1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
|
//===-- Serialize.cpp - ClangDoc Serializer ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Serialize.h"
#include "BitcodeWriter.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Comment.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/Mangle.h"
#include "clang/Index/USRGeneration.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/SHA1.h"
using clang::comments::FullComment;
namespace clang {
namespace doc {
namespace serialize {
namespace {
static SmallString<16> exprToString(const clang::Expr *E) {
clang::LangOptions Opts;
clang::PrintingPolicy Policy(Opts);
SmallString<16> Result;
llvm::raw_svector_ostream OS(Result);
E->printPretty(OS, nullptr, Policy);
return Result;
}
} // namespace
SymbolID hashUSR(llvm::StringRef USR) {
return llvm::SHA1::hash(arrayRefFromStringRef(USR));
}
template <typename T>
static void
populateParentNamespaces(llvm::SmallVector<Reference, 4> &Namespaces,
const T *D, bool &IsAnonymousNamespace);
static void populateMemberTypeInfo(MemberTypeInfo &I, const Decl *D);
static void populateMemberTypeInfo(RecordInfo &I, AccessSpecifier &Access,
const DeclaratorDecl *D,
bool IsStatic = false);
static void getTemplateParameters(const TemplateParameterList *TemplateParams,
llvm::raw_ostream &Stream) {
Stream << "template <";
for (unsigned i = 0; i < TemplateParams->size(); ++i) {
if (i > 0)
Stream << ", ";
const NamedDecl *Param = TemplateParams->getParam(i);
if (const auto *TTP = llvm::dyn_cast<TemplateTypeParmDecl>(Param)) {
if (TTP->wasDeclaredWithTypename())
Stream << "typename";
else
Stream << "class";
if (TTP->isParameterPack())
Stream << "...";
Stream << " " << TTP->getNameAsString();
// We need to also handle type constraints for code like:
// template <class T = void>
// class C {};
if (TTP->hasTypeConstraint()) {
Stream << " = ";
TTP->getTypeConstraint()->print(
Stream, TTP->getASTContext().getPrintingPolicy());
}
} else if (const auto *NTTP =
llvm::dyn_cast<NonTypeTemplateParmDecl>(Param)) {
NTTP->getType().print(Stream, NTTP->getASTContext().getPrintingPolicy());
if (NTTP->isParameterPack())
Stream << "...";
Stream << " " << NTTP->getNameAsString();
} else if (const auto *TTPD =
llvm::dyn_cast<TemplateTemplateParmDecl>(Param)) {
Stream << "template <";
getTemplateParameters(TTPD->getTemplateParameters(), Stream);
Stream << "> class " << TTPD->getNameAsString();
}
}
Stream << "> ";
}
// Extract the full function prototype from a FunctionDecl including
// Full Decl
static llvm::SmallString<256>
getFunctionPrototype(const FunctionDecl *FuncDecl) {
llvm::SmallString<256> Result;
llvm::raw_svector_ostream Stream(Result);
const ASTContext &Ctx = FuncDecl->getASTContext();
const auto *Method = llvm::dyn_cast<CXXMethodDecl>(FuncDecl);
// If it's a templated function, handle the template parameters
if (const auto *TmplDecl = FuncDecl->getDescribedTemplate())
getTemplateParameters(TmplDecl->getTemplateParameters(), Stream);
// If it's a virtual method
if (Method && Method->isVirtual())
Stream << "virtual ";
// Print return type
FuncDecl->getReturnType().print(Stream, Ctx.getPrintingPolicy());
// Print function name
Stream << " " << FuncDecl->getNameAsString() << "(";
// Print parameter list with types, names, and default values
for (unsigned I = 0; I < FuncDecl->getNumParams(); ++I) {
if (I > 0)
Stream << ", ";
const ParmVarDecl *ParamDecl = FuncDecl->getParamDecl(I);
QualType ParamType = ParamDecl->getType();
ParamType.print(Stream, Ctx.getPrintingPolicy());
// Print parameter name if it has one
if (!ParamDecl->getName().empty())
Stream << " " << ParamDecl->getNameAsString();
// Print default argument if it exists
if (ParamDecl->hasDefaultArg() &&
!ParamDecl->hasUninstantiatedDefaultArg()) {
if (const Expr *DefaultArg = ParamDecl->getDefaultArg()) {
Stream << " = ";
DefaultArg->printPretty(Stream, nullptr, Ctx.getPrintingPolicy());
}
}
}
// If it is a variadic function, add '...'
if (FuncDecl->isVariadic()) {
if (FuncDecl->getNumParams() > 0)
Stream << ", ";
Stream << "...";
}
Stream << ")";
// If it's a const method, add 'const' qualifier
if (Method) {
if (Method->isDeleted())
Stream << " = delete";
if (Method->size_overridden_methods())
Stream << " override";
if (Method->hasAttr<clang::FinalAttr>())
Stream << " final";
if (Method->isConst())
Stream << " const";
if (Method->isPureVirtual())
Stream << " = 0";
}
if (auto ExceptionSpecType = FuncDecl->getExceptionSpecType())
Stream << " " << ExceptionSpecType;
return Result; // Convert SmallString to std::string for return
}
static llvm::SmallString<16> getTypeAlias(const TypeAliasDecl *Alias) {
llvm::SmallString<16> Result;
llvm::raw_svector_ostream Stream(Result);
const ASTContext &Ctx = Alias->getASTContext();
if (const auto *TmplDecl = Alias->getDescribedTemplate())
getTemplateParameters(TmplDecl->getTemplateParameters(), Stream);
Stream << "using " << Alias->getNameAsString() << " = ";
QualType Q = Alias->getUnderlyingType();
Q.print(Stream, Ctx.getPrintingPolicy());
return Result;
}
// extract full syntax for record declaration
static llvm::SmallString<16> getRecordPrototype(const CXXRecordDecl *CXXRD) {
llvm::SmallString<16> Result;
LangOptions LangOpts;
PrintingPolicy Policy(LangOpts);
Policy.SuppressTagKeyword = false;
Policy.FullyQualifiedName = true;
Policy.IncludeNewlines = false;
llvm::raw_svector_ostream OS(Result);
if (const auto *TD = CXXRD->getDescribedClassTemplate()) {
OS << "template <";
bool FirstParam = true;
for (const auto *Param : *TD->getTemplateParameters()) {
if (!FirstParam)
OS << ", ";
Param->print(OS, Policy);
FirstParam = false;
}
OS << ">\n";
}
if (CXXRD->isStruct())
OS << "struct ";
else if (CXXRD->isClass())
OS << "class ";
else if (CXXRD->isUnion())
OS << "union ";
OS << CXXRD->getNameAsString();
// We need to make sure we have a good enough declaration to check. In the
// case where the class is a forward declaration, we'll fail assertions in
// DeclCXX.
