafetyAnalysis : public DstSafetyAnalysis,
public CFGUnawareAnalysis<DstState> {
using DstSafetyAnalysis::BC;
BinaryFunction &BF;
public:
CFGUnawareDstSafetyAnalysis(BinaryFunction &BF,
MCPlusBuilder::AllocatorIdTy AllocId,
ArrayRef<MCPhysReg> RegsToTrackInstsFor)
: DstSafetyAnalysis(BF, RegsToTrackInstsFor),
CFGUnawareAnalysis(BF, AllocId, "CFGUnawareDstSafetyAnalysis"), BF(BF) {
}
void run() override {
DstState S = createUnsafeState();
for (auto &I : llvm::reverse(BF.instrs())) {
MCInst &Inst = I.second;
if (BC.MIB->isCFI(Inst))
continue;
// If Inst can change the control flow, we cannot be sure that the next
// instruction (to be executed in analyzed program) is the one processed
// on the previous iteration, thus pessimistically reset S before
// starting to analyze Inst.
if (BC.MIB->isCall(Inst) || BC.MIB->isBranch(Inst) ||
BC.MIB->isReturn(Inst)) {
LLVM_DEBUG({ traceInst(BC, "Control flow instruction", Inst); });
S = createUnsafeState();
}
// Attach the state *after* this instruction executes.
setState(Inst, S);
// Compute the next state.
S = computeNext(Inst, S);
}
}
const DstState &getStateAfter(const MCInst &Inst) const override {
return getState(Inst);
}
};
std::shared_ptr<DstSafetyAnalysis>
DstSafetyAnalysis::create(BinaryFunction &BF,
MCPlusBuilder::AllocatorIdTy AllocId,
ArrayRef<MCPhysReg> RegsToTrackInstsFor) {
if (BF.hasCFG())
return std::make_shared<DataflowDstSafetyAnalysis>(BF, AllocId,
RegsToTrackInstsFor);
return std::make_shared<CFGUnawareDstSafetyAnalysis>(BF, AllocId,
RegsToTrackInstsFor);
}
// This function could return PartialReport<T>, but currently T is always
// MCPhysReg, even though it is an implementation detail.
static PartialReport<MCPhysReg> make_generic_report(MCInstReference Location,
StringRef Text) {
auto Report = std::make_shared<GenericDiagnostic>(Location, Text);
return PartialReport<MCPhysReg>(Report, std::nullopt);
}
template <typename T>
static PartialReport<T> make_gadget_report(const GadgetKind &Kind,
MCInstReference Location,
T RequestedDetails) {
auto Report = std::make_shared<GadgetDiagnostic>(Kind, Location);
return PartialReport<T>(Report, RequestedDetails);
}
static std::optional<PartialReport<MCPhysReg>>
shouldReportReturnGadget(const BinaryContext &BC, const MCInstReference &Inst,
const SrcState &S) {
static const GadgetKind RetKind("non-protected ret found");
if (!BC.MIB->isReturn(Inst))
return std::nullopt;
bool IsAuthenticated = false;
std::optional<MCPhysReg> RetReg =
BC.MIB->getRegUsedAsRetDest(Inst, IsAuthenticated);
if (!RetReg) {
return make_generic_report(
Inst, "Warning: pac-ret analysis could not analyze this return "
"instruction");
}
if (IsAuthenticated)
return std::nullopt;
LLVM_DEBUG({
traceInst(BC, "Found RET inst", Inst);
traceReg(BC, "RetReg", *RetReg);
traceRegMask(BC, "SafeToDerefRegs", S.SafeToDerefRegs);
});
if (S.SafeToDerefRegs[*RetReg])
return std::nullopt;
return make_gadget_report(RetKind, Inst, *RetReg);
}
/// While BOLT already marks some of the branch instructions as tail calls,
/// this function tries to detect less obvious cases, assuming false positives
/// are acceptable as long as there are not too many of them.
