1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
|
/*===--- __clang_cuda_texture_intrinsics.h - Device-side texture support ---===
*
* Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
* See https://llvm.org/LICENSE.txt for license information.
* SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
*
*===-----------------------------------------------------------------------===
*
* This header provides in-header implmentations for NVCC's built-in
* __nv_tex_surf_handler() which is used by CUDA's texture-related headers. The
* built-in is unusual as it's actually a set of function overloads that use the
* first string literal argument as one of the overload parameters.
*/
#ifndef __CLANG_CUDA_TEXTURE_INTRINSICS_H__
#define __CLANG_CUDA_TEXTURE_INTRINSICS_H__
#ifndef __CUDA__
#error "This file is for CUDA compilation only."
#endif
// __nv_tex_surf_handler() provided by this header as a macro.
#define __nv_tex_surf_handler(__op, __ptr, ...) \
::__cuda_tex::__tex_fetch< \
::__cuda_tex::__Tag<::__cuda_tex::__tex_op_hash(__op)>>(__ptr, \
__VA_ARGS__)
#pragma push_macro("__ASM_OUT")
#pragma push_macro("__ASM_OUTP")
#pragma push_macro("__Args")
#pragma push_macro("__ID")
#pragma push_macro("__IDV")
#pragma push_macro("__OP_TYPE_SURFACE")
#pragma push_macro("__IMPL_2DGATHER")
#pragma push_macro("__IMPL_ALIAS")
#pragma push_macro("__IMPL_ALIASI")
#pragma push_macro("__IMPL_F1")
#pragma push_macro("__IMPL_F3")
#pragma push_macro("__IMPL_F3N")
#pragma push_macro("__IMPL_F3S")
#pragma push_macro("__IMPL_S")
#pragma push_macro("__IMPL_S3")
#pragma push_macro("__IMPL_S3I")
#pragma push_macro("__IMPL_S3N")
#pragma push_macro("__IMPL_S3NI")
#pragma push_macro("__IMPL_S3S")
#pragma push_macro("__IMPL_S3SI")
#pragma push_macro("__IMPL_SI")
#pragma push_macro("__L")
#pragma push_macro("__STRIP_PARENS")
#pragma push_macro("__SURF_WRITE_V2")
#pragma push_macro("__SW_ASM_ARGS")
#pragma push_macro("__SW_ASM_ARGS1")
#pragma push_macro("__SW_ASM_ARGS2")
#pragma push_macro("__SW_ASM_ARGS4")
#pragma push_macro("__SURF_WRITE_V2")
#pragma push_macro("__SURF_READ_V2")
#pragma push_macro("__SW_ASM_ARGS")
#pragma push_macro("__SW_ASM_ARGS1")
#pragma push_macro("__SW_ASM_ARGS2")
#pragma push_macro("__SW_ASM_ARGS4")
#pragma push_macro("__SURF_READ1D");
#pragma push_macro("__SURF_READ2D");
#pragma push_macro("__SURF_READ3D");
#pragma push_macro("__SURF_READ1DLAYERED");
#pragma push_macro("__SURF_READ2DLAYERED");
#pragma push_macro("__SURF_READCUBEMAP");
#pragma push_macro("__SURF_READCUBEMAPLAYERED");
#pragma push_macro("__1DV1");
#pragma push_macro("__1DV2");
#pragma push_macro("__1DV4");
#pragma push_macro("__2DV1");
#pragma push_macro("__2DV2");
#pragma push_macro("__2DV4");
#pragma push_macro("__1DLAYERV1");
#pragma push_macro("__1DLAYERV2");
#pragma push_macro("__1DLAYERV4");
#pragma push_macro("__3DV1");
#pragma push_macro("__3DV2");
#pragma push_macro("__3DV4");
#pragma push_macro("__2DLAYERV1");
#pragma push_macro("__2DLAYERV2");
#pragma push_macro("__2DLAYERV4");
#pragma push_macro("__CUBEMAPV1");
#pragma push_macro("__CUBEMAPV2");
#pragma push_macro("__CUBEMAPV4");
#pragma push_macro("__CUBEMAPLAYERV1");
#pragma push_macro("__CUBEMAPLAYERV2");
#pragma push_macro("__CUBEMAPLAYERV4");
#pragma push_macro("__SURF_READXD_ALL");
#pragma push_macro("__SURF_WRITE1D_V2");
#pragma push_macro("__SURF_WRITE1DLAYERED_V2");
#pragma push_macro("__SURF_WRITE2D_V2");
#pragma push_macro("__SURF_WRITE2DLAYERED_V2");
#pragma push_macro("__SURF_WRITE3D_V2");
#pragma push_macro("__SURF_CUBEMAPWRITE_V2");
#pragma push_macro("__SURF_CUBEMAPLAYEREDWRITE_V2");
#pragma push_macro("__SURF_WRITEXD_V2_ALL");
#pragma push_macro("__1DV1");
#pragma push_macro("__1DV2");
#pragma push_macro("__1DV4");
#pragma push_macro("__2DV1");
#pragma push_macro("__2DV2");
#pragma push_macro("__2DV4");
#pragma push_macro("__3DV1");
#pragma push_macro("__3DV2");
#pragma push_macro("__3DV4");
// Put all functions into anonymous namespace so they have internal linkage.
// The device-only function here must be internal in order to avoid ODR
// violations in case they are used from the files compiled with
// -fgpu-rdc. E.g. a library and an app using it may be built with a different
// version of this header file.
namespace {
// Put the implmentation into its own namespace so we don't pollute the TU.
namespace __cuda_tex {
// First, we need a perfect hash function and a few constexpr helper functions
// for converting a string literal into a numeric value which can be used to
// parametrize a template. We can not use string literals for that as that would
// require C++20.
//
// The hash function was generated with 'gperf' and then manually converted into
// its constexpr equivalent.
//
// NOTE: the perfect hashing scheme comes with inherent self-test. If the hash
// function has a collision for any of the texture operations, the compilation
// will fail due to an attempt to redefine a tag with the same value. If the
// header compiles, then the hash function is good enough for the job.
constexpr int __tex_len(const char *s) {
return (s[0] == 0) ? 0
: (s[1] == 0) ? 1
: (s[2] == 0) ? 2
: (s[3] == 0) ? 3
: (s[4] == 0) ? 4
: (s[5] == 0) ? 5
: (s[6] == 0) ? 6
: (s[7] == 0) ? 7
: (s[8] == 0) ? 8
: (s[9] == 0) ? 9
: (s[10] == 0) ? 10
: (s[11] == 0) ? 11
: (s[12] == 0) ? 12
: (s[13] == 0) ? 13
: (s[14] == 0) ? 14
: (s[15] == 0) ? 15
: (s[16] == 0) ? 16
: (s[17] == 0) ? 17
: (s[18] == 0) ? 18
: (s[19] == 0) ? 19
: (s[20] == 0) ? 20
: (s[21] == 0) ? 21
: (s[22] == 0) ? 22
: (s[23] == 0) ? 23
: (s[24] == 0) ? 24
: (s[25] == 0) ? 25
: (s[26] == 0) ? 26
: (s[27] == 0) ? 27
: (s[28] == 0) ? 28
: (s[29] == 0) ? 29
: (s[30] == 0) ? 30
: (s[31] == 0) ? 31
: 32;
}
constexpr int __tex_hash_map(int c) {
return (c == 49) ? 10
: (c == 50) ? 0
: (c == 51) ? 100
: (c == 52) ? 30
: (c == 67) ? 10
: (c == 68) ? 0
: (c == 69) ? 25
: (c == 72) ? 70
: (c == 77) ? 0
: (c == 96) ? 44
: (c == 99) ? 10
: (c == 100) ? 5
: (c == 101) ? 60
: (c == 102) ? 40
: (c == 103) ? 70
: (c == 104) ? 25
: (c == 112) ? 0
: (c == 114) ? 45
: (c == 117) ? 5
: (c == 118) ? 85
: (c == 120) ? 20
: 225;
}
constexpr int __tex_op_hash(const char *str) {
return __tex_len(str) + __tex_hash_map(str[7] + 1) + __tex_hash_map(str[6]) +
__tex_hash_map(str[5]) + __tex_hash_map(str[__tex_len(str) - 1]);
}
// Tag type to identify particular texture operation.