if (CXXRD->isCompleteDefinition() && CXXRD->getNumBases() > 0) {
OS << " : ";
bool FirstBase = true;
for (const auto &Base : CXXRD->bases()) {
if (!FirstBase)
OS << ", ";
if (Base.isVirtual())
OS << "virtual ";
OS << getAccessSpelling(Base.getAccessSpecifier()) << " ";
OS << Base.getType().getAsString(Policy);
FirstBase = false;
}
}
return Result;
}
// A function to extract the appropriate relative path for a given info's
// documentation. The path returned is a composite of the parent namespaces.
//
// Example: Given the below, the directory path for class C info will be
// <root>/A/B
//
// namespace A {
// namespace B {
//
// class C {};
//
// }
// }
static llvm::SmallString<128>
getInfoRelativePath(const llvm::SmallVectorImpl<doc::Reference> &Namespaces) {
llvm::SmallString<128> Path;
for (auto R = Namespaces.rbegin(), E = Namespaces.rend(); R != E; ++R)
llvm::sys::path::append(Path, R->Name);
return Path;
}
static llvm::SmallString<128> getInfoRelativePath(const Decl *D) {
llvm::SmallVector<Reference, 4> Namespaces;
// The third arg in populateParentNamespaces is a boolean passed by reference,
// its value is not relevant in here so it's not used anywhere besides the
// function call
bool B = true;
populateParentNamespaces(Namespaces, D, B);
return getInfoRelativePath(Namespaces);
}
class ClangDocCommentVisitor
: public ConstCommentVisitor<ClangDocCommentVisitor> {
public:
ClangDocCommentVisitor(CommentInfo &CI) : CurrentCI(CI) {}
void parseComment(const comments::Comment *C);
void visitTextComment(const TextComment *C);
void visitInlineCommandComment(const InlineCommandComment *C);
void visitHTMLStartTagComment(const HTMLStartTagComment *C);
void visitHTMLEndTagComment(const HTMLEndTagComment *C);
void visitBlockCommandComment(const BlockCommandComment *C);
void visitParamCommandComment(const ParamCommandComment *C);
void visitTParamCommandComment(const TParamCommandComment *C);
void visitVerbatimBlockComment(const VerbatimBlockComment *C);
void visitVerbatimBlockLineComment(const VerbatimBlockLineComment *C);
void visitVerbatimLineComment(const VerbatimLineComment *C);
private:
std::string getCommandName(unsigned CommandID) const;
bool isWhitespaceOnly(StringRef S) const;
CommentInfo &CurrentCI;
};
void ClangDocCommentVisitor::parseComment(const comments::Comment *C) {
CurrentCI.Kind = stringToCommentKind(C->getCommentKindName());
ConstCommentVisitor<ClangDocCommentVisitor>::visit(C);
for (comments::Comment *Child :
llvm::make_range(C->child_begin(), C->child_end())) {
CurrentCI.Children.emplace_back(std::make_unique<CommentInfo>());
ClangDocCommentVisitor Visitor(*CurrentCI.Children.back());
Visitor.parseComment(Child);
}
}
void ClangDocCommentVisitor::visitTextComment(const TextComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
void ClangDocCommentVisitor::visitInlineCommandComment(
const InlineCommandComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
for (unsigned I = 0, E = C->getNumArgs(); I != E; ++I)
CurrentCI.Args.push_back(C->getArgText(I));
}
void ClangDocCommentVisitor::visitHTMLStartTagComment(
const HTMLStartTagComment *C) {
CurrentCI.Name = C->getTagName();
CurrentCI.SelfClosing = C->isSelfClosing();
for (unsigned I = 0, E = C->getNumAttrs(); I < E; ++I) {
const HTMLStartTagComment::Attribute &Attr = C->getAttr(I);
CurrentCI.AttrKeys.push_back(Attr.Name);
CurrentCI.AttrValues.push_back(Attr.Value);
}
}
void ClangDocCommentVisitor::visitHTMLEndTagComment(
const HTMLEndTagComment *C) {
CurrentCI.Name = C->getTagName();
CurrentCI.SelfClosing = true;
}
void ClangDocCommentVisitor::visitBlockCommandComment(
const BlockCommandComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
for (unsigned I = 0, E = C->getNumArgs(); I < E; ++I)
CurrentCI.Args.push_back(C->getArgText(I));
}
void ClangDocCommentVisitor::visitParamCommandComment(
const ParamCommandComment *C) {
CurrentCI.Direction =
ParamCommandComment::getDirectionAsString(C->getDirection());
CurrentCI.Explicit = C->isDirectionExplicit();
if (C->hasParamName())
CurrentCI.ParamName = C->getParamNameAsWritten();
}
void ClangDocCommentVisitor::visitTParamCommandComment(
const TParamCommandComment *C) {
if (C->hasParamName())
CurrentCI.ParamName = C->getParamNameAsWritten();
}
void ClangDocCommentVisitor::visitVerbatimBlockComment(
const VerbatimBlockComment *C) {
CurrentCI.Name = getCommandName(C->getCommandID());
CurrentCI.CloseName = C->getCloseName();
}
void ClangDocCommentVisitor::visitVerbatimBlockLineComment(
const VerbatimBlockLineComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
void ClangDocCommentVisitor::visitVerbatimLineComment(
const VerbatimLineComment *C) {
if (!isWhitespaceOnly(C->getText()))
CurrentCI.Text = C->getText();
}
bool ClangDocCommentVisitor::isWhitespaceOnly(llvm::StringRef S) const {
return llvm::all_of(S, isspace);
}
std::string ClangDocCommentVisitor::getCommandName(unsigned CommandID) const {
const CommandInfo *Info = CommandTraits::getBuiltinCommandInfo(CommandID);
if (Info)
return Info->Name;
// TODO: Add parsing for \file command.
