1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
|
//===- bolt/Passes/ProfileQualityStats.cpp ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the profile quality stats calculation pass.
//
//===----------------------------------------------------------------------===//
#include "bolt/Passes/ProfileQualityStats.h"
#include "bolt/Core/BinaryBasicBlock.h"
#include "bolt/Core/BinaryFunction.h"
#include "bolt/Utils/CommandLineOpts.h"
#include "llvm/Support/CommandLine.h"
#include <queue>
#include <unordered_map>
#include <unordered_set>
using namespace llvm;
using namespace bolt;
namespace opts {
extern cl::opt<unsigned> Verbosity;
static cl::opt<unsigned> TopFunctionsForProfileQualityCheck(
"top-functions-for-profile-quality-check",
cl::desc("number of hottest functions to print aggregated "
"profile quality stats of."),
cl::init(1000), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory));
static cl::opt<unsigned> PercentileForProfileQualityCheck(
"percentile-for-profile-quality-check",
cl::desc("Percentile of profile quality distributions over hottest "
"functions to report."),
cl::init(95), cl::ZeroOrMore, cl::Hidden, cl::cat(BoltOptCategory));
} // namespace opts
namespace {
using FunctionListType = std::vector<const BinaryFunction *>;
using function_iterator = FunctionListType::iterator;
// Function number -> vector of flows for BBs in the function
using TotalFlowMapTy = std::unordered_map<uint64_t, std::vector<uint64_t>>;
// Function number -> flow count
using FunctionFlowMapTy = std::unordered_map<uint64_t, uint64_t>;
struct FlowInfo {
TotalFlowMapTy TotalIncomingFlows;
TotalFlowMapTy TotalOutgoingFlows;
TotalFlowMapTy TotalMaxCountMaps;
TotalFlowMapTy TotalMinCountMaps;
FunctionFlowMapTy CallGraphIncomingFlows;
};
// When reporting exception handling stats, we only consider functions with at
// least MinLPECSum counts in landing pads to avoid false positives due to
// sampling noise
const uint16_t MinLPECSum = 50;
// When reporting CFG flow conservation stats, we only consider blocks with
// execution counts > MinBlockCount when reporting the distribution of worst
// gaps.
const uint16_t MinBlockCount = 500;
template <typename T>
void printDistribution(raw_ostream &OS, std::vector<T> &values,
bool Fraction = false) {
// Assume values are sorted.
if (values.empty())
return;
OS << " Length : " << values.size() << "\n";
auto printLine = [&](std::string Text, double Percent) {
int Rank = int(values.size() * (100 - Percent) / 100);
if (Percent == 0)
Rank = values.size() - 1;
if (Fraction)
OS << " " << Text << std::string(11 - Text.length(), ' ') << ": "
<< formatv("{0:P}", values[Rank]) << "\n";
else
OS << " " << Text << std::string(11 - Text.length(), ' ') << ": "
<< values[Rank] << "\n";
};
printLine("MAX", 0);
const int percentages[] = {1, 5, 10, 20, 50, 80};
for (size_t i = 0; i < sizeof(percentages) / sizeof(percentages[0]); ++i) {
printLine("TOP " + std::to_string(percentages[i]) + "%", percentages[i]);
}
printLine("MIN", 100);
}
void printCFGContinuityStats(raw_ostream &OS,
iterator_range<function_iterator> &Functions) {
// Given a perfect profile, every positive-execution-count BB should be
// connected to an entry of the function through a positive-execution-count
// directed path in the control flow graph.
std::vector<size_t> NumUnreachables;
std::vector<size_t> SumECUnreachables;
std::vector<double> FractionECUnreachables;
for (const BinaryFunction *Function : Functions) {
if (Function->size() <= 1) {
NumUnreachables.push_back(0);
SumECUnreachables.push_back(0);
FractionECUnreachables.push_back(0.0);
continue;
}
// Compute the sum of all BB execution counts (ECs).
size_t NumPosECBBs = 0;
size_t SumAllBBEC = 0;
for (const BinaryBasicBlock &BB : *Function) {
const size_t BBEC = BB.getKnownExecutionCount();
NumPosECBBs += !!BBEC;
SumAllBBEC += BBEC;
}
// Perform BFS on subgraph of CFG induced by positive weight edges.