template <int N> struct __Tag;
#define __ID(__op) __Tag<__tex_op_hash(__op)>
// Tags for variants of particular operation. E.g. tex2Dgather can translate
// into 4 different instructions.
#define __IDV(__op, __variant) \
__Tag<10000 + __tex_op_hash(__op) * 100 + __variant>
// Helper classes for figuring out key data types for derived types.
// E.g. char2 has __base_t = char, __fetch_t = char4
template <class> struct __TypeInfoT;
// Type info for the fundamental types.
template <> struct __TypeInfoT<float> {
using __base_t = float;
using __fetch_t = float4;
};
template <> struct __TypeInfoT<char> {
using __base_t = char;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<signed char> {
using __base_t = signed char;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<unsigned char> {
using __base_t = unsigned char;
using __fetch_t = uint4;
};
template <> struct __TypeInfoT<short> {
using __base_t = short;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<unsigned short> {
using __base_t = unsigned short;
using __fetch_t = uint4;
};
template <> struct __TypeInfoT<int> {
using __base_t = int;
using __fetch_t = int4;
};
template <> struct __TypeInfoT<unsigned int> {
using __base_t = unsigned int;
using __fetch_t = uint4;
};
// Derived base/fetch types for N-element vectors.
template <class __T> struct __TypeInfoT {
using __base_t = decltype(__T::x);
using __fetch_t = typename __TypeInfoT<__base_t>::__fetch_t;
};
// Tag structs to distinguish operation types
struct __texture_op_tag {};
struct __surface_op_tag {};
// Template specialization to determine operation type based on tag value
template <class __op> struct __op_type_traits {
using type = __texture_op_tag;
};
// Specialize for known surface operation tags
#define __OP_TYPE_SURFACE(__op) \
template <> struct __op_type_traits<__op> { \
using type = __surface_op_tag; \
}
// Classes that implement specific texture ops.
template <class __op> struct __tex_fetch_v4;
// Helper macros to strip parens from a macro argument.
#define __Args(...) __VA_ARGS__
#define __STRIP_PARENS(__X) __X
#define __L(__X) __STRIP_PARENS(__Args __X)
// Construct inline assembly output args.
// Results are stored in a temp var __r.
// isResident bool is pointed to by __ir
// Asm args for return values. It's a 4-element vector
#define __ASM_OUT(__t) \
("=" __t(__r.x), "=" __t(__r.y), "=" __t(__r.z), "=" __t(__r.w))
// .. possibly combined with a predicate.
#define __ASM_OUTP(__t) (__L(__ASM_OUT(__t)), "=h"(*__ir))
// Implements a single variant of texture fetch instruction.
#define __IMPL_F1(__rt, __dt, __args, __asm_op, __asm_outs, __asm_args) \
template <> \
__device__ __rt __run<__dt>(cudaTextureObject_t __obj, __L(__args)) { \
__rt __r; \
asm(__asm_op : __L(__asm_outs) : "l"(__obj), __L(__asm_args)); \
return __r; \
}
// Implements texture fetch instructions for int4/uint4/float4 data types.
#define __IMPL_F3(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_F1(int4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \
__ASM_OUT("r"), __asm_args) \
__IMPL_F1(uint4, uint4, __args, __asm_op ".u32." __ctype "\t" __asm_op_args, \
__ASM_OUT("r"), __asm_args) \
__IMPL_F1(float4, float4, __args, \
__asm_op ".f32." __ctype "\t" __asm_op_args, __ASM_OUT("f"), \
__asm_args)
// Implements 'sparse' texture fetch instructions for int4/uint4/float4 data
// types. Similar to above, but returns a boolean 'isPresent' value in addition
// to texture data,
#define __IMPL_F3S(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_F1(int4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \
__ASM_OUTP("r"), __asm_args) \
__IMPL_F1(uint4, uint4, __args, __asm_op ".u32." __ctype "\t" __asm_op_args, \
__ASM_OUTP("r"), __asm_args) \
__IMPL_F1(float4, float4, __args, \
__asm_op ".f32." __ctype "\t" __asm_op_args, __ASM_OUTP("f"), \
__asm_args)
// Similar to F3, but for integer data which is returned as normalized floats.
// Only instantiates fetch functions for int4/uint4.
#define __IMPL_F3N(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_F1(float4, int4, __args, __asm_op ".s32." __ctype "\t" __asm_op_args, \
__ASM_OUT("r"), __asm_args) \
__IMPL_F1(float4, uint4, __args, \
__asm_op ".u32." __ctype "\t" __asm_op_args, __ASM_OUT("r"), \
__asm_args)
// Instantiates __tex_fetch_v4 with regular fetch functions.
#define __IMPL_S3I(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
template <> struct __tex_fetch_v4<__op> { \
template <class T> \
__device__ static T __run(cudaTextureObject_t __obj, __L(__args)); \
__IMPL_F3(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
}
// Same, but for sparse ops. Only available on sm_60+
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600)
#define __IMPL_S3SI(__op, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
template <> struct __tex_fetch_v4<__op> { \
template <class T> \
__device__ static T __run(cudaTextureObject_t __obj, __L(__args)); \
__IMPL_F3S(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
}
#else
#define __IMPL_S3SI(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#endif
// Same, but for normalized float ops.
#define __IMPL_S3NI(__op, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
template <> struct __tex_fetch_v4<__op> { \
template <class T> \
__device__ static float4 __run(cudaTextureObject_t __obj, __L(__args)); \
__IMPL_F3N(__args, __asm_op, __ctype, __asm_op_args, __asm_args) \
}
// Regular and normalized float ops share a lot of similarities. This macro
// instantiates both variants -- normal for __op and normalized for __opn.
#define __IMPL_SI(__op, __opn, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
__IMPL_S3I(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args); \
__IMPL_S3NI(__opn, __args, __asm_op, __ctype, __asm_op_args, __asm_args)
// Convenience macros which converts string literal __op into a __Tag,
#define __IMPL_S3(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_S3I(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#define __IMPL_S3S(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_S3SI(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#define __IMPL_S3N(__op, __args, __asm_op, __ctype, __asm_op_args, __asm_args) \
__IMPL_S3NI(__ID(__op), __args, __asm_op, __ctype, __asm_op_args, __asm_args)
#define __IMPL_S(__op, __opn, __args, __asm_op, __ctype, __asm_op_args, \
__asm_args) \
__IMPL_SI(__ID(__op), __ID(__opn), __args, __asm_op, __ctype, __asm_op_args, \
__asm_args)
// CUDA headers have some 'legacy' texture oprerations that duplicate
// functionality. So, we just inherit it, instead of refining a copy.