return "<not a builtin command>";
}
// Serializing functions.
static std::string getSourceCode(const Decl *D, const SourceRange &R) {
return Lexer::getSourceText(CharSourceRange::getTokenRange(R),
D->getASTContext().getSourceManager(),
D->getASTContext().getLangOpts())
.str();
}
template <typename T> static std::string serialize(T &I) {
SmallString<2048> Buffer;
llvm::BitstreamWriter Stream(Buffer);
ClangDocBitcodeWriter Writer(Stream);
Writer.emitBlock(I);
return Buffer.str().str();
}
std::string serialize(std::unique_ptr<Info> &I) {
switch (I->IT) {
case InfoType::IT_namespace:
return serialize(*static_cast<NamespaceInfo *>(I.get()));
case InfoType::IT_record:
return serialize(*static_cast<RecordInfo *>(I.get()));
case InfoType::IT_enum:
return serialize(*static_cast<EnumInfo *>(I.get()));
case InfoType::IT_function:
return serialize(*static_cast<FunctionInfo *>(I.get()));
case InfoType::IT_concept:
return serialize(*static_cast<ConceptInfo *>(I.get()));
case InfoType::IT_variable:
return serialize(*static_cast<VarInfo *>(I.get()));
case InfoType::IT_friend:
case InfoType::IT_typedef:
case InfoType::IT_default:
return "";
}
llvm_unreachable("unhandled enumerator");
}
static void parseFullComment(const FullComment *C, CommentInfo &CI) {
ClangDocCommentVisitor Visitor(CI);
Visitor.parseComment(C);
}
static SymbolID getUSRForDecl(const Decl *D) {
llvm::SmallString<128> USR;
if (index::generateUSRForDecl(D, USR))
return SymbolID();
return hashUSR(USR);
}
static TagDecl *getTagDeclForType(const QualType &T) {
if (const TagDecl *D = T->getAsTagDecl())
return D->getDefinition();
return nullptr;
}
static RecordDecl *getRecordDeclForType(const QualType &T) {
if (const RecordDecl *D = T->getAsRecordDecl())
return D->getDefinition();
return nullptr;
}
static TypeInfo getTypeInfoForType(const QualType &T,
const PrintingPolicy &Policy) {
const TagDecl *TD = getTagDeclForType(T);
if (!TD) {
TypeInfo TI = TypeInfo(Reference(SymbolID(), T.getAsString(Policy)));
TI.IsBuiltIn = T->isBuiltinType();
TI.IsTemplate = T->isTemplateTypeParmType();
return TI;
}
InfoType IT;
if (isa<EnumDecl>(TD)) {
IT = InfoType::IT_enum;
} else if (isa<RecordDecl>(TD)) {
IT = InfoType::IT_record;
} else {
IT = InfoType::IT_default;
}
Reference R = Reference(getUSRForDecl(TD), TD->getNameAsString(), IT,
T.getAsString(Policy), getInfoRelativePath(TD));
TypeInfo TI = TypeInfo(R);
TI.IsBuiltIn = T->isBuiltinType();
TI.IsTemplate = T->isTemplateTypeParmType();
return TI;
}
static bool isPublic(const clang::AccessSpecifier AS,
const clang::Linkage Link) {
if (AS == clang::AccessSpecifier::AS_private)
return false;
if ((Link == clang::Linkage::Module) || (Link == clang::Linkage::External))
return true;
return false; // otherwise, linkage is some form of internal linkage
}
static bool shouldSerializeInfo(bool PublicOnly, bool IsInAnonymousNamespace,
const NamedDecl *D) {
bool IsAnonymousNamespace = false;
if (const auto *N = dyn_cast<NamespaceDecl>(D))
IsAnonymousNamespace = N->isAnonymousNamespace();
return !PublicOnly ||
(!IsInAnonymousNamespace && !IsAnonymousNamespace &&
isPublic(D->getAccessUnsafe(), D->getLinkageInternal()));
}
// The InsertChild functions insert the given info into the given scope using
// the method appropriate for that type. Some types are moved into the
// appropriate vector, while other types have Reference objects generated to
// refer to them.
//
// See MakeAndInsertIntoParent().
static void InsertChild(ScopeChildren &Scope, const NamespaceInfo &Info) {
Scope.Namespaces.emplace_back(Info.USR, Info.Name, InfoType::IT_namespace,
Info.Name, getInfoRelativePath(Info.Namespace));
}
static void InsertChild(ScopeChildren &Scope, const RecordInfo &Info) {
Scope.Records.emplace_back(Info.USR, Info.Name, InfoType::IT_record,
Info.Name, getInfoRelativePath(Info.Namespace));
}
static void InsertChild(ScopeChildren &Scope, EnumInfo Info) {
Scope.Enums.push_back(std::move(Info));
}
static void InsertChild(ScopeChildren &Scope, FunctionInfo Info) {
Scope.Functions.push_back(std::move(Info));
}
static void InsertChild(ScopeChildren &Scope, TypedefInfo Info) {
Scope.Typedefs.push_back(std::move(Info));
}
static void InsertChild(ScopeChildren &Scope, ConceptInfo Info) {
Scope.Concepts.push_back(std::move(Info));
}
static void InsertChild(ScopeChildren &Scope, VarInfo Info) {
Scope.Variables.push_back(std::move(Info));
}
// Creates a parent of the correct type for the given child and inserts it into
// that parent.