///
/// It is possible that not all the instructions classified as tail calls by
/// this function are safe to be considered as such for the purpose of code
/// transformations performed by BOLT. The intention of this function is to
/// spot some of actually missed tail calls (and likely a number of unrelated
/// indirect branch instructions) as long as this doesn't increase the amount
/// of false positive reports unacceptably.
static bool shouldAnalyzeTailCallInst(const BinaryContext &BC,
const BinaryFunction &BF,
const MCInstReference &Inst) {
// Some BC.MIB->isXYZ(Inst) methods simply delegate to MCInstrDesc::isXYZ()
// (such as isBranch at the time of writing this comment), some don't (such
// as isCall). For that reason, call MCInstrDesc's methods explicitly when
// it is important.
const MCInstrDesc &Desc =
BC.MII->get(static_cast<const MCInst &>(Inst).getOpcode());
// Tail call should be a branch (but not necessarily an indirect one).
if (!Desc.isBranch())
return false;
// Always analyze the branches already marked as tail calls by BOLT.
if (BC.MIB->isTailCall(Inst))
return true;
// Try to also check the branches marked as "UNKNOWN CONTROL FLOW" - the
// below is a simplified condition from BinaryContext::printInstruction.
bool IsUnknownControlFlow =
BC.MIB->isIndirectBranch(Inst) && !BC.MIB->getJumpTable(Inst);
if (BF.hasCFG() && IsUnknownControlFlow)
return true;
return false;
}
static std::optional<PartialReport<MCPhysReg>>
shouldReportUnsafeTailCall(const BinaryContext &BC, const BinaryFunction &BF,
const MCInstReference &Inst, const SrcState &S) {
static const GadgetKind UntrustedLRKind(
"untrusted link register found before tail call");
if (!shouldAnalyzeTailCallInst(BC, BF, Inst))
return std::nullopt;
// Not only the set of registers returned by getTrustedLiveInRegs() can be
// seen as a reasonable target-independent _approximation_ of "the LR", these
// are *exactly* those registers used by SrcSafetyAnalysis to initialize the
// set of trusted registers on function entry.
// Thus, this function basically checks that the precondition expected to be
// imposed by a function call instruction (which is hardcoded into the target-
// specific getTrustedLiveInRegs() function) is also respected on tail calls.
SmallVector<MCPhysReg> RegsToCheck = BC.MIB->getTrustedLiveInRegs();
LLVM_DEBUG({
traceInst(BC, "Found tail call inst", Inst);
traceRegMask(BC, "Trusted regs", S.TrustedRegs);
});
// In musl on AArch64, the _start function sets LR to zero and calls the next
// stage initialization function at the end, something along these lines:
//
// _start:
// mov x30, #0
// ; ... other initialization ...
// b _start_c ; performs "exit" system call at some point
//
// As this would produce a false positive for every executable linked with
// such libc, ignore tail calls performed by ELF entry function.
if (BC.StartFunctionAddress &&
*BC.StartFunctionAddress == Inst.getFunction()->getAddress()) {
LLVM_DEBUG({ dbgs() << " Skipping tail call in ELF entry function.\n"; });
return std::nullopt;
}
// Returns at most one report per instruction - this is probably OK...