// Compute the number of BBs reachable from the entry(s) of the function and
// the sum of their execution counts (ECs).
std::unordered_set<unsigned> Visited;
std::queue<unsigned> Queue;
size_t SumReachableBBEC = 0;
Function->forEachEntryPoint([&](uint64_t Offset, const MCSymbol *Label) {
const BinaryBasicBlock *EntryBB = Function->getBasicBlockAtOffset(Offset);
if (!EntryBB || EntryBB->getKnownExecutionCount() == 0)
return true;
Queue.push(EntryBB->getLayoutIndex());
Visited.insert(EntryBB->getLayoutIndex());
SumReachableBBEC += EntryBB->getKnownExecutionCount();
return true;
});
const FunctionLayout &Layout = Function->getLayout();
while (!Queue.empty()) {
const unsigned BBIndex = Queue.front();
const BinaryBasicBlock *BB = Layout.getBlock(BBIndex);
Queue.pop();
for (const auto &[Succ, BI] :
llvm::zip(BB->successors(), BB->branch_info())) {
const uint64_t Count = BI.Count;
if (Count == BinaryBasicBlock::COUNT_NO_PROFILE || Count == 0 ||
!Visited.insert(Succ->getLayoutIndex()).second)
continue;
SumReachableBBEC += Succ->getKnownExecutionCount();
Queue.push(Succ->getLayoutIndex());
}
}
const size_t NumReachableBBs = Visited.size();
const size_t NumPosECBBsUnreachableFromEntry =
NumPosECBBs - NumReachableBBs;
const size_t SumUnreachableBBEC = SumAllBBEC - SumReachableBBEC;
double FractionECUnreachable = 0.0;
if (SumAllBBEC > 0)
FractionECUnreachable = (double)SumUnreachableBBEC / SumAllBBEC;
if (opts::Verbosity >= 2 && FractionECUnreachable >= 0.05) {
OS << "Non-trivial CFG discontinuity observed in function "
<< Function->getPrintName() << "\n";
if (opts::Verbosity >= 3)
Function->dump();
}
NumUnreachables.push_back(NumPosECBBsUnreachableFromEntry);
SumECUnreachables.push_back(SumUnreachableBBEC);
FractionECUnreachables.push_back(FractionECUnreachable);
}
llvm::sort(FractionECUnreachables);
const int Rank = int(FractionECUnreachables.size() *
opts::PercentileForProfileQualityCheck / 100);
OS << formatv("function CFG discontinuity {0:P}; ",
FractionECUnreachables[Rank]);
if (opts::Verbosity >= 1) {
OS << "\nabbreviations: EC = execution count, POS BBs = positive EC BBs\n"
<< "distribution of NUM(unreachable POS BBs) per function\n";
llvm::sort(NumUnreachables);
printDistribution(OS, NumUnreachables);
OS << "distribution of SUM_EC(unreachable POS BBs) per function\n";
llvm::sort(SumECUnreachables);
printDistribution(OS, SumECUnreachables);
OS << "distribution of [(SUM_EC(unreachable POS BBs) / SUM_EC(all "
"POS BBs))] per function\n";
printDistribution(OS, FractionECUnreachables, /*Fraction=*/true);
}
}
void printCallGraphFlowConservationStats(
raw_ostream &OS, iterator_range<function_iterator> &Functions,
FlowInfo &TotalFlowMap) {
std::vector<double> CallGraphGaps;
for (const BinaryFunction *Function : Functions) {
if (Function->size() <= 1 || !Function->isSimple()) {
CallGraphGaps.push_back(0.0);
continue;
}
const uint64_t FunctionNum = Function->getFunctionNumber();
std::vector<uint64_t> &IncomingFlows =
TotalFlowMap.TotalIncomingFlows[FunctionNum];
std::vector<uint64_t> &OutgoingFlows =
TotalFlowMap.TotalOutgoingFlows[FunctionNum];
FunctionFlowMapTy &CallGraphIncomingFlows =
TotalFlowMap.CallGraphIncomingFlows;
// Only consider functions that are not a program entry.