//
// This is complicated by the fact that namespaces and records are inserted by
// reference (constructing a "Reference" object with that namespace/record's
// info), while everything else is inserted by moving it directly into the child
// vectors.
//
// For namespaces and records, explicitly specify a const& template parameter
// when invoking this function:
// MakeAndInsertIntoParent<const Record&>(...);
// Otherwise, specify an rvalue reference <EnumInfo&&> and move into the
// parameter. Since each variant is used once, it's not worth having a more
// elaborate system to automatically deduce this information.
template <typename ChildType>
static std::unique_ptr<Info> makeAndInsertIntoParent(ChildType Child) {
if (Child.Namespace.empty()) {
// Insert into unnamed parent namespace.
auto ParentNS = std::make_unique<NamespaceInfo>();
InsertChild(ParentNS->Children, std::forward<ChildType>(Child));
return ParentNS;
}
switch (Child.Namespace[0].RefType) {
case InfoType::IT_namespace: {
auto ParentNS = std::make_unique<NamespaceInfo>();
ParentNS->USR = Child.Namespace[0].USR;
InsertChild(ParentNS->Children, std::forward<ChildType>(Child));
return ParentNS;
}
case InfoType::IT_record: {
auto ParentRec = std::make_unique<RecordInfo>();
ParentRec->USR = Child.Namespace[0].USR;
InsertChild(ParentRec->Children, std::forward<ChildType>(Child));
return ParentRec;
}
case InfoType::IT_default:
case InfoType::IT_enum:
case InfoType::IT_function:
case InfoType::IT_typedef:
case InfoType::IT_concept:
case InfoType::IT_variable:
case InfoType::IT_friend:
break;
}
llvm_unreachable("Invalid reference type for parent namespace");
}
// There are two uses for this function.
// 1) Getting the resulting mode of inheritance of a record.
// Example: class A {}; class B : private A {}; class C : public B {};
// It's explicit that C is publicly inherited from C and B is privately
// inherited from A. It's not explicit but C is also privately inherited from
// A. This is the AS that this function calculates. FirstAS is the
// inheritance mode of `class C : B` and SecondAS is the inheritance mode of
// `class B : A`.
// 2) Getting the inheritance mode of an inherited attribute / method.
// Example : class A { public: int M; }; class B : private A {};
// Class B is inherited from class A, which has a public attribute. This
// attribute is now part of the derived class B but it's not public. This
// will be private because the inheritance is private. This is the AS that
// this function calculates. FirstAS is the inheritance mode and SecondAS is
// the AS of the attribute / method.
static AccessSpecifier getFinalAccessSpecifier(AccessSpecifier FirstAS,
AccessSpecifier SecondAS) {
if (FirstAS == AccessSpecifier::AS_none ||
SecondAS == AccessSpecifier::AS_none)
return AccessSpecifier::AS_none;
if (FirstAS == AccessSpecifier::AS_private ||
SecondAS == AccessSpecifier::AS_private)
return AccessSpecifier::AS_private;
if (FirstAS == AccessSpecifier::AS_protected ||
SecondAS == AccessSpecifier::AS_protected)
return AccessSpecifier::AS_protected;
return AccessSpecifier::AS_public;
}
// The Access parameter is only provided when parsing the field of an inherited
// record, the access specification of the field depends on the inheritance mode
static void parseFields(RecordInfo &I, const RecordDecl *D, bool PublicOnly,
AccessSpecifier Access = AccessSpecifier::AS_public) {
for (const FieldDecl *F : D->fields()) {
if (!shouldSerializeInfo(PublicOnly, /*IsInAnonymousNamespace=*/false, F))
continue;
populateMemberTypeInfo(I, Access, F);
}
const auto *CxxRD = dyn_cast<CXXRecordDecl>(D);
if (!CxxRD)
return;
for (Decl *CxxDecl : CxxRD->decls()) {
auto *VD = dyn_cast<VarDecl>(CxxDecl);
if (!VD ||
!shouldSerializeInfo(PublicOnly, /*IsInAnonymousNamespace=*/false, VD))
continue;
if (VD->isStaticDataMember())
populateMemberTypeInfo(I, Access, VD, /*IsStatic=*/true);
}
}
static void parseEnumerators(EnumInfo &I, const EnumDecl *D) {
for (const EnumConstantDecl *E : D->enumerators()) {
std::string ValueExpr;
if (const Expr *InitExpr = E->getInitExpr())
ValueExpr = getSourceCode(D, InitExpr->getSourceRange());
SmallString<16> ValueStr;
E->getInitVal().toString(ValueStr);
I.Members.emplace_back(E->getNameAsString(), ValueStr.str(), ValueExpr);
ASTContext &Context = E->getASTContext();
if (RawComment *Comment =
E->getASTContext().getRawCommentForDeclNoCache(E)) {
Comment->setAttached();
if (comments::FullComment *Fc = Comment->parse(Context, nullptr, E)) {
EnumValueInfo &Member = I.Members.back();
Member.Description.emplace_back();
parseFullComment(Fc, Member.Description.back());
}
}
}
}
static void parseParameters(FunctionInfo &I, const FunctionDecl *D) {
auto &LO = D->getLangOpts();
for (const ParmVarDecl *P : D->parameters()) {
FieldTypeInfo &FieldInfo = I.Params.emplace_back(
getTypeInfoForType(P->getOriginalType(), LO), P->getNameAsString());
FieldInfo.DefaultValue = getSourceCode(D, P->getDefaultArgRange());
}
}
// TODO: Remove the serialization of Parents and VirtualParents, this
// information is also extracted in the other definition of parseBases.