#define __IMPL_ALIASI(__op, __opn) \
template <> struct __tex_fetch_v4<__op> : __tex_fetch_v4<__opn> {}
#define __IMPL_ALIAS(__op, __opn) __IMPL_ALIASI(__ID(__op), __ID(__opn))
// Now we can instantiate everything we need for each specific texture fetch
// variant.
__IMPL_S("__tex1D_v2", "__tex1D_rmnf_v2", (float __x), "tex.1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5}];", ("f"(__x)));
__IMPL_S("__tex1Dfetch_v2", "__tex1Dfetch_rmnf_v2", (int __x), "tex.1d.v4",
"s32", "{%0, %1, %2, %3}, [%4, {%5}];", ("r"(__x)));
__IMPL_ALIAS("__itex1D", "__tex1D_v2");
__IMPL_ALIAS("__itex1Dfetch", "__tex1Dfetch_v2");
__IMPL_S("__tex1DGrad_v2", "__tex1DGrad_rmnf_v2",
(float __x, float __dPdx, float __dPdy), "tex.grad.1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5}], {%6}, {%7};",
("f"(__x), "f"(__dPdx), "f"(__dPdy)));
__IMPL_ALIAS("__itex1DGrad", "__tex1DGrad_v2");
__IMPL_S("__tex1DLayered_v2", "__tex1DLayered_rmnf_v2",
(float __x, int __layer), "tex.a1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}];", ("r"(__layer), "f"(__x)));
__IMPL_ALIAS("__itex1DLayered", "__tex1DLayered_v2");
__IMPL_S("__tex1DLayeredGrad_v2", "__tex1DLayeredGrad_rmnf_v2",
(float __x, int __layer, float __dPdx, float __dPdy),
"tex.grad.a1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], {%7}, {%8};",
("r"(__layer), "f"(__x), "f"(__dPdx), "f"(__dPdy)));
__IMPL_ALIAS("__itex1DLayeredGrad", "__tex1DLayeredGrad_v2");
__IMPL_S("__tex1DLayeredLod_v2", "__tex1DLayeredLod_rmnf_v2",
(float __x, int __layer, float __level), "tex.level.a1d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], %7;",
("r"(__layer), "f"(__x), "f"(__level)));
__IMPL_ALIAS("__itex1DLayeredLod", "__tex1DLayeredLod_v2");
__IMPL_S("__tex1DLod_v2", "__tex1DLod_rmnf_v2", (float __x, float __level),
"tex.level.1d.v4", "f32", "{%0, %1, %2, %3}, [%4, {%5}], %6;",
("f"(__x), "f"(__level)));
__IMPL_ALIAS("__itex1DLod", "__tex1DLod_v2");
// 2D
__IMPL_S("__tex2D_v2", "__tex2D_rmnf_v2", (float __x, float __y), "tex.2d.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6}];", ("f"(__x), "f"(__y)));
__IMPL_ALIAS("__itex2D", "__tex2D_v2");
__IMPL_S3S("__itex2D_sparse", (float __x, float __y, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}];\n\t"
" selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y)));
__IMPL_S("__tex2DGrad_v2", "__tex2DGrad_rmnf_v2",
(float __x, float __y, const float2 *__dPdx, const float2 *__dPdy),
"tex.grad.2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], {%7, %8}, {%9, %10};",
("f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y), "f"(__dPdy->x),
"f"(__dPdy->y)));
__IMPL_ALIAS("__itex2DGrad_v2", "__tex2DGrad_v2");
__IMPL_S3S("__itex2DGrad_sparse",
(float __x, float __y, const float2 *__dPdx, const float2 *__dPdy,
unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.grad.2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}], {%8, %9}, {%10, %11};\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y), "f"(__dPdy->x),
"f"(__dPdy->y)));
__IMPL_S("__tex2DLayered_v2", "__tex2DLayered_rmnf_v2",
(float __x, float __y, int __layer), "tex.a2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];",
("r"(__layer), "f"(__x), "f"(__y)));
__IMPL_ALIAS("__itex2DLayered", "__tex2DLayered_v2");
__IMPL_S3S("__itex2DLayered_sparse",
(float __x, float __y, int __layer, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.a2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("r"(__layer), "f"(__x), "f"(__y)));
__IMPL_S("__tex2DLayeredGrad_v2", "__tex2DLayeredGrad_rmnf_v2",
(float __x, float __y, int __layer, const float2 *__dPdx,
const float2 *__dPdy),
"tex.grad.a2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], {%8, %9}, {%10, %11};",
("r"(__layer), "f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdy->x), "f"(__dPdy->y)));
__IMPL_ALIAS("__itex2DLayeredGrad_v2", "__tex2DLayeredGrad_v2");
__IMPL_S3S(
"__itex2DLayeredGrad_sparse",
(float __x, float __y, int __layer, const float2 *__dPdx,
const float2 *__dPdy, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.grad.a2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], {%9, %10}, {%11, %12};\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("r"(__layer), "f"(__x), "f"(__y), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdy->x), "f"(__dPdy->y)));
__IMPL_S("__tex2DLayeredLod_v2", "__tex2DLayeredLod_rmnf_v2",
(float __x, float __y, int __layer, float __level), "tex.level.a2d.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;",
("r"(__layer), "f"(__x), "f"(__y), "f"(__level)));
__IMPL_ALIAS("__itex2DLayeredLod", "__tex2DLayeredLod_v2");
__IMPL_S3S("__itex2DLayeredLod_sparse",
(float __x, float __y, int __layer, float __level,
unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.level.a2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], %9;\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("r"(__layer), "f"(__x), "f"(__y), "f"(__level)));
__IMPL_S("__tex2DLod_v2", "__tex2DLod_rmnf_v2",
(float __x, float __y, float __level), "tex.level.2d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6}], %7;",
("f"(__x), "f"(__y), "f"(__level)));
__IMPL_ALIAS("__itex2DLod", "__tex2DLod_v2");
__IMPL_S3S("__itex2DLod_sparse",
(float __x, float __y, float __level, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.level.2d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}], %8;\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__level)));
// 2D gather is special. Unlike other variants that translate into exactly one
// asm instruction, it uses one of the four different instructions selected by
// __comp. We implement each instruction variant separately, and dispatch the
// right one from the manually implemented 'umbrella' fetch.