if (CallGraphIncomingFlows.find(FunctionNum) ==
CallGraphIncomingFlows.end()) {
CallGraphGaps.push_back(0.0);
continue;
}
uint64_t EntryInflow = 0;
uint64_t EntryOutflow = 0;
uint32_t NumConsideredEntryBlocks = 0;
Function->forEachEntryPoint([&](uint64_t Offset, const MCSymbol *Label) {
const BinaryBasicBlock *EntryBB = Function->getBasicBlockAtOffset(Offset);
if (!EntryBB || EntryBB->succ_size() == 0)
return true;
NumConsideredEntryBlocks++;
EntryInflow += IncomingFlows[EntryBB->getLayoutIndex()];
EntryOutflow += OutgoingFlows[EntryBB->getLayoutIndex()];
return true;
});
uint64_t NetEntryOutflow = 0;
if (EntryOutflow < EntryInflow) {
if (opts::Verbosity >= 2) {
// We expect entry blocks' CFG outflow >= inflow, i.e., it has a
// non-negative net outflow. If this is not the case, then raise a
// warning if requested.
OS << "BOLT WARNING: unexpected entry block CFG outflow < inflow "
"in function "
<< Function->getPrintName() << "\n";
if (opts::Verbosity >= 3)
Function->dump();
}
} else {
NetEntryOutflow = EntryOutflow - EntryInflow;
}
if (NumConsideredEntryBlocks > 0) {
const uint64_t CallGraphInflow =
TotalFlowMap.CallGraphIncomingFlows[Function->getFunctionNumber()];
const uint64_t Min = std::min(NetEntryOutflow, CallGraphInflow);
const uint64_t Max = std::max(NetEntryOutflow, CallGraphInflow);
double CallGraphGap = 0.0;
if (Max > 0)
CallGraphGap = 1 - (double)Min / Max;
if (opts::Verbosity >= 2 && CallGraphGap >= 0.5) {
OS << "Non-trivial call graph gap of size "
<< formatv("{0:P}", CallGraphGap) << " observed in function "
<< Function->getPrintName() << "\n";
if (opts::Verbosity >= 3)
Function->dump();
}
CallGraphGaps.push_back(CallGraphGap);
} else {
CallGraphGaps.push_back(0.0);
}
}
llvm::sort(CallGraphGaps);
const int Rank =
int(CallGraphGaps.size() * opts::PercentileForProfileQualityCheck / 100);
OS << formatv("call graph flow conservation gap {0:P}; ",
CallGraphGaps[Rank]);
if (opts::Verbosity >= 1) {
OS << "\ndistribution of function entry flow conservation gaps\n";
printDistribution(OS, CallGraphGaps, /*Fraction=*/true);
}
}
void printCFGFlowConservationStats(const BinaryContext &BC, raw_ostream &OS,
iterator_range<function_iterator> &Functions,
FlowInfo &TotalFlowMap) {
std::vector<double> CFGGapsWeightedAvg;
std::vector<double> CFGGapsWorst;
std::vector<uint64_t> CFGGapsWorstAbs;
for (const BinaryFunction *Function : Functions) {
if (Function->size() <= 1 || !Function->isSimple()) {
CFGGapsWeightedAvg.push_back(0.0);
CFGGapsWorst.push_back(0.0);
CFGGapsWorstAbs.push_back(0);
continue;
}
const uint64_t FunctionNum = Function->getFunctionNumber();
std::vector<uint64_t> &MaxCountMaps =
TotalFlowMap.TotalMaxCountMaps[FunctionNum];
std::vector<uint64_t> &MinCountMaps =
TotalFlowMap.TotalMinCountMaps[FunctionNum];
double WeightedGapSum = 0.0;
double WeightSum = 0.0;
double WorstGap = 0.0;
uint64_t WorstGapAbs = 0;
BinaryBasicBlock *BBWorstGap = nullptr;
BinaryBasicBlock *BBWorstGapAbs = nullptr;
for (BinaryBasicBlock &BB : *Function) {
// We don't consider function entry or exit blocks for CFG flow
// conservation
if (BB.isEntryPoint() || BB.succ_size() == 0)
continue;
if (BB.getKnownExecutionCount() == 0 || BB.getNumNonPseudos() == 0)
continue;
// We don't consider blocks that is a landing pad or has a
// positive-execution-count landing pad