static void parseBases(RecordInfo &I, const CXXRecordDecl *D) {
// Don't parse bases if this isn't a definition.
if (!D->isThisDeclarationADefinition())
return;
for (const CXXBaseSpecifier &B : D->bases()) {
if (B.isVirtual())
continue;
if (const auto *Ty = B.getType()->getAs<TemplateSpecializationType>()) {
const TemplateDecl *D = Ty->getTemplateName().getAsTemplateDecl();
I.Parents.emplace_back(getUSRForDecl(D), B.getType().getAsString(),
InfoType::IT_record, B.getType().getAsString());
} else if (const RecordDecl *P = getRecordDeclForType(B.getType()))
I.Parents.emplace_back(getUSRForDecl(P), P->getNameAsString(),
InfoType::IT_record, P->getQualifiedNameAsString(),
getInfoRelativePath(P));
else
I.Parents.emplace_back(SymbolID(), B.getType().getAsString());
}
for (const CXXBaseSpecifier &B : D->vbases()) {
if (const RecordDecl *P = getRecordDeclForType(B.getType()))
I.VirtualParents.emplace_back(
getUSRForDecl(P), P->getNameAsString(), InfoType::IT_record,
P->getQualifiedNameAsString(), getInfoRelativePath(P));
else
I.VirtualParents.emplace_back(SymbolID(), B.getType().getAsString());
}
}
template <typename T>
static void
populateParentNamespaces(llvm::SmallVector<Reference, 4> &Namespaces,
const T *D, bool &IsInAnonymousNamespace) {
const DeclContext *DC = D->getDeclContext();
do {
if (const auto *N = dyn_cast<NamespaceDecl>(DC)) {
std::string Namespace;
if (N->isAnonymousNamespace()) {
Namespace = "@nonymous_namespace";
IsInAnonymousNamespace = true;
} else
Namespace = N->getNameAsString();
Namespaces.emplace_back(getUSRForDecl(N), Namespace,
InfoType::IT_namespace,
N->getQualifiedNameAsString());
} else if (const auto *N = dyn_cast<RecordDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_record,
N->getQualifiedNameAsString());
else if (const auto *N = dyn_cast<FunctionDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_function,
N->getQualifiedNameAsString());
else if (const auto *N = dyn_cast<EnumDecl>(DC))
Namespaces.emplace_back(getUSRForDecl(N), N->getNameAsString(),
InfoType::IT_enum, N->getQualifiedNameAsString());
} while ((DC = DC->getParent()));
// The global namespace should be added to the list of namespaces if the decl
// corresponds to a Record and if it doesn't have any namespace (because this
// means it's in the global namespace). Also if its outermost namespace is a
// record because that record matches the previous condition mentioned.
if ((Namespaces.empty() && isa<RecordDecl>(D)) ||
(!Namespaces.empty() && Namespaces.back().RefType == InfoType::IT_record))
Namespaces.emplace_back(SymbolID(), "GlobalNamespace",
InfoType::IT_namespace);
}
static void
populateTemplateParameters(std::optional<TemplateInfo> &TemplateInfo,
const clang::Decl *D) {
if (const TemplateParameterList *ParamList =
D->getDescribedTemplateParams()) {
if (!TemplateInfo) {
TemplateInfo.emplace();
}
for (const NamedDecl *ND : *ParamList) {
TemplateInfo->Params.emplace_back(
getSourceCode(ND, ND->getSourceRange()));
}
}
}
static TemplateParamInfo convertTemplateArgToInfo(const clang::Decl *D,
const TemplateArgument &Arg) {
// The TemplateArgument's pretty printing handles all the normal cases
// well enough for our requirements.
std::string Str;
llvm::raw_string_ostream Stream(Str);
Arg.print(PrintingPolicy(D->getLangOpts()), Stream, false);
return TemplateParamInfo(Str);
}
template <typename T>
static void populateInfo(Info &I, const T *D, const FullComment *C,
bool &IsInAnonymousNamespace) {
I.USR = getUSRForDecl(D);
if (auto ConversionDecl = dyn_cast_or_null<CXXConversionDecl>(D);
ConversionDecl && ConversionDecl->getConversionType()
.getTypePtr()
->isTemplateTypeParmType())
I.Name = "operator " + ConversionDecl->getConversionType().getAsString();
else
I.Name = D->getNameAsString();
populateParentNamespaces(I.Namespace, D, IsInAnonymousNamespace);
if (C) {
I.Description.emplace_back();
parseFullComment(C, I.Description.back());
}
}
template <typename T>
static void populateSymbolInfo(SymbolInfo &I, const T *D, const FullComment *C,
Location Loc, bool &IsInAnonymousNamespace) {
populateInfo(I, D, C, IsInAnonymousNamespace);
if (D->isThisDeclarationADefinition())
I.DefLoc = Loc;
else
I.Loc.emplace_back(Loc);
auto *Mangler = ItaniumMangleContext::create(
D->getASTContext(), D->getASTContext().getDiagnostics());
std::string MangledName;
llvm::raw_string_ostream MangledStream(MangledName);
if (auto *CXXD = dyn_cast<CXXRecordDecl>(D))
Mangler->mangleCXXVTable(CXXD, MangledStream);
else
MangledStream << D->getNameAsString();
I.MangledName = MangledName;
delete Mangler;
}
static void
handleCompoundConstraints(const Expr *Constraint,
std::vector<ConstraintInfo> &ConstraintInfos) {
if (Constraint->getStmtClass() == Stmt::ParenExprClass) {
handleCompoundConstraints(dyn_cast<ParenExpr>(Constraint)->getSubExpr(),
ConstraintInfos);
} else if (Constraint->getStmtClass() == Stmt::BinaryOperatorClass) {
auto *BinaryOpExpr = dyn_cast<BinaryOperator>(Constraint);
handleCompoundConstraints(BinaryOpExpr->getLHS(), ConstraintInfos);
handleCompoundConstraints(BinaryOpExpr->getRHS(), ConstraintInfos);
} else if (Constraint->getStmtClass() ==
Stmt::ConceptSpecializationExprClass) {
auto *Concept = dyn_cast<ConceptSpecializationExpr>(Constraint);
ConstraintInfo CI(getUSRForDecl(Concept->getNamedConcept()),
Concept->getNamedConcept()->getNameAsString());
CI.ConstraintExpr = exprToString(Concept);
ConstraintInfos.push_back(CI);
}
}
static void populateConstraints(TemplateInfo &I, const TemplateDecl *D) {
if (!D || !D->hasAssociatedConstraints())
return;
SmallVector<AssociatedConstraint> AssociatedConstraints;
D->getAssociatedConstraints(AssociatedConstraints);
for (const auto &Constraint : AssociatedConstraints) {
if (!Constraint)
continue;
// TODO: Investigate if atomic constraints need to be handled specifically.