for (auto Reg : RegsToCheck)
if (!S.TrustedRegs[Reg])
return make_gadget_report(UntrustedLRKind, Inst, Reg);
return std::nullopt;
}
static std::optional<PartialReport<MCPhysReg>>
shouldReportCallGadget(const BinaryContext &BC, const MCInstReference &Inst,
const SrcState &S) {
static const GadgetKind CallKind("non-protected call found");
if (!BC.MIB->isIndirectCall(Inst) && !BC.MIB->isIndirectBranch(Inst))
return std::nullopt;
bool IsAuthenticated = false;
MCPhysReg DestReg =
BC.MIB->getRegUsedAsIndirectBranchDest(Inst, IsAuthenticated);
if (IsAuthenticated)
return std::nullopt;
assert(DestReg != BC.MIB->getNoRegister() && "Valid register expected");
LLVM_DEBUG({
traceInst(BC, "Found call inst", Inst);
traceReg(BC, "Call destination reg", DestReg);
traceRegMask(BC, "SafeToDerefRegs", S.SafeToDerefRegs);
});
if (S.SafeToDerefRegs[DestReg])
return std::nullopt;
return make_gadget_report(CallKind, Inst, DestReg);
}
static std::optional<PartialReport<MCPhysReg>>
shouldReportSigningOracle(const BinaryContext &BC, const MCInstReference &Inst,
const SrcState &S) {
static const GadgetKind SigningOracleKind("signing oracle found");
std::optional<MCPhysReg> SignedReg = BC.MIB->getSignedReg(Inst);
if (!SignedReg)
return std::nullopt;
LLVM_DEBUG({
traceInst(BC, "Found sign inst", Inst);
traceReg(BC, "Signed reg", *SignedReg);
traceRegMask(BC, "TrustedRegs", S.TrustedRegs);
});
if (S.TrustedRegs[*SignedReg])
return std::nullopt;
return make_gadget_report(SigningOracleKind, Inst, *SignedReg);
}
static std::optional<PartialReport<MCPhysReg>>
shouldReportAuthOracle(const BinaryContext &BC, const MCInstReference &Inst,
const DstState &S) {
static const GadgetKind AuthOracleKind("authentication oracle found");
bool IsChecked = false;
std::optional<MCPhysReg> AuthReg =
BC.MIB->getWrittenAuthenticatedReg(Inst, IsChecked);
if (!AuthReg || IsChecked)
return std::nullopt;
LLVM_DEBUG({
traceInst(BC, "Found auth inst", Inst);
traceReg(BC, "Authenticated reg", *AuthReg);
});
if (S.empty()) {
LLVM_DEBUG({ dbgs() << " DstState is empty!\n"; });
return make_generic_report(
Inst, "Warning: no state computed for an authentication instruction "
"(possibly unreachable)");
}
LLVM_DEBUG(
{ traceRegMask(BC, "safe output registers", S.CannotEscapeUnchecked); });
if (S.CannotEscapeUnchecked[*AuthReg])
return std::nullopt;
return make_gadget_report(AuthOracleKind, Inst, *AuthReg);
}
static SmallVector<MCPhysReg>
collectRegsToTrack(ArrayRef<PartialReport<MCPhysReg>> Reports) {
SmallSet<MCPhysReg, 4> RegsToTrack;
for (auto Report : Reports)
if (Report.RequestedDetails)
RegsToTrack.insert(*Report.RequestedDetails);
return SmallVector<MCPhysReg>(RegsToTrack.begin(), RegsToTrack.end());
}
void FunctionAnalysisContext::findUnsafeUses(
SmallVector<PartialReport<MCPhysReg>> &Reports) {
auto Analysis = SrcSafetyAnalysis::create(BF, AllocatorId, {});
LLVM_DEBUG({ dbgs() << "Running src register safety analysis...\n"; });
Analysis->run();
LLVM_DEBUG({
dbgs() << "After src register safety analysis:\n";
BF.dump();
});
bool UnreachableBBReported = false;
if (BF.hasCFG()) {
// Warn on basic blocks being unreachable according to BOLT (at most once
// per BinaryFunction), as this likely means the CFG reconstructed by BOLT
// is imprecise. A basic block can be
// * reachable from an entry basic block - a hopefully correct non-empty
// state is propagated to that basic block sooner or later. All basic
// blocks are expected to belong to this category under normal conditions.
// * reachable from a "directly unreachable" BB (a basic block that has no
// direct predecessors and this is not because it is an entry BB) - *some*
// non-empty state is propagated to this basic block sooner or later, as
// the initial state of directly unreachable basic blocks is
// pessimistically initialized to "all registers are unsafe"
// - a warning can be printed for the "directly unreachable" basic block
// * neither reachable from an entry nor from a "directly unreachable" BB
// (such as if this BB is in an isolated loop of basic blocks) - the final
// state is computed to be empty for this basic block
// - a warning can be printed for this basic block
for (BinaryBasicBlock &BB : BF) {
MCInst *FirstInst = BB.getFirstNonPseudoInstr();
// Skip empty basic block early for simplicity.
if (!FirstInst)
continue;
bool IsDirectlyUnreachable = BB.pred_empty() && !BB.isEntryPoint();
bool HasNoStateComputed = Analysis->getStateBefore(*FirstInst).empty();
if (!IsDirectlyUnreachable && !HasNoStateComputed)
continue;
// Arbitrarily attach the report to the first instruction of BB.