if (BB.isLandingPad())
continue;
if (llvm::any_of(BB.landing_pads(),
std::mem_fn(&BinaryBasicBlock::getKnownExecutionCount)))
continue;
// We don't consider blocks that end with a recursive call instruction
const MCInst *Inst = BB.getLastNonPseudoInstr();
if (BC.MIB->isCall(*Inst)) {
const MCSymbol *DstSym = BC.MIB->getTargetSymbol(*Inst);
const BinaryFunction *DstFunc =
DstSym ? BC.getFunctionForSymbol(DstSym) : nullptr;
if (DstFunc == Function)
continue;
}
const uint64_t Max = MaxCountMaps[BB.getLayoutIndex()];
const uint64_t Min = MinCountMaps[BB.getLayoutIndex()];
double Gap = 0.0;
if (Max > 0)
Gap = 1 - (double)Min / Max;
double Weight = BB.getKnownExecutionCount() * BB.getNumNonPseudos();
// We use log to prevent the stats from being dominated by extremely hot
// blocks
Weight = log(Weight);
WeightedGapSum += Gap * Weight;
WeightSum += Weight;
if (BB.getKnownExecutionCount() > MinBlockCount && Gap > WorstGap) {
WorstGap = Gap;
BBWorstGap = &BB;
}
if (BB.getKnownExecutionCount() > MinBlockCount &&
Max - Min > WorstGapAbs) {
WorstGapAbs = Max - Min;
BBWorstGapAbs = &BB;
}
}
double WeightedGap = WeightedGapSum;
if (WeightSum > 0)
WeightedGap /= WeightSum;
if (opts::Verbosity >= 2 && WorstGap >= 0.9) {
OS << "Non-trivial CFG gap observed in function "
<< Function->getPrintName() << "\n"
<< "Weighted gap: " << formatv("{0:P}", WeightedGap) << "\n";
if (BBWorstGap)
OS << "Worst gap: " << formatv("{0:P}", WorstGap)
<< " at BB with input offset: 0x"
<< Twine::utohexstr(BBWorstGap->getInputOffset()) << "\n";
if (BBWorstGapAbs)
OS << "Worst gap (absolute value): " << WorstGapAbs << " at BB with "
<< "input offset 0x"
<< Twine::utohexstr(BBWorstGapAbs->getInputOffset()) << "\n";
if (opts::Verbosity >= 3)
Function->dump();
}
CFGGapsWeightedAvg.push_back(WeightedGap);
CFGGapsWorst.push_back(WorstGap);
CFGGapsWorstAbs.push_back(WorstGapAbs);
}
llvm::sort(CFGGapsWeightedAvg);
const int RankWA = int(CFGGapsWeightedAvg.size() *
opts::PercentileForProfileQualityCheck / 100);
llvm::sort(CFGGapsWorst);
const int RankW =
int(CFGGapsWorst.size() * opts::PercentileForProfileQualityCheck / 100);
OS << formatv("CFG flow conservation gap {0:P} (weighted) {1:P} (worst); ",
CFGGapsWeightedAvg[RankWA], CFGGapsWorst[RankW]);
if (opts::Verbosity >= 1) {
OS << "distribution of weighted CFG flow conservation gaps\n";
printDistribution(OS, CFGGapsWeightedAvg, /*Fraction=*/true);
OS << format("Consider only blocks with execution counts > %zu:\n",
MinBlockCount)
<< "distribution of worst block flow conservation gap per "
"function \n";
printDistribution(OS, CFGGapsWorst, /*Fraction=*/true);
OS << "distribution of worst block flow conservation gap (absolute "
"value) per function\n";
llvm::sort(CFGGapsWorstAbs);
printDistribution(OS, CFGGapsWorstAbs, /*Fraction=*/false);
}
}
void printExceptionHandlingStats(const BinaryContext &BC, raw_ostream &OS,
iterator_range<function_iterator> &Functions) {
std::vector<double> LPCountFractionsOfTotalBBEC;
std::vector<double> LPCountFractionsOfTotalInvokeEC;
for (const BinaryFunction *Function : Functions) {
size_t LPECSum = 0;
size_t BBECSum = 0;
size_t InvokeECSum = 0;
for (BinaryBasicBlock &BB : *Function) {
const size_t BBEC = BB.getKnownExecutionCount();
BBECSum += BBEC;
if (BB.isLandingPad())
LPECSum += BBEC;
for (const MCInst &Inst : BB) {