if (const auto *ConstraintExpr =
dyn_cast_or_null<ConceptSpecializationExpr>(
Constraint.ConstraintExpr)) {
ConstraintInfo CI(getUSRForDecl(ConstraintExpr->getNamedConcept()),
ConstraintExpr->getNamedConcept()->getNameAsString());
CI.ConstraintExpr = exprToString(ConstraintExpr);
I.Constraints.push_back(std::move(CI));
} else {
handleCompoundConstraints(Constraint.ConstraintExpr, I.Constraints);
}
}
}
static void populateFunctionInfo(FunctionInfo &I, const FunctionDecl *D,
const FullComment *FC, Location Loc,
bool &IsInAnonymousNamespace) {
populateSymbolInfo(I, D, FC, Loc, IsInAnonymousNamespace);
auto &LO = D->getLangOpts();
I.ReturnType = getTypeInfoForType(D->getReturnType(), LO);
I.Prototype = getFunctionPrototype(D);
parseParameters(I, D);
I.IsStatic = D->isStatic();
populateTemplateParameters(I.Template, D);
if (I.Template)
populateConstraints(I.Template.value(), D->getDescribedFunctionTemplate());
// Handle function template specializations.
if (const FunctionTemplateSpecializationInfo *FTSI =
D->getTemplateSpecializationInfo()) {
if (!I.Template)
I.Template.emplace();
I.Template->Specialization.emplace();
auto &Specialization = *I.Template->Specialization;
Specialization.SpecializationOf = getUSRForDecl(FTSI->getTemplate());
// Template parameters to the specialization.
if (FTSI->TemplateArguments) {
for (const TemplateArgument &Arg : FTSI->TemplateArguments->asArray()) {
Specialization.Params.push_back(convertTemplateArgToInfo(D, Arg));
}
}
}
}
static void populateMemberTypeInfo(MemberTypeInfo &I, const Decl *D) {
assert(D && "Expect non-null FieldDecl in populateMemberTypeInfo");
ASTContext &Context = D->getASTContext();
// TODO investigate whether we can use ASTContext::getCommentForDecl instead
// of this logic. See also similar code in Mapper.cpp.
RawComment *Comment = Context.getRawCommentForDeclNoCache(D);
if (!Comment)
return;
Comment->setAttached();
if (comments::FullComment *Fc = Comment->parse(Context, nullptr, D)) {
I.Description.emplace_back();
parseFullComment(Fc, I.Description.back());
}
}
static void populateMemberTypeInfo(RecordInfo &I, AccessSpecifier &Access,
const DeclaratorDecl *D, bool IsStatic) {
// Use getAccessUnsafe so that we just get the default AS_none if it's not
// valid, as opposed to an assert.
MemberTypeInfo &NewMember = I.Members.emplace_back(
getTypeInfoForType(D->getTypeSourceInfo()->getType(), D->getLangOpts()),
D->getNameAsString(),
getFinalAccessSpecifier(Access, D->getAccessUnsafe()), IsStatic);
populateMemberTypeInfo(NewMember, D);
}
static void
parseBases(RecordInfo &I, const CXXRecordDecl *D, bool IsFileInRootDir,
bool PublicOnly, bool IsParent,
AccessSpecifier ParentAccess = AccessSpecifier::AS_public) {
// Don't parse bases if this isn't a definition.
if (!D->isThisDeclarationADefinition())
return;
for (const CXXBaseSpecifier &B : D->bases()) {
if (const RecordType *Ty = B.getType()->getAs<RecordType>()) {
if (const CXXRecordDecl *Base =
cast_or_null<CXXRecordDecl>(Ty->getDecl()->getDefinition())) {
// Initialized without USR and name, this will be set in the following
// if-else stmt.
BaseRecordInfo BI(
{}, "", getInfoRelativePath(Base), B.isVirtual(),
getFinalAccessSpecifier(ParentAccess, B.getAccessSpecifier()),
IsParent);
if (const auto *Ty = B.getType()->getAs<TemplateSpecializationType>()) {
const TemplateDecl *D = Ty->getTemplateName().getAsTemplateDecl();
BI.USR = getUSRForDecl(D);
BI.Name = B.getType().getAsString();
} else {
BI.USR = getUSRForDecl(Base);
BI.Name = Base->getNameAsString();
}
parseFields(BI, Base, PublicOnly, BI.Access);
for (const auto &Decl : Base->decls())
if (const auto *MD = dyn_cast<CXXMethodDecl>(Decl)) {
// Don't serialize private methods
if (MD->getAccessUnsafe() == AccessSpecifier::AS_private ||
!MD->isUserProvided())
continue;
FunctionInfo FI;
FI.IsMethod = true;
FI.IsStatic = MD->isStatic();
// The seventh arg in populateFunctionInfo is a boolean passed by
// reference, its value is not relevant in here so it's not used
// anywhere besides the function call.