// This is printed as "[message] in function [name], basic block ...,
// at address ..." when the issue is reported to the user.
Reports.push_back(make_generic_report(
MCInstReference::get(FirstInst, BF),
"Warning: possibly imprecise CFG, the analysis quality may be "
"degraded in this function. According to BOLT, unreachable code is "
"found" /* in function [name]... */));
UnreachableBBReported = true;
break; // One warning per function.
}
}
// FIXME: Warn the user about imprecise analysis when the function has no CFG
// information at all.
iterateOverInstrs(BF, [&](MCInstReference Inst) {
if (BC.MIB->isCFI(Inst))
return;
const SrcState &S = Analysis->getStateBefore(Inst);
if (S.empty()) {
LLVM_DEBUG(
{ traceInst(BC, "Instruction has no state, skipping", Inst); });
assert(UnreachableBBReported && "Should be reported at least once");
(void)UnreachableBBReported;
return;
}
if (auto Report = shouldReportReturnGadget(BC, Inst, S))
Reports.push_back(*Report);
if (PacRetGadgetsOnly)
return;
if (auto Report = shouldReportUnsafeTailCall(BC, BF, Inst, S))
Reports.push_back(*Report);
if (auto Report = shouldReportCallGadget(BC, Inst, S))
Reports.push_back(*Report);
if (auto Report = shouldReportSigningOracle(BC, Inst, S))
Reports.push_back(*Report);
});
}
void FunctionAnalysisContext::augmentUnsafeUseReports(
ArrayRef<PartialReport<MCPhysReg>> Reports) {
SmallVector<MCPhysReg> RegsToTrack = collectRegsToTrack(Reports);
// Re-compute the analysis with register tracking.
auto Analysis = SrcSafetyAnalysis::create(BF, AllocatorId, RegsToTrack);
LLVM_DEBUG(
{ dbgs() << "\nRunning detailed src register safety analysis...\n"; });
Analysis->run();
LLVM_DEBUG({
dbgs() << "After detailed src register safety analysis:\n";
BF.dump();
});
// Augment gadget reports.
for (auto &Report : Reports) {
MCInstReference Location = Report.Issue->Location;
LLVM_DEBUG({ traceInst(BC, "Attaching clobbering info to", Location); });
assert(Report.RequestedDetails &&
"Should be removed by handleSimpleReports");
auto DetailedInfo =
std::make_shared<ClobberingInfo>(Analysis->getLastClobberingInsts(
Location, BF, *Report.RequestedDetails));
Result.Diagnostics.emplace_back(Report.Issue, DetailedInfo);
}
}
void FunctionAnalysisContext::findUnsafeDefs(
SmallVector<PartialReport<MCPhysReg>> &Reports) {
if (PacRetGadgetsOnly)
return;
auto Analysis = DstSafetyAnalysis::create(BF, AllocatorId, {});
LLVM_DEBUG({ dbgs() << "Running dst register safety analysis...\n"; });
Analysis->run();
LLVM_DEBUG({
dbgs() << "After dst register safety analysis:\n";
BF.dump();
});
iterateOverInstrs(BF, [&](MCInstReference Inst) {
if (BC.MIB->isCFI(Inst))
return;
const DstState &S = Analysis->getStateAfter(Inst);
if (auto Report = shouldReportAuthOracle(BC, Inst, S))
Reports.push_back(*Report);
});
}
void FunctionAnalysisContext::augmentUnsafeDefReports(
ArrayRef<PartialReport<MCPhysReg>> Reports) {
SmallVector<MCPhysReg> RegsToTrack = collectRegsToTrack(Reports);
// Re-compute the analysis with register tracking.