if (!BC.MIB->isInvoke(Inst))
continue;
const std::optional<MCPlus::MCLandingPad> EHInfo =
BC.MIB->getEHInfo(Inst);
if (EHInfo->first)
InvokeECSum += BBEC;
}
}
if (LPECSum <= MinLPECSum) {
LPCountFractionsOfTotalBBEC.push_back(0.0);
LPCountFractionsOfTotalInvokeEC.push_back(0.0);
continue;
}
double FracTotalBBEC = 0.0;
if (BBECSum > 0)
FracTotalBBEC = (double)LPECSum / BBECSum;
double FracTotalInvokeEC = 0.0;
if (InvokeECSum > 0)
FracTotalInvokeEC = (double)LPECSum / InvokeECSum;
LPCountFractionsOfTotalBBEC.push_back(FracTotalBBEC);
LPCountFractionsOfTotalInvokeEC.push_back(FracTotalInvokeEC);
if (opts::Verbosity >= 2 && FracTotalInvokeEC >= 0.05) {
OS << "Non-trivial usage of exception handling observed in function "
<< Function->getPrintName() << "\n"
<< formatv(
"Fraction of total InvokeEC that goes to landing pads: {0:P}\n",
FracTotalInvokeEC);
if (opts::Verbosity >= 3)
Function->dump();
}
}
llvm::sort(LPCountFractionsOfTotalBBEC);
const int RankBBEC = int(LPCountFractionsOfTotalBBEC.size() *
opts::PercentileForProfileQualityCheck / 100);
llvm::sort(LPCountFractionsOfTotalInvokeEC);
const int RankInvoke = int(LPCountFractionsOfTotalInvokeEC.size() *
opts::PercentileForProfileQualityCheck / 100);
OS << formatv("exception handling usage {0:P} (of total BBEC) {1:P} (of "
"total InvokeEC)\n",
LPCountFractionsOfTotalBBEC[RankBBEC],
LPCountFractionsOfTotalInvokeEC[RankInvoke]);
if (opts::Verbosity >= 1) {
OS << "distribution of exception handling usage as a fraction of total "
"BBEC of each function\n";
printDistribution(OS, LPCountFractionsOfTotalBBEC, /*Fraction=*/true);
OS << "distribution of exception handling usage as a fraction of total "
"InvokeEC of each function\n";
printDistribution(OS, LPCountFractionsOfTotalInvokeEC, /*Fraction=*/true);
}
}
void computeFlowMappings(const BinaryContext &BC, FlowInfo &TotalFlowMap) {
// Increment block inflow and outflow with CFG jump counts.
TotalFlowMapTy &TotalIncomingFlows = TotalFlowMap.TotalIncomingFlows;
TotalFlowMapTy &TotalOutgoingFlows = TotalFlowMap.TotalOutgoingFlows;
for (const auto &BFI : BC.getBinaryFunctions()) {
const BinaryFunction *Function = &BFI.second;
std::vector<uint64_t> &IncomingFlows =
TotalIncomingFlows[Function->getFunctionNumber()];
std::vector<uint64_t> &OutgoingFlows =
TotalOutgoingFlows[Function->getFunctionNumber()];
const uint64_t NumBlocks = Function->size();
IncomingFlows.resize(NumBlocks, 0);
OutgoingFlows.resize(NumBlocks, 0);
if (Function->empty() || !Function->hasValidProfile())
continue;
for (const BinaryBasicBlock &BB : *Function) {
uint64_t TotalOutgoing = 0ULL;
for (const auto &[Succ, BI] :
llvm::zip(BB.successors(), BB.branch_info())) {
const uint64_t Count = BI.Count;
if (Count == BinaryBasicBlock::COUNT_NO_PROFILE || Count == 0)
continue;
TotalOutgoing += Count;
IncomingFlows[Succ->getLayoutIndex()] += Count;
}
OutgoingFlows[BB.getLayoutIndex()] = TotalOutgoing;
}
}
// Initialize TotalMaxCountMaps and TotalMinCountMaps using
// TotalIncomingFlows and TotalOutgoingFlows
TotalFlowMapTy &TotalMaxCountMaps = TotalFlowMap.TotalMaxCountMaps;
TotalFlowMapTy &TotalMinCountMaps = TotalFlowMap.TotalMinCountMaps;
for (const auto &BFI : BC.getBinaryFunctions()) {
const BinaryFunction *Function = &BFI.second;
uint64_t FunctionNum = Function->getFunctionNumber();