#define __IMPL_2DGATHER(variant, instr) \
__IMPL_SI(__IDV("__tex2Dgather_v2", variant), \
__IDV("__tex2Dgather_rmnf_v2", variant), \
(float __x, float __y, int __comp), instr, "f32", \
"{%0, %1, %2, %3}, [%4, {%5, %6}];", ("f"(__x), "f"(__y))); \
__IMPL_ALIASI(__IDV("__itex2Dgather", variant), \
__IDV("__tex2Dgather_v2", variant)); \
__IMPL_S3SI(__IDV("__itex2Dgather_sparse", variant), \
(float __x, float __y, unsigned char *__ir, int __comp), \
"{.reg .pred %%p0;\n\t" instr, "f32", \
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7}];\n\t" \
"selp.u16 %4, 1, 0, %%p0; }", \
("f"(__x), "f"(__y)));
__IMPL_2DGATHER(0, "tld4.r.2d.v4");
__IMPL_2DGATHER(1, "tld4.g.2d.v4");
__IMPL_2DGATHER(2, "tld4.b.2d.v4");
__IMPL_2DGATHER(3, "tld4.a.2d.v4");
// Umbrella dispatcher -- calls into specific 2Dgather variant.
template <> struct __tex_fetch_v4<__ID("__tex2Dgather_v2")> {
template <class __T>
__device__ static __T __run(cudaTextureObject_t __obj, float __x, float __y,
int __comp) {
switch (__comp) {
case 0:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 0)>::__run<__T>(
__obj, __x, __y, __comp);
case 1:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 1)>::__run<__T>(
__obj, __x, __y, __comp);
case 2:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 2)>::__run<__T>(
__obj, __x, __y, __comp);
case 3:
return __tex_fetch_v4<__IDV("__tex2Dgather_v2", 3)>::__run<__T>(
__obj, __x, __y, __comp);
}
}
};
__IMPL_ALIAS("__itex2Dgather", "__tex2Dgather_v2");
template <> struct __tex_fetch_v4<__ID("__tex2Dgather_rmnf_v2")> {
template <class __T>
__device__ static float4 __run(cudaTextureObject_t __obj, float __x,
float __y, int __comp) {
switch (__comp) {
case 0:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 0)>::__run<__T>(
__obj, __x, __y, __comp);
case 1:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 1)>::__run<__T>(
__obj, __x, __y, __comp);
case 2:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 2)>::__run<__T>(
__obj, __x, __y, __comp);
case 3:
return __tex_fetch_v4<__IDV("__tex2Dgather_rmnf_v2", 3)>::__run<__T>(
__obj, __x, __y, __comp);
}
}
};
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 600)
template <> struct __tex_fetch_v4<__ID("__itex2Dgather_sparse")> {
template <class __T>
__device__ static __T __run(cudaTextureObject_t __obj, float __x, float __y,
unsigned char *__ir, int __comp) {
switch (__comp) {
case 0:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 0)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
case 1:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 1)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
case 2:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 2)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
case 3:
return __tex_fetch_v4<__IDV("__itex2Dgather_sparse", 3)>::__run<__T>(
__obj, __x, __y, __ir, __comp);
}
}
};
#endif
// 3D
__IMPL_S("__tex3D_v2", "__tex3D_rmnf_v2", (float __x, float __y, float __z),
"tex.3d.v4", "f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_ALIAS("__itex3D", "__tex3D_v2");
__IMPL_S3S("__itex3D_sparse",
(float __x, float __y, float __z, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.3d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_S("__tex3DGrad_v2", "__tex3DGrad_rmnf_v2",
(float __x, float __y, float __z, const float4 *__dPdx,
const float4 *__dPdy),
"tex.grad.3d.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], "
"{%8, %9, %10, %10}, {%11, %12, %13, %13};",
("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z)));
__IMPL_ALIAS("__itex3DGrad_v2", "__tex3DGrad_v2");
__IMPL_S3S("__itex3DGrad_sparse",
(float __x, float __y, float __z, const float4 *__dPdx,
const float4 *__dPdy, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.grad.3d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], "
"{%9, %10, %11, %11}, {%12, %13, %14, %14};\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z)));
__IMPL_S("__tex3DLod_v2", "__tex3DLod_rmnf_v2",
(float __x, float __y, float __z, float __level), "tex.level.3d.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;",
("f"(__x), "f"(__y), "f"(__z), "f"(__level)));
__IMPL_ALIAS("__itex3DLod", "__tex3DLod_v2");
__IMPL_S3S("__itex3DLod_sparse",
(float __x, float __y, float __z, float __level,
unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.level.3d.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}], %9;\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z), "f"(__level)));
// Cubemap
__IMPL_S("__texCubemap_v2", "__texCubemap_rmnf_v2",
(float __x, float __y, float __z), "tex.cube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}];",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_ALIAS("__itexCubemap", "__texCubemap_v2");
__IMPL_S3S("__itexCubemap_sparse",
(float __x, float __y, float __z, unsigned char *__ir),
"{.reg .pred %%p0;\n\t"
"tex.cube.v4",
"f32",
"{%0, %1, %2, %3}|%%p0, [%5, {%6, %7, %8, %8}];\n\t"
"selp.u16 %4, 1, 0, %%p0; }",
("f"(__x), "f"(__y), "f"(__z)));
__IMPL_S("__texCubemapGrad_v2", "__texCubemapGrad_rmnf_v2",
(float __x, float __y, float __z, const float4 *__dPdx,
const float4 *__dPdy),
"tex.grad.cube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], "
"{%8, %9, %10, %10}, {%11, %12, %13, %13};",
("f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x), "f"(__dPdx->y),
"f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y), "f"(__dPdy->z)));
__IMPL_ALIAS("__itexCubemapGrad_v2", "__texCubemapGrad_v2");
__IMPL_S("__texCubemapLayered_v2", "__texCubemapLayered_rmnf_v2",
(float __x, float __y, float __z, int __layer), "tex.acube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}];",
("r"(__layer), "f"(__x), "f"(__y), "f"(__z)));
__IMPL_ALIAS("__itexCubemapLayered", "__texCubemapLayered_v2");
__IMPL_S("__texCubemapLayeredGrad_v2", "__texCubemapLayeredGrad_rmnf_v2",
(float __x, float __y, float __z, int __layer, const float4 *__dPdx,
const float4 *__dPdy),
"tex.grad.acube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}], "
"{%9, %10, %11, %11}, {%12, %13, %14, %14};",
("r"(__layer), "f"(__x), "f"(__y), "f"(__z), "f"(__dPdx->x),
"f"(__dPdx->y), "f"(__dPdx->z), "f"(__dPdy->x), "f"(__dPdy->y),
"f"(__dPdy->z)));
__IMPL_ALIAS("__itexCubemapLayeredGrad_v2", "__texCubemapLayeredGrad_v2");
__IMPL_S("__texCubemapLayeredLod_v2", "__texCubemapLayeredLod_rmnf_v2",
(float __x, float __y, float __z, int __layer, float __level),
"tex.level.acube.v4", "f32",
"{%0, %1, %2, %3}, [%4, {%5, %6, %7, %8}], %9;",
("r"(__layer), "f"(__x), "f"(__y), "f"(__z), "f"(__level)));
__IMPL_ALIAS("__itexCubemapLayeredLod", "__texCubemapLayeredLod_v2");
__IMPL_S("__texCubemapLod_v2", "__texCubemapLod_rmnf_v2",
(float __x, float __y, float __z, float __level), "tex.level.cube.v4",
"f32", "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}], %8;",
("f"(__x), "f"(__y), "f"(__z), "f"(__level)));
__IMPL_ALIAS("__itexCubemapLod", "__texCubemapLod_v2");
// Helper class for extracting slice of data from V4 fetch results.
template <class __DestT, class __SrcT> struct __convert {
template <int __NElements = sizeof(__DestT) /
sizeof(typename __TypeInfoT<__DestT>::__base_t)>
__device__ static __DestT __run(__SrcT __v);
template <> __device__ static __DestT __run<1>(__SrcT __v) { return {__v.x}; }
template <> __device__ static __DestT __run<2>(__SrcT __v) {
return {__v.x, __v.y};
}
template <> __device__ static __DestT __run<3>(__SrcT __v) {
return {__v.x, __v.y, __v.z};
}
template <> __device__ static __DestT __run<4>(__SrcT __v) {
return {__v.x, __v.y, __v.z, __v.w};
}
};
// There are a couple of layers here. First, __op_type_traits is used to
// dispatch to either surface write calls, or to the texture read calls.