auto Analysis = DstSafetyAnalysis::create(BF, AllocatorId, RegsToTrack);
LLVM_DEBUG(
{ dbgs() << "\nRunning detailed dst register safety analysis...\n"; });
Analysis->run();
LLVM_DEBUG({
dbgs() << "After detailed dst register safety analysis:\n";
BF.dump();
});
// Augment gadget reports.
for (auto &Report : Reports) {
MCInstReference Location = Report.Issue->Location;
LLVM_DEBUG({ traceInst(BC, "Attaching leakage info to", Location); });
assert(Report.RequestedDetails &&
"Should be removed by handleSimpleReports");
auto DetailedInfo = std::make_shared<LeakageInfo>(
Analysis->getLeakingInsts(Location, BF, *Report.RequestedDetails));
Result.Diagnostics.emplace_back(Report.Issue, DetailedInfo);
}
}
void FunctionAnalysisContext::handleSimpleReports(
SmallVector<PartialReport<MCPhysReg>> &Reports) {
// Before re-running the detailed analysis, process the reports which do not
// need any additional details to be attached.
for (auto &Report : Reports) {
if (!Report.RequestedDetails)
Result.Diagnostics.emplace_back(Report.Issue, nullptr);
}
llvm::erase_if(Reports, [](const auto &R) { return !R.RequestedDetails; });
}
void FunctionAnalysisContext::run() {
LLVM_DEBUG({
dbgs() << "Analyzing function " << BF.getPrintName()
<< ", AllocatorId = " << AllocatorId << "\n";
BF.dump();
});
SmallVector<PartialReport<MCPhysReg>> UnsafeUses;
findUnsafeUses(UnsafeUses);
handleSimpleReports(UnsafeUses);
if (!UnsafeUses.empty())
augmentUnsafeUseReports(UnsafeUses);
SmallVector<PartialReport<MCPhysReg>> UnsafeDefs;
findUnsafeDefs(UnsafeDefs);
handleSimpleReports(UnsafeDefs);
if (!UnsafeDefs.empty())
augmentUnsafeDefReports(UnsafeDefs);
}
void Analysis::runOnFunction(BinaryFunction &BF,
MCPlusBuilder::AllocatorIdTy AllocatorId) {
FunctionAnalysisContext FA(BF, AllocatorId, PacRetGadgetsOnly);
FA.run();
const FunctionAnalysisResult &FAR = FA.getResult();
if (FAR.Diagnostics.empty())
return;
// `runOnFunction` is typically getting called from multiple threads in
// parallel. Therefore, use a lock to avoid data races when storing the
// result of the analysis in the `AnalysisResults` map.
{
std::lock_guard<std::mutex> Lock(AnalysisResultsMutex);
AnalysisResults[&BF] = FAR;
}
}
static void printBB(const BinaryContext &BC, const BinaryBasicBlock *BB,
size_t StartIndex = 0, size_t EndIndex = -1) {
if (EndIndex == (size_t)-1)
EndIndex = BB->size() - 1;
const BinaryFunction *BF = BB->getFunction();
for (unsigned I = StartIndex; I <= EndIndex; ++I) {
// FIXME: this assumes all instructions are 4 bytes in size. This is true
// for AArch64, but it might be good to extract this function so it can be
// used elsewhere and for other targets too.