std::vector<uint64_t> &IncomingFlows = TotalIncomingFlows[FunctionNum];
std::vector<uint64_t> &OutgoingFlows = TotalOutgoingFlows[FunctionNum];
std::vector<uint64_t> &MaxCountMap = TotalMaxCountMaps[FunctionNum];
std::vector<uint64_t> &MinCountMap = TotalMinCountMaps[FunctionNum];
const uint64_t NumBlocks = Function->size();
MaxCountMap.resize(NumBlocks, 0);
MinCountMap.resize(NumBlocks, 0);
if (Function->empty() || !Function->hasValidProfile())
continue;
for (const BinaryBasicBlock &BB : *Function) {
uint64_t BBNum = BB.getLayoutIndex();
MaxCountMap[BBNum] = std::max(IncomingFlows[BBNum], OutgoingFlows[BBNum]);
MinCountMap[BBNum] = std::min(IncomingFlows[BBNum], OutgoingFlows[BBNum]);
}
}
// Modify TotalMaxCountMaps and TotalMinCountMaps using call counts and
// fill out CallGraphIncomingFlows
FunctionFlowMapTy &CallGraphIncomingFlows =
TotalFlowMap.CallGraphIncomingFlows;
for (const auto &BFI : BC.getBinaryFunctions()) {
const BinaryFunction *Function = &BFI.second;
uint64_t FunctionNum = Function->getFunctionNumber();
std::vector<uint64_t> &MaxCountMap = TotalMaxCountMaps[FunctionNum];
std::vector<uint64_t> &MinCountMap = TotalMinCountMaps[FunctionNum];
// Record external entry count into CallGraphIncomingFlows
CallGraphIncomingFlows[FunctionNum] += Function->getExternEntryCount();
// Update MaxCountMap, MinCountMap, and CallGraphIncomingFlows
auto recordCall = [&](const BinaryBasicBlock *SourceBB,
const MCSymbol *DestSymbol, uint64_t Count,
uint64_t TotalCallCount) {
if (Count == BinaryBasicBlock::COUNT_NO_PROFILE)
Count = 0;
const BinaryFunction *DstFunc =
DestSymbol ? BC.getFunctionForSymbol(DestSymbol) : nullptr;
if (DstFunc)
CallGraphIncomingFlows[DstFunc->getFunctionNumber()] += Count;
if (SourceBB) {
unsigned BlockIndex = SourceBB->getLayoutIndex();
MaxCountMap[BlockIndex] =
std::max(MaxCountMap[BlockIndex], TotalCallCount);
MinCountMap[BlockIndex] =
std::min(MinCountMap[BlockIndex], TotalCallCount);
}
};
// Get pairs of (symbol, count) for each target at this callsite.
// If the call is to an unknown function the symbol will be nullptr.
// If there is no profiling data the count will be COUNT_NO_PROFILE.
using TargetDesc = std::pair<const MCSymbol *, uint64_t>;
using CallInfoTy = std::vector<TargetDesc>;
auto getCallInfo = [&](const BinaryBasicBlock *BB, const MCInst &Inst) {
CallInfoTy Counts;
const MCSymbol *DstSym = BC.MIB->getTargetSymbol(Inst);
if (!DstSym && BC.MIB->hasAnnotation(Inst, "CallProfile")) {
for (const auto &CSI : BC.MIB->getAnnotationAs<IndirectCallSiteProfile>(
Inst, "CallProfile"))
if (CSI.Symbol)
Counts.emplace_back(CSI.Symbol, CSI.Count);
} else {
const uint64_t Count = BB->getExecutionCount();
Counts.emplace_back(DstSym, Count);
}
return Counts;
};
// If the function has an invalid profile, try to use the perf data
// directly. The call EC is only used to update CallGraphIncomingFlows.
if (!Function->hasValidProfile() && !Function->getAllCallSites().empty()) {
for (const IndirectCallProfile &CSI : Function->getAllCallSites())
if (CSI.Symbol)
recordCall(nullptr, CSI.Symbol, CSI.Count, CSI.Count);
continue;
} else {
// If the function has a valid profile
for (const BinaryBasicBlock &BB : *Function) {
for (const MCInst &Inst : BB) {
if (!BC.MIB->isCall(Inst))
continue;
// Find call instructions and extract target symbols from each
// one.