//
// Then, that dispatches to __tex_fetch_impl below, which dispatches by both tag
// and datatype to the appropriate
// __surf_read_write_v2.
// TODO(austin): Do the reads too.
// Mark which of the ids we should be dispatching to surface write calls.
__OP_TYPE_SURFACE(__ID("__isurf1Dread"));
__OP_TYPE_SURFACE(__ID("__isurf2Dread"));
__OP_TYPE_SURFACE(__ID("__isurf3Dread"));
__OP_TYPE_SURFACE(__ID("__isurf1DLayeredread"));
__OP_TYPE_SURFACE(__ID("__isurf2DLayeredread"));
__OP_TYPE_SURFACE(__ID("__isurfCubemapread"));
__OP_TYPE_SURFACE(__ID("__isurfCubemapLayeredread"));
__OP_TYPE_SURFACE(__ID("__isurf1Dwrite_v2"));
__OP_TYPE_SURFACE(__ID("__isurf2Dwrite_v2"));
__OP_TYPE_SURFACE(__ID("__isurf3Dwrite_v2"));
__OP_TYPE_SURFACE(__ID("__isurf1DLayeredwrite_v2"));
__OP_TYPE_SURFACE(__ID("__isurf2DLayeredwrite_v2"));
__OP_TYPE_SURFACE(__ID("__isurfCubemapwrite_v2"));
__OP_TYPE_SURFACE(__ID("__isurfCubemapLayeredwrite_v2"));
template <class __op, typename __type> struct __surf_read_write_v2;
// For the various write calls, we need to be able to generate variations with
// different IDs, different numbers of arguments, and different numbers of
// outputs.
#define __SURF_WRITE_V2(__op, __asm_dim, __asmtype, __type, __index_op_args, \
__index_args, __index_asm_args, __asm_op_args, \
__asm_args) \
template <> struct __surf_read_write_v2<__op, __type> { \
static __device__ void __run(__type *__ptr, cudaSurfaceObject_t obj, \
__L(__index_args), \
cudaSurfaceBoundaryMode mode) { \
switch (mode) { \
case cudaBoundaryModeZero: \
asm volatile("sust.b." __asm_dim "." __asmtype \
".zero [%0, " __index_op_args "], " __asm_op_args ";" \
: \
: "l"(obj), __L(__index_asm_args), __L(__asm_args)); \
break; \
case cudaBoundaryModeClamp: \
asm volatile("sust.b." __asm_dim "." __asmtype \
".clamp [%0, " __index_op_args "], " __asm_op_args ";" \
: \
: "l"(obj), __L(__index_asm_args), __L(__asm_args)); \
break; \
case cudaBoundaryModeTrap: \
asm volatile("sust.b." __asm_dim "." __asmtype \
".trap [%0, " __index_op_args "], " __asm_op_args ";" \
: \
: "l"(obj), __L(__index_asm_args), __L(__asm_args)); \
break; \
} \
} \
}
#define __SURF_READ_V2(__op, __asm_dim, __asmtype, __type, __asm_op_args, \
__asm_args, __index_args, __index_asm_args) \
template <> struct __surf_read_write_v2<__op, __type> { \
static __device__ void __run(__type *__ptr, cudaSurfaceObject_t obj, \
__L(__index_args), \
cudaSurfaceBoundaryMode mode) { \
switch (mode) { \
case cudaBoundaryModeZero: \
asm("suld.b." __asm_dim "." __asmtype ".zero " __asm_op_args ";" \
: __L(__asm_args) \
: "l"(obj), __L(__index_asm_args)); \
break; \
case cudaBoundaryModeClamp: \
asm("suld.b." __asm_dim "." __asmtype ".clamp " __asm_op_args ";" \
: __L(__asm_args) \
: "l"(obj), __L(__index_asm_args)); \
break; \
case cudaBoundaryModeTrap: \
asm("suld.b." __asm_dim "." __asmtype ".trap " __asm_op_args ";" \
: __L(__asm_args) \
: "l"(obj), __L(__index_asm_args)); \
break; \
} \
} \
}
// Amazing, the read side should follow the same flow, I just need to change the
// generated assembly calls, and the rest should fall in line.
#define __SW_ASM_ARGS(__type) (__type(*__ptr))
#define __SW_ASM_ARGS1(__type) (__type(__ptr->x))
#define __SW_ASM_ARGS2(__type) (__type(__ptr->x), __type(__ptr->y))
#define __SW_ASM_ARGS4(__type) \
(__type(__ptr->x), __type(__ptr->y), __type(__ptr->z), __type(__ptr->w))
#define __SURF_READ1D(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_READ_V2(__ID("__isurf1Dread"), "1d", __asmtype, __type, \
__asm_op_args, __asm_args, (int x), ("r"(x)))
#define __SURF_READ2D(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_READ_V2(__ID("__isurf2Dread"), "2d", __asmtype, __type, \
__asm_op_args, __asm_args, (int x, int y), ("r"(x), "r"(y)))
#define __SURF_READ3D(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_READ_V2(__ID("__isurf3Dread"), "3d", __asmtype, __type, \
__asm_op_args, __asm_args, (int x, int y, int z), \
("r"(x), "r"(y), "r"(z)))
#define __SURF_READ1DLAYERED(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_READ_V2(__ID("__isurf1DLayeredread"), "a1d", __asmtype, __type, \
__asm_op_args, __asm_args, (int x, int layer), \
("r"(x), "r"(layer)))
#define __SURF_READ2DLAYERED(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_READ_V2(__ID("__isurf2DLayeredread"), "a2d", __asmtype, __type, \
__asm_op_args, __asm_args, (int x, int y, int layer), \
("r"(x), "r"(y), "r"(layer)))
#define __SURF_READCUBEMAP(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_READ_V2(__ID("__isurfCubemapread"), "a2d", __asmtype, __type, \
__asm_op_args, __asm_args, (int x, int y, int face), \
("r"(x), "r"(y), "r"(face)))
#define __SURF_READCUBEMAPLAYERED(__asmtype, __type, __asm_op_args, \
__asm_args) \
__SURF_READ_V2(__ID("__isurfCubemapLayeredread"), "a2d", __asmtype, __type, \
__asm_op_args, __asm_args, (int x, int y, int layerface), \
("r"(x), "r"(y), "r"(layerface)))