bool IsInAnonymousNamespace;
populateFunctionInfo(FI, MD, /*FullComment=*/{}, /*Location=*/{},
IsInAnonymousNamespace);
FI.Access =
getFinalAccessSpecifier(BI.Access, MD->getAccessUnsafe());
BI.Children.Functions.emplace_back(std::move(FI));
}
I.Bases.emplace_back(std::move(BI));
// Call this function recursively to get the inherited classes of
// this base; these new bases will also get stored in the original
// RecordInfo: I.
parseBases(I, Base, IsFileInRootDir, PublicOnly, false,
I.Bases.back().Access);
}
}
}
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const NamespaceDecl *D, const FullComment *FC, Location Loc,
bool PublicOnly) {
auto NSI = std::make_unique<NamespaceInfo>();
bool IsInAnonymousNamespace = false;
populateInfo(*NSI, D, FC, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
NSI->Name = D->isAnonymousNamespace()
? llvm::SmallString<16>("@nonymous_namespace")
: NSI->Name;
NSI->Path = getInfoRelativePath(NSI->Namespace);
if (NSI->Namespace.empty() && NSI->USR == SymbolID())
return {std::unique_ptr<Info>{std::move(NSI)}, nullptr};
// Namespaces are inserted into the parent by reference, so we need to return
// both the parent and the record itself.
return {std::move(NSI), makeAndInsertIntoParent<const NamespaceInfo &>(*NSI)};
}
static void parseFriends(RecordInfo &RI, const CXXRecordDecl *D) {
if (!D->hasDefinition() || !D->hasFriends())
return;
for (const FriendDecl *FD : D->friends()) {
if (FD->isUnsupportedFriend())
continue;
FriendInfo F(InfoType::IT_friend, getUSRForDecl(FD));
const auto *ActualDecl = FD->getFriendDecl();
if (!ActualDecl) {
const auto *FriendTypeInfo = FD->getFriendType();
if (!FriendTypeInfo)
continue;
ActualDecl = FriendTypeInfo->getType()->getAsCXXRecordDecl();
if (!ActualDecl)
continue;
F.IsClass = true;
}
if (const auto *ActualTD = dyn_cast_or_null<TemplateDecl>(ActualDecl)) {
if (isa<RecordDecl>(ActualTD->getTemplatedDecl()))
F.IsClass = true;
F.Template.emplace();
for (const auto *Param : ActualTD->getTemplateParameters()->asArray())
F.Template->Params.emplace_back(
getSourceCode(Param, Param->getSourceRange()));
ActualDecl = ActualTD->getTemplatedDecl();
}
if (auto *FuncDecl = dyn_cast_or_null<FunctionDecl>(ActualDecl)) {
FunctionInfo TempInfo;
parseParameters(TempInfo, FuncDecl);
F.Params.emplace();
F.Params = std::move(TempInfo.Params);
F.ReturnType = getTypeInfoForType(FuncDecl->getReturnType(),
FuncDecl->getLangOpts());
}
F.Ref =
Reference(getUSRForDecl(ActualDecl), ActualDecl->getNameAsString(),
InfoType::IT_default, ActualDecl->getQualifiedNameAsString(),
getInfoRelativePath(ActualDecl));
RI.Friends.push_back(std::move(F));
}
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const RecordDecl *D, const FullComment *FC, Location Loc,
bool PublicOnly) {
auto RI = std::make_unique<RecordInfo>();
bool IsInAnonymousNamespace = false;
populateSymbolInfo(*RI, D, FC, Loc, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
RI->TagType = D->getTagKind();
parseFields(*RI, D, PublicOnly);
if (const auto *C = dyn_cast<CXXRecordDecl>(D)) {
RI->FullName = getRecordPrototype(C);
if (const TypedefNameDecl *TD = C->getTypedefNameForAnonDecl()) {
RI->Name = TD->getNameAsString();
RI->IsTypeDef = true;
}
// TODO: remove first call to parseBases, that function should be deleted
parseBases(*RI, C);
parseBases(*RI, C, /*IsFileInRootDir=*/true, PublicOnly, /*IsParent=*/true);
parseFriends(*RI, C);
}
RI->Path = getInfoRelativePath(RI->Namespace);
populateTemplateParameters(RI->Template, D);
if (RI->Template)
populateConstraints(RI->Template.value(), D->getDescribedTemplate());
// Full and partial specializations.
if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
if (!RI->Template)
RI->Template.emplace();
RI->Template->Specialization.emplace();
auto &Specialization = *RI->Template->Specialization;
// What this is a specialization of.
auto SpecOf = CTSD->getSpecializedTemplateOrPartial();
if (auto *SpecTD = dyn_cast<ClassTemplateDecl *>(SpecOf))
Specialization.SpecializationOf = getUSRForDecl(SpecTD);
else if (auto *SpecTD =
dyn_cast<ClassTemplatePartialSpecializationDecl *>(SpecOf))
Specialization.SpecializationOf = getUSRForDecl(SpecTD);
// Parameters to the specialization. For partial specializations, get the
// parameters "as written" from the ClassTemplatePartialSpecializationDecl
// because the non-explicit template parameters will have generated internal
// placeholder names rather than the names the user typed that match the
// template parameters.
if (const ClassTemplatePartialSpecializationDecl *CTPSD =
dyn_cast<ClassTemplatePartialSpecializationDecl>(D)) {
if (const ASTTemplateArgumentListInfo *AsWritten =
CTPSD->getTemplateArgsAsWritten()) {
for (unsigned Idx = 0; Idx < AsWritten->getNumTemplateArgs(); Idx++) {
Specialization.Params.emplace_back(
getSourceCode(D, (*AsWritten)[Idx].getSourceRange()));
}
}
} else {
for (const TemplateArgument &Arg : CTSD->getTemplateArgs().asArray()) {
Specialization.Params.push_back(convertTemplateArgToInfo(D, Arg));
}
}
}
// Records are inserted into the parent by reference, so we need to return
// both the parent and the record itself.