uint64_t Address = BB->getOffset() + BF->getAddress() + 4 * I;
const MCInst &Inst = BB->getInstructionAtIndex(I);
if (BC.MIB->isCFI(Inst))
continue;
BC.printInstruction(outs(), Inst, Address, BF);
}
}
static void reportFoundGadgetInSingleBBSingleRelatedInst(
raw_ostream &OS, const BinaryContext &BC, const MCInstReference RelatedInst,
const MCInstReference Location) {
BinaryBasicBlock *BB = Location.getBasicBlock();
assert(RelatedInst.ParentKind == MCInstReference::BasicBlockParent);
assert(Location.ParentKind == MCInstReference::BasicBlockParent);
MCInstInBBReference RelatedInstBB = RelatedInst.U.BBRef;
if (BB == RelatedInstBB.BB) {
OS << " This happens in the following basic block:\n";
printBB(BC, BB);
}
}
void Diagnostic::printBasicInfo(raw_ostream &OS, const BinaryContext &BC,
StringRef IssueKind) const {
BinaryFunction *BF = Location.getFunction();
BinaryBasicBlock *BB = Location.getBasicBlock();
OS << "\nGS-PAUTH: " << IssueKind;
OS << " in function " << BF->getPrintName();
if (BB)
OS << ", basic block " << BB->getName();
OS << ", at address " << llvm::format("%x", Location.getAddress()) << "\n";
OS << " The instruction is ";
BC.printInstruction(OS, Location, Location.getAddress(), BF);
}
void GadgetDiagnostic::generateReport(raw_ostream &OS,
const BinaryContext &BC) const {
printBasicInfo(OS, BC, Kind.getDescription());
}
static void printRelatedInstrs(raw_ostream &OS, const MCInstReference Location,
ArrayRef<MCInstReference> RelatedInstrs) {
const BinaryFunction &BF = *Location.getFunction();
const BinaryContext &BC = BF.getBinaryContext();
// Sort by address to ensure output is deterministic.
SmallVector<MCInstReference> RI(RelatedInstrs);
llvm::sort(RI, [](const MCInstReference &A, const MCInstReference &B) {
return A.getAddress() < B.getAddress();
});
for (unsigned I = 0; I < RI.size(); ++I) {
MCInstReference InstRef = RI[I];
OS << " " << (I + 1) << ". ";
BC.printInstruction(OS, InstRef, InstRef.getAddress(), &BF);
};
if (RelatedInstrs.size() == 1) {
const MCInstReference RelatedInst = RelatedInstrs[0];
// Printing the details for the MCInstReference::FunctionParent case
// is not implemented not to overcomplicate the code, as most functions
// are expected to have CFG information.
if (RelatedInst.ParentKind == MCInstReference::BasicBlockParent)
reportFoundGadgetInSingleBBSingleRelatedInst(OS, BC, RelatedInst,
Location);
}
}
void ClobberingInfo::print(raw_ostream &OS,
const MCInstReference Location) const {
OS << " The " << ClobberingInstrs.size()
<< " instructions that write to the affected registers after any "
"authentication are:\n";
printRelatedInstrs(OS, Location, ClobberingInstrs);
}
void LeakageInfo::print(raw_ostream &OS, const MCInstReference Location) const {
OS << " The " << LeakingInstrs.size()
<< " instructions that leak the affected registers are:\n";
printRelatedInstrs(OS, Location, LeakingInstrs);
}
void GenericDiagnostic::generateReport(raw_ostream &OS,
const BinaryContext &BC) const {
printBasicInfo(OS, BC, Text);
}
Error Analysis::runOnFunctions(BinaryContext &BC) {
ParallelUtilities::WorkFuncWithAllocTy WorkFun =
[&](BinaryFunction &BF, MCPlusBuilder::AllocatorIdTy AllocatorId) {
runOnFunction(BF, AllocatorId);
};
ParallelUtilities::PredicateTy SkipFunc = [&](const BinaryFunction &BF) {
return false;
};
ParallelUtilities::runOnEachFunctionWithUniqueAllocId(
BC, ParallelUtilities::SchedulingPolicy::SP_INST_LINEAR, WorkFun,
SkipFunc, "PAuthGadgetScanner");
for (BinaryFunction *BF : BC.getAllBinaryFunctions()) {
if (!AnalysisResults.count(BF))
continue;
for (const FinalReport &R : AnalysisResults[BF].Diagnostics) {
R.Issue->generateReport(outs(), BC);
if (R.Details)
R.Details->print(outs(), R.Issue->Location);
}
}
return Error::success();
}
} // namespace PAuthGadgetScanner
} // namespace bolt
} // namespace llvm
|