#define __1DV1 "{%0}, [%1, {%2}]"
#define __1DV2 "{%0, %1}, [%2, {%3}]"
#define __1DV4 "{%0, %1, %2, %3}, [%4, {%5}]"
#define __2DV1 "{%0}, [%1, {%2, %3}]"
#define __2DV2 "{%0, %1}, [%2, {%3, %4}]"
#define __2DV4 "{%0, %1, %2, %3}, [%4, {%5, %6}]"
#define __1DLAYERV1 "{%0}, [%1, {%3, %2}]"
#define __1DLAYERV2 "{%0, %1}, [%2, {%4, %3}]"
#define __1DLAYERV4 "{%0, %1, %2, %3}, [%4, {%6, %5}]"
#define __3DV1 "{%0}, [%1, {%2, %3, %4, %4}]"
#define __3DV2 "{%0, %1}, [%2, {%3, %4, %5, %5}]"
#define __3DV4 "{%0, %1, %2, %3}, [%4, {%5, %6, %7, %7}]"
#define __2DLAYERV1 "{%0}, [%1, {%4, %2, %3, %3}]"
#define __2DLAYERV2 "{%0, %1}, [%2, {%5, %3, %4, %4}]"
#define __2DLAYERV4 "{%0, %1, %2, %3}, [%4, {%7, %5, %6, %6}]"
#define __CUBEMAPV1 "{%0}, [%1, {%4, %2, %3, %3}]"
#define __CUBEMAPV2 "{%0, %1}, [%2, {%5, %3, %4, %4}]"
#define __CUBEMAPV4 "{%0, %1, %2, %3}, [%4, {%7, %5, %6, %6}]"
#define __CUBEMAPLAYERV1 "{%0}, [%1, {%4, %2, %3, %3}]"
#define __CUBEMAPLAYERV2 "{%0, %1}, [%2, {%5, %3, %4, %4}]"
#define __CUBEMAPLAYERV4 "{%0, %1, %2, %3}, [%4, {%7, %5, %6, %6}]"
#define __SURF_READXD_ALL(__xdv1, __xdv2, __xdv4, __surf_readxd_v2) \
__surf_readxd_v2("b8", char, __xdv1, __SW_ASM_ARGS("=h")); \
__surf_readxd_v2("b8", signed char, __xdv1, __SW_ASM_ARGS("=h")); \
__surf_readxd_v2("b8", char1, __xdv1, __SW_ASM_ARGS1("=h")); \
__surf_readxd_v2("b8", unsigned char, __xdv1, __SW_ASM_ARGS("=h")); \
__surf_readxd_v2("b8", uchar1, __xdv1, __SW_ASM_ARGS1("=h")); \
__surf_readxd_v2("b16", short, __xdv1, __SW_ASM_ARGS("=h")); \
__surf_readxd_v2("b16", short1, __xdv1, __SW_ASM_ARGS1("=h")); \
__surf_readxd_v2("b16", unsigned short, __xdv1, __SW_ASM_ARGS("=h")); \
__surf_readxd_v2("b16", ushort1, __xdv1, __SW_ASM_ARGS1("=h")); \
__surf_readxd_v2("b32", int, __xdv1, __SW_ASM_ARGS("=r")); \
__surf_readxd_v2("b32", int1, __xdv1, __SW_ASM_ARGS1("=r")); \
__surf_readxd_v2("b32", unsigned int, __xdv1, __SW_ASM_ARGS("=r")); \
__surf_readxd_v2("b32", uint1, __xdv1, __SW_ASM_ARGS1("=r")); \
__surf_readxd_v2("b64", long long, __xdv1, __SW_ASM_ARGS("=l")); \
__surf_readxd_v2("b64", longlong1, __xdv1, __SW_ASM_ARGS1("=l")); \
__surf_readxd_v2("b64", unsigned long long, __xdv1, __SW_ASM_ARGS("=l")); \
__surf_readxd_v2("b64", ulonglong1, __xdv1, __SW_ASM_ARGS1("=l")); \
__surf_readxd_v2("b32", float, __xdv1, __SW_ASM_ARGS("=r")); \
__surf_readxd_v2("b32", float1, __xdv1, __SW_ASM_ARGS1("=r")); \
\
__surf_readxd_v2("v2.b8", char2, __xdv2, __SW_ASM_ARGS2("=h")); \
__surf_readxd_v2("v2.b8", uchar2, __xdv2, __SW_ASM_ARGS2("=h")); \
__surf_readxd_v2("v2.b16", short2, __xdv2, __SW_ASM_ARGS2("=h")); \
__surf_readxd_v2("v2.b16", ushort2, __xdv2, __SW_ASM_ARGS2("=h")); \
__surf_readxd_v2("v2.b32", int2, __xdv2, __SW_ASM_ARGS2("=r")); \
__surf_readxd_v2("v2.b32", uint2, __xdv2, __SW_ASM_ARGS2("=r")); \
__surf_readxd_v2("v2.b64", longlong2, __xdv2, __SW_ASM_ARGS2("=l")); \
__surf_readxd_v2("v2.b64", ulonglong2, __xdv2, __SW_ASM_ARGS2("=l")); \
__surf_readxd_v2("v2.b32", float2, __xdv2, __SW_ASM_ARGS2("=r")); \
\
__surf_readxd_v2("v4.b8", char4, __xdv4, __SW_ASM_ARGS4("=h")); \
__surf_readxd_v2("v4.b8", uchar4, __xdv4, __SW_ASM_ARGS4("=h")); \
__surf_readxd_v2("v4.b16", short4, __xdv4, __SW_ASM_ARGS4("=h")); \
__surf_readxd_v2("v4.b16", ushort4, __xdv4, __SW_ASM_ARGS4("=h")); \
__surf_readxd_v2("v4.b32", int4, __xdv4, __SW_ASM_ARGS4("=r")); \
__surf_readxd_v2("v4.b32", uint4, __xdv4, __SW_ASM_ARGS4("=r")); \
__surf_readxd_v2("v4.b32", float4, __xdv4, __SW_ASM_ARGS4("=r"))
__SURF_READXD_ALL(__1DV1, __1DV2, __1DV4, __SURF_READ1D);
__SURF_READXD_ALL(__2DV1, __2DV2, __2DV4, __SURF_READ2D);
__SURF_READXD_ALL(__3DV1, __3DV2, __3DV4, __SURF_READ3D);
__SURF_READXD_ALL(__1DLAYERV1, __1DLAYERV2, __1DLAYERV4, __SURF_READ1DLAYERED);
__SURF_READXD_ALL(__2DLAYERV1, __2DLAYERV2, __2DLAYERV4, __SURF_READ2DLAYERED);
__SURF_READXD_ALL(__CUBEMAPV1, __CUBEMAPV2, __CUBEMAPV4, __SURF_READCUBEMAP);
__SURF_READXD_ALL(__CUBEMAPLAYERV1, __CUBEMAPLAYERV2, __CUBEMAPLAYERV4,
__SURF_READCUBEMAPLAYERED);
#define __SURF_WRITE1D_V2(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_WRITE_V2(__ID("__isurf1Dwrite_v2"), "1d", __asmtype, __type, "{%1}", \
(int x), ("r"(x)), __asm_op_args, __asm_args)
#define __SURF_WRITE1DLAYERED_V2(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_WRITE_V2(__ID("__isurf1DLayeredwrite_v2"), "a1d", __asmtype, __type, \
"{%2, %1}", (int x, int layer), ("r"(x), "r"(layer)), \
__asm_op_args, __asm_args)
#define __SURF_WRITE2D_V2(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_WRITE_V2(__ID("__isurf2Dwrite_v2"), "2d", __asmtype, __type, \
"{%1, %2}", (int x, int y), ("r"(x), "r"(y)), __asm_op_args, \