auto Parent = makeAndInsertIntoParent<const RecordInfo &>(*RI);
return {std::move(RI), std::move(Parent)};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const FunctionDecl *D, const FullComment *FC, Location Loc,
bool PublicOnly) {
FunctionInfo Func;
bool IsInAnonymousNamespace = false;
populateFunctionInfo(Func, D, FC, Loc, IsInAnonymousNamespace);
Func.Access = clang::AccessSpecifier::AS_none;
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, makeAndInsertIntoParent<FunctionInfo &&>(std::move(Func))};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const CXXMethodDecl *D, const FullComment *FC, Location Loc,
bool PublicOnly) {
FunctionInfo Func;
bool IsInAnonymousNamespace = false;
populateFunctionInfo(Func, D, FC, Loc, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Func.IsMethod = true;
Func.IsStatic = D->isStatic();
const NamedDecl *Parent = nullptr;
if (const auto *SD =
dyn_cast<ClassTemplateSpecializationDecl>(D->getParent()))
Parent = SD->getSpecializedTemplate();
else
Parent = D->getParent();
SymbolID ParentUSR = getUSRForDecl(Parent);
Func.Parent =
Reference{ParentUSR, Parent->getNameAsString(), InfoType::IT_record,
Parent->getQualifiedNameAsString()};
Func.Access = D->getAccess();
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, makeAndInsertIntoParent<FunctionInfo &&>(std::move(Func))};
}
static void extractCommentFromDecl(const Decl *D, TypedefInfo &Info) {
assert(D && "Invalid Decl when extracting comment");
ASTContext &Context = D->getASTContext();
RawComment *Comment = Context.getRawCommentForDeclNoCache(D);
if (!Comment)
return;
Comment->setAttached();
if (comments::FullComment *Fc = Comment->parse(Context, nullptr, D)) {
Info.Description.emplace_back();
parseFullComment(Fc, Info.Description.back());
}
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const TypedefDecl *D, const FullComment *FC, Location Loc,
bool PublicOnly) {
TypedefInfo Info;
bool IsInAnonymousNamespace = false;
populateInfo(Info, D, FC, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Info.DefLoc = Loc;
auto &LO = D->getLangOpts();
Info.Underlying = getTypeInfoForType(D->getUnderlyingType(), LO);
if (Info.Underlying.Type.Name.empty()) {
// Typedef for an unnamed type. This is like "typedef struct { } Foo;"
// The record serializer explicitly checks for this syntax and constructs
// a record with that name, so we don't want to emit a duplicate here.
return {};
}
Info.IsUsing = false;
extractCommentFromDecl(D, Info);
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, makeAndInsertIntoParent<TypedefInfo &&>(std::move(Info))};
}
// A type alias is a C++ "using" declaration for a type. It gets mapped to a
// TypedefInfo with the IsUsing flag set.
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const TypeAliasDecl *D, const FullComment *FC, Location Loc,
bool PublicOnly) {
TypedefInfo Info;
bool IsInAnonymousNamespace = false;
populateInfo(Info, D, FC, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Info.DefLoc = Loc;
const LangOptions &LO = D->getLangOpts();
Info.Underlying = getTypeInfoForType(D->getUnderlyingType(), LO);
Info.TypeDeclaration = getTypeAlias(D);
Info.IsUsing = true;
extractCommentFromDecl(D, Info);
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, makeAndInsertIntoParent<TypedefInfo &&>(std::move(Info))};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const EnumDecl *D, const FullComment *FC, Location Loc,
bool PublicOnly) {
EnumInfo Enum;
bool IsInAnonymousNamespace = false;
populateSymbolInfo(Enum, D, FC, Loc, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
Enum.Scoped = D->isScoped();
if (D->isFixed()) {
auto Name = D->getIntegerType().getAsString();
Enum.BaseType = TypeInfo(Name, Name);
}
parseEnumerators(Enum, D);
// Info is wrapped in its parent scope so is returned in the second position.
return {nullptr, makeAndInsertIntoParent<EnumInfo &&>(std::move(Enum))};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const ConceptDecl *D, const FullComment *FC, const Location &Loc,
bool PublicOnly) {
ConceptInfo Concept;
bool IsInAnonymousNamespace = false;
populateInfo(Concept, D, FC, IsInAnonymousNamespace);
Concept.IsType = D->isTypeConcept();
Concept.DefLoc = Loc;
Concept.ConstraintExpression = exprToString(D->getConstraintExpr());
if (auto *ConceptParams = D->getTemplateParameters()) {
for (const auto *Param : ConceptParams->asArray()) {
Concept.Template.Params.emplace_back(
getSourceCode(Param, Param->getSourceRange()));
}
}
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
return {nullptr, makeAndInsertIntoParent<ConceptInfo &&>(std::move(Concept))};
}
std::pair<std::unique_ptr<Info>, std::unique_ptr<Info>>
emitInfo(const VarDecl *D, const FullComment *FC, const Location &Loc,
bool PublicOnly) {
VarInfo Var;
bool IsInAnonymousNamespace = false;
populateSymbolInfo(Var, D, FC, Loc, IsInAnonymousNamespace);
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
if (D->getStorageClass() == StorageClass::SC_Static)
Var.IsStatic = true;
Var.Type =
getTypeInfoForType(D->getType(), D->getASTContext().getPrintingPolicy());
if (!shouldSerializeInfo(PublicOnly, IsInAnonymousNamespace, D))
return {};
return {nullptr, makeAndInsertIntoParent<VarInfo &&>(std::move(Var))};
}
} // namespace serialize
} // namespace doc
} // namespace clang
|