const CallInfoTy CallInfo = getCallInfo(&BB, Inst);
// We need the total call count to update MaxCountMap and
// MinCountMap in recordCall for indirect calls
uint64_t TotalCallCount = 0;
for (const TargetDesc &CI : CallInfo)
TotalCallCount += CI.second;
for (const TargetDesc &CI : CallInfo)
recordCall(&BB, CI.first, CI.second, TotalCallCount);
}
}
}
}
}
void printAll(BinaryContext &BC, FunctionListType &ValidFunctions,
size_t NumTopFunctions) {
// Sort the list of functions by execution counts (reverse).
llvm::sort(ValidFunctions,
[&](const BinaryFunction *A, const BinaryFunction *B) {
return A->getKnownExecutionCount() > B->getKnownExecutionCount();
});
const size_t RealNumTopFunctions =
std::min(NumTopFunctions, ValidFunctions.size());
iterator_range<function_iterator> Functions(
ValidFunctions.begin(), ValidFunctions.begin() + RealNumTopFunctions);
FlowInfo TotalFlowMap;
computeFlowMappings(BC, TotalFlowMap);
BC.outs() << format("BOLT-INFO: profile quality metrics for the hottest %zu "
"functions (reporting top %zu%% values): ",
RealNumTopFunctions,
100 - opts::PercentileForProfileQualityCheck);
printCFGContinuityStats(BC.outs(), Functions);
printCallGraphFlowConservationStats(BC.outs(), Functions, TotalFlowMap);
printCFGFlowConservationStats(BC, BC.outs(), Functions, TotalFlowMap);
printExceptionHandlingStats(BC, BC.outs(), Functions);
// Print more detailed bucketed stats if requested.
if (opts::Verbosity >= 1 && RealNumTopFunctions >= 5) {
const size_t PerBucketSize = RealNumTopFunctions / 5;
BC.outs() << format(
"Detailed stats for 5 buckets, each with %zu functions:\n",
PerBucketSize);
// For each bucket, print the CFG continuity stats of the functions in
// the bucket.
for (size_t BucketIndex = 0; BucketIndex < 5; ++BucketIndex) {
const size_t StartIndex = BucketIndex * PerBucketSize;
const size_t EndIndex = StartIndex + PerBucketSize;
iterator_range<function_iterator> Functions(
ValidFunctions.begin() + StartIndex,
ValidFunctions.begin() + EndIndex);
const size_t MaxFunctionExecutionCount =
ValidFunctions[StartIndex]->getKnownExecutionCount();
const size_t MinFunctionExecutionCount =
ValidFunctions[EndIndex - 1]->getKnownExecutionCount();
BC.outs() << format("----------------\n| Bucket %zu: "
"|\n----------------\n",
BucketIndex + 1)
<< format(
"execution counts of the %zu functions in the bucket: "
"%zu-%zu\n",
EndIndex - StartIndex, MinFunctionExecutionCount,
MaxFunctionExecutionCount);
printCFGContinuityStats(BC.outs(), Functions);
printCallGraphFlowConservationStats(BC.outs(), Functions, TotalFlowMap);
printCFGFlowConservationStats(BC, BC.outs(), Functions, TotalFlowMap);
printExceptionHandlingStats(BC, BC.outs(), Functions);
}
}
}
} // namespace
bool PrintProfileQualityStats::shouldOptimize(const BinaryFunction &BF) const {
if (BF.empty() || !BF.hasValidProfile())
return false;
return BinaryFunctionPass::shouldOptimize(BF);
}
Error PrintProfileQualityStats::runOnFunctions(BinaryContext &BC) {
// Create a list of functions with valid profiles.
FunctionListType ValidFunctions;
for (const auto &BFI : BC.getBinaryFunctions()) {
const BinaryFunction *Function = &BFI.second;
if (PrintProfileQualityStats::shouldOptimize(*Function))
ValidFunctions.push_back(Function);
}
if (ValidFunctions.empty() || opts::TopFunctionsForProfileQualityCheck == 0)
return Error::success();
printAll(BC, ValidFunctions, opts::TopFunctionsForProfileQualityCheck);
return Error::success();
}
|