__asm_args)
#define __SURF_WRITE2DLAYERED_V2(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_WRITE_V2(__ID("__isurf2DLayeredwrite_v2"), "a2d", __asmtype, __type, \
"{%3, %1, %2, %2}", (int x, int y, int layer), \
("r"(x), "r"(y), "r"(layer)), __asm_op_args, __asm_args)
#define __SURF_WRITE3D_V2(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_WRITE_V2(__ID("__isurf3Dwrite_v2"), "3d", __asmtype, __type, \
"{%1, %2, %3, %3}", (int x, int y, int z), \
("r"(x), "r"(y), "r"(z)), __asm_op_args, __asm_args)
#define __SURF_CUBEMAPWRITE_V2(__asmtype, __type, __asm_op_args, __asm_args) \
__SURF_WRITE_V2(__ID("__isurfCubemapwrite_v2"), "a2d", __asmtype, __type, \
"{%3, %1, %2, %2}", (int x, int y, int face), \
("r"(x), "r"(y), "r"(face)), __asm_op_args, __asm_args)
#define __SURF_CUBEMAPLAYEREDWRITE_V2(__asmtype, __type, __asm_op_args, \
__asm_args) \
__SURF_WRITE_V2(__ID("__isurfCubemapLayeredwrite_v2"), "a2d", __asmtype, \
__type, "{%3, %1, %2, %2}", (int x, int y, int layerface), \
("r"(x), "r"(y), "r"(layerface)), __asm_op_args, __asm_args)
#define __SURF_WRITEXD_V2_ALL(__xdv1, __xdv2, __xdv4, __surf_writexd_v2) \
__surf_writexd_v2("b8", char, __xdv1, __SW_ASM_ARGS("h")); \
__surf_writexd_v2("b8", signed char, __xdv1, __SW_ASM_ARGS("h")); \
__surf_writexd_v2("b8", char1, __xdv1, __SW_ASM_ARGS1("h")); \
__surf_writexd_v2("b8", unsigned char, __xdv1, __SW_ASM_ARGS("h")); \
__surf_writexd_v2("b8", uchar1, __xdv1, __SW_ASM_ARGS1("h")); \
__surf_writexd_v2("b16", short, __xdv1, __SW_ASM_ARGS("h")); \
__surf_writexd_v2("b16", short1, __xdv1, __SW_ASM_ARGS1("h")); \
__surf_writexd_v2("b16", unsigned short, __xdv1, __SW_ASM_ARGS("h")); \
__surf_writexd_v2("b16", ushort1, __xdv1, __SW_ASM_ARGS1("h")); \
__surf_writexd_v2("b32", int, __xdv1, __SW_ASM_ARGS("r")); \
__surf_writexd_v2("b32", int1, __xdv1, __SW_ASM_ARGS1("r")); \
__surf_writexd_v2("b32", unsigned int, __xdv1, __SW_ASM_ARGS("r")); \
__surf_writexd_v2("b32", uint1, __xdv1, __SW_ASM_ARGS1("r")); \
__surf_writexd_v2("b64", long long, __xdv1, __SW_ASM_ARGS("l")); \
__surf_writexd_v2("b64", longlong1, __xdv1, __SW_ASM_ARGS1("l")); \
__surf_writexd_v2("b64", unsigned long long, __xdv1, __SW_ASM_ARGS("l")); \
__surf_writexd_v2("b64", ulonglong1, __xdv1, __SW_ASM_ARGS1("l")); \
__surf_writexd_v2("b32", float, __xdv1, __SW_ASM_ARGS("r")); \
__surf_writexd_v2("b32", float1, __xdv1, __SW_ASM_ARGS1("r")); \
\
__surf_writexd_v2("v2.b8", char2, __xdv2, __SW_ASM_ARGS2("h")); \
__surf_writexd_v2("v2.b8", uchar2, __xdv2, __SW_ASM_ARGS2("h")); \
__surf_writexd_v2("v2.b16", short2, __xdv2, __SW_ASM_ARGS2("h")); \
__surf_writexd_v2("v2.b16", ushort2, __xdv2, __SW_ASM_ARGS2("h")); \
__surf_writexd_v2("v2.b32", int2, __xdv2, __SW_ASM_ARGS2("r")); \
__surf_writexd_v2("v2.b32", uint2, __xdv2, __SW_ASM_ARGS2("r")); \
__surf_writexd_v2("v2.b64", longlong2, __xdv2, __SW_ASM_ARGS2("l")); \
__surf_writexd_v2("v2.b64", ulonglong2, __xdv2, __SW_ASM_ARGS2("l")); \
__surf_writexd_v2("v2.b32", float2, __xdv2, __SW_ASM_ARGS2("r")); \
\
__surf_writexd_v2("v4.b8", char4, __xdv4, __SW_ASM_ARGS4("h")); \
__surf_writexd_v2("v4.b8", uchar4, __xdv4, __SW_ASM_ARGS4("h")); \
__surf_writexd_v2("v4.b16", short4, __xdv4, __SW_ASM_ARGS4("h")); \
__surf_writexd_v2("v4.b16", ushort4, __xdv4, __SW_ASM_ARGS4("h")); \
__surf_writexd_v2("v4.b32", int4, __xdv4, __SW_ASM_ARGS4("r")); \
__surf_writexd_v2("v4.b32", uint4, __xdv4, __SW_ASM_ARGS4("r")); \
__surf_writexd_v2("v4.b32", float4, __xdv4, __SW_ASM_ARGS4("r"))
#define __1DV1 "{%2}"
#define __1DV2 "{%2, %3}"
#define __1DV4 "{%2, %3, %4, %5}"
#define __2DV1 "{%3}"
#define __2DV2 "{%3, %4}"
#define __2DV4 "{%3, %4, %5, %6}"
#define __3DV1 "{%4}"
#define __3DV2 "{%4, %5}"
#define __3DV4 "{%4, %5, %6, %7}"
__SURF_WRITEXD_V2_ALL(__1DV1, __1DV2, __1DV4, __SURF_WRITE1D_V2);
__SURF_WRITEXD_V2_ALL(__2DV1, __2DV2, __2DV4, __SURF_WRITE2D_V2);
__SURF_WRITEXD_V2_ALL(__3DV1, __3DV2, __3DV4, __SURF_WRITE3D_V2);
__SURF_WRITEXD_V2_ALL(__2DV1, __2DV2, __2DV4, __SURF_WRITE1DLAYERED_V2);
__SURF_WRITEXD_V2_ALL(__3DV1, __3DV2, __3DV4, __SURF_WRITE2DLAYERED_V2);
__SURF_WRITEXD_V2_ALL(__3DV1, __3DV2, __3DV4, __SURF_CUBEMAPWRITE_V2);
__SURF_WRITEXD_V2_ALL(__3DV1, __3DV2, __3DV4, __SURF_CUBEMAPLAYEREDWRITE_V2);
template <class __op, class __DataT, class... __Args>
__device__ static void __tex_fetch_impl(__surface_op_tag, __DataT *__ptr,
cudaSurfaceObject_t __handle,
__Args... __args) {
__surf_read_write_v2<__op, __DataT>::__run(__ptr, __handle, __args...);
}
// These are the top-level function overloads the __nv_tex_surf_handler expands
// to. Each overload deals with one of the several ways __nv_tex_surf_handler
// is called by CUDA headers. In the end, each of the overloads does the same
// job -- it figures out which `__tex_fetch_v4::run` variant should be used to
// fetch texture data and which `__convert::run` is needed to convert it into
// appropriate return type.
// __nv_tex_surf_handler("__tex...", &ret, cudaTextureObject_t handle, args...);
// Data type and return type are based on ret.
template <class __op, class __T, class... __Args>
__device__ static void __tex_fetch_impl(__texture_op_tag, __T *__ptr,
cudaTextureObject_t __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__T>::__fetch_t;
*__ptr = __convert<__T, __FetchT>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(__handle, __args...));
}
template <class __op, class __T, class... __Args>
__device__ static void __tex_fetch(__T *__ptr, cudaTextureObject_t __handle,
__Args... __args) {
using op_type = typename __op_type_traits<__op>::type;
__tex_fetch_impl<__op>(op_type{}, __ptr, __handle, __args...);
}
#if CUDA_VERSION < 12000
// texture<> objects get magically converted into a texture reference. However,
// there's no way to convert them to cudaTextureObject_t on C++ level. So, we
// cheat a bit and use inline assembly to do it. It costs us an extra register
// and a move, but that is easy for ptxas to optimize away.
template <class __T>
__device__ cudaTextureObject_t __tex_handle_to_obj(__T __handle) {
cudaTextureObject_t __obj;
asm("mov.b64 %0, %1; " : "=l"(__obj) : "l"(__handle));
return __obj;
}
// __nv_tex_surf_handler ("__tex...", &ret, textureReference, args...);
// Data type and return type is based on ret.
template <class __op, class __T, class __HandleT, class... __Args>
__device__ static void __tex_fetch(__T *__ptr, __HandleT __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__T>::__fetch_t;
*__ptr = __convert<__T, __FetchT>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(
__tex_handle_to_obj(__handle), __args...));
}
// __nv_tex_surf_handler ("__tex...", &type_dummy, &ret, texture<...>, args...);
// cudaReadModeNormalizedFloat fetches always return float4.
template <class __op, class __DataT, class __RetT, int __TexT, class... __Args>
__device__ static void
__tex_fetch(__DataT *, __RetT *__ptr,
texture<__DataT, __TexT, cudaReadModeNormalizedFloat> __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__DataT>::__fetch_t;
*__ptr = __convert<__RetT, float4>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(
__tex_handle_to_obj(__handle), __args...));
}
// __nv_tex_surf_handler ("__tex...", &type_dummy, &ret, texture<...>, args...);
// For cudaReadModeElementType fetch return type is based on type_dummy.
template <class __op, class __DataT, class __RetT, int __TexT, class... __Args>
__device__ static void
__tex_fetch(__DataT *, __RetT *__ptr,
texture<__DataT, __TexT, cudaReadModeElementType> __handle,
__Args... __args) {
using __FetchT = typename __TypeInfoT<__DataT>::__fetch_t;
*__ptr = __convert<__RetT, __FetchT>::__run(
__tex_fetch_v4<__op>::template __run<__FetchT>(
__tex_handle_to_obj(__handle), __args...));
}
#endif // CUDA_VERSION
} // namespace __cuda_tex
} // namespace
#pragma pop_macro("__ASM_OUT")
#pragma pop_macro("__ASM_OUTP")
#pragma pop_macro("__Args")
#pragma pop_macro("__ID")
#pragma pop_macro("__IDV")
#pragma pop_macro("__OP_TYPE_SURFACE")
#pragma pop_macro("__IMPL_2DGATHER")
#pragma pop_macro("__IMPL_ALIAS")
#pragma pop_macro("__IMPL_ALIASI")
#pragma pop_macro("__IMPL_F1")
#pragma pop_macro("__IMPL_F3")
#pragma pop_macro("__IMPL_F3N")
#pragma pop_macro("__IMPL_F3S")
#pragma pop_macro("__IMPL_S")
#pragma pop_macro("__IMPL_S3")
#pragma pop_macro("__IMPL_S3I")
#pragma pop_macro("__IMPL_S3N")
#pragma pop_macro("__IMPL_S3NI")
#pragma pop_macro("__IMPL_S3S")
#pragma pop_macro("__IMPL_S3SI")
#pragma pop_macro("__IMPL_SI")
#pragma pop_macro("__L")
#pragma pop_macro("__STRIP_PARENS")
#pragma pop_macro("__SURF_WRITE_V2")
#pragma pop_macro("__SW_ASM_ARGS")
#pragma pop_macro("__SW_ASM_ARGS1")
#pragma pop_macro("__SW_ASM_ARGS2")
#pragma pop_macro("__SW_ASM_ARGS4")
#pragma pop_macro("__SURF_WRITE_V2")
#pragma pop_macro("__SURF_READ_V2")
#pragma pop_macro("__SW_ASM_ARGS")
#pragma pop_macro("__SW_ASM_ARGS1")
#pragma pop_macro("__SW_ASM_ARGS2")
#pragma pop_macro("__SW_ASM_ARGS4")
#pragma pop_macro("__SURF_READ1D");
#pragma pop_macro("__SURF_READ2D");
#pragma pop_macro("__SURF_READ3D");
#pragma pop_macro("__SURF_READ1DLAYERED");
#pragma pop_macro("__SURF_READ2DLAYERED");
#pragma pop_macro("__SURF_READCUBEMAP");
#pragma pop_macro("__SURF_READCUBEMAPLAYERED");
#pragma pop_macro("__1DV1");
#pragma pop_macro("__1DV2");
#pragma pop_macro("__1DV4");
#pragma pop_macro("__2DV1");
#pragma pop_macro("__2DV2");
#pragma pop_macro("__2DV4");
#pragma pop_macro("__1DLAYERV1");
#pragma pop_macro("__1DLAYERV2");
#pragma pop_macro("__1DLAYERV4");
#pragma pop_macro("__3DV1");
#pragma pop_macro("__3DV2");
#pragma pop_macro("__3DV4");
#pragma pop_macro("__2DLAYERV1");
#pragma pop_macro("__2DLAYERV2");
#pragma pop_macro("__2DLAYERV4");
#pragma pop_macro("__CUBEMAPV1");
#pragma pop_macro("__CUBEMAPV2");
#pragma pop_macro("__CUBEMAPV4");
#pragma pop_macro("__CUBEMAPLAYERV1");
#pragma pop_macro("__CUBEMAPLAYERV2");
#pragma pop_macro("__CUBEMAPLAYERV4");
#pragma pop_macro("__SURF_READXD_ALL");
#pragma pop_macro("__SURF_WRITE1D_V2");
#pragma pop_macro("__SURF_WRITE1DLAYERED_V2");
#pragma pop_macro("__SURF_WRITE2D_V2");
#pragma pop_macro("__SURF_WRITE2DLAYERED_V2");
#pragma pop_macro("__SURF_WRITE3D_V2");
#pragma pop_macro("__SURF_CUBEMAPWRITE_V2");
#pragma pop_macro("__SURF_CUBEMAPLAYEREDWRITE_V2");
#pragma pop_macro("__SURF_WRITEXD_V2_ALL");
#pragma pop_macro("__1DV1");
#pragma pop_macro("__1DV2");
#pragma pop_macro("__1DV4");
#pragma pop_macro("__2DV1");
#pragma pop_macro("__2DV2");
#pragma pop_macro("__2DV4");
#pragma pop_macro("__3DV1");
#pragma pop_macro("__3DV2");
#pragma pop_macro("__3DV4");
#endif // __CLANG_CUDA_TEXTURE_INTRINSICS_H__
|