1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
//===-- gpuintrin.h - Generic GPU intrinsic functions ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Provides wrappers around the clang builtins for accessing GPU hardware
// features. The interface is intended to be portable between architectures, but
// some targets may provide different implementations. This header can be
// included for all the common GPU programming languages, namely OpenMP, HIP,
// CUDA, and OpenCL.
//
//===----------------------------------------------------------------------===//
#ifndef __GPUINTRIN_H
#define __GPUINTRIN_H
#if !defined(_DEFAULT_FN_ATTRS)
#if defined(__HIP__) || defined(__CUDA__)
#define _DEFAULT_FN_ATTRS __attribute__((device))
#else
#define _DEFAULT_FN_ATTRS
#endif
#endif
#include <stdint.h>
#if !defined(__cplusplus)
_Pragma("push_macro(\"bool\")");
#define bool _Bool
#endif
_Pragma("omp begin declare target device_type(nohost)");
_Pragma("omp begin declare variant match(device = {kind(gpu)})");
// Forward declare a few functions for the implementation header.
// Returns a bitmask marking all lanes that have the same value of __x.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
__gpu_match_any_u32_impl(uint64_t __lane_mask, uint32_t __x);
// Returns a bitmask marking all lanes that have the same value of __x.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
__gpu_match_any_u64_impl(uint64_t __lane_mask, uint64_t __x);
// Returns the current lane mask if every lane contains __x.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
__gpu_match_all_u32_impl(uint64_t __lane_mask, uint32_t __x);
// Returns the current lane mask if every lane contains __x.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
__gpu_match_all_u64_impl(uint64_t __lane_mask, uint64_t __x);
_Pragma("omp end declare variant");
_Pragma("omp end declare target");
#if defined(__NVPTX__)
#include <nvptxintrin.h>
#elif defined(__AMDGPU__)
#include <amdgpuintrin.h>
#elif !defined(_OPENMP)
#error "This header is only meant to be used on GPU architectures."
#endif
_Pragma("omp begin declare target device_type(nohost)");
_Pragma("omp begin declare variant match(device = {kind(gpu)})");
#define __GPU_X_DIM 0
#define __GPU_Y_DIM 1
#define __GPU_Z_DIM 2
// Returns the number of blocks in the requested dimension.
_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_blocks(int __dim) {
switch (__dim) {
case 0:
return __gpu_num_blocks_x();
case 1:
return __gpu_num_blocks_y();
case 2:
return __gpu_num_blocks_z();
default:
__builtin_unreachable();
}
}
// Returns the number of block id in the requested dimension.
_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_block_id(int __dim) {
switch (__dim) {
case 0:
return __gpu_block_id_x();
case 1:
return __gpu_block_id_y();
case 2:
return __gpu_block_id_z();
default:
__builtin_unreachable();
}
}
// Returns the number of threads in the requested dimension.
_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_num_threads(int __dim) {
switch (__dim) {
case 0:
return __gpu_num_threads_x();
case 1:
return __gpu_num_threads_y();
case 2:
return __gpu_num_threads_z();
default:
__builtin_unreachable();
}
}
// Returns the thread id in the requested dimension.
_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_thread_id(int __dim) {
switch (__dim) {
case 0:
return __gpu_thread_id_x();
case 1:
return __gpu_thread_id_y();
case 2:
return __gpu_thread_id_z();
default:
__builtin_unreachable();
}
}
// Get the first active thread inside the lane.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
__gpu_first_lane_id(uint64_t __lane_mask) {
return __builtin_ffsll(__lane_mask) - 1;
}
// Conditional that is only true for a single thread in a lane.
_DEFAULT_FN_ATTRS static __inline__ bool
__gpu_is_first_in_lane(uint64_t __lane_mask) {
return __gpu_lane_id() == __gpu_first_lane_id(__lane_mask);
}
// Copies the value from the first active thread to the rest.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
__gpu_read_first_lane_u64(uint64_t __lane_mask, uint64_t __x) {
uint32_t __hi = (uint32_t)(__x >> 32ull);
uint32_t __lo = (uint32_t)(__x & 0xFFFFFFFFull);
return ((uint64_t)__gpu_read_first_lane_u32(__lane_mask, __hi) << 32ull) |
((uint64_t)__gpu_read_first_lane_u32(__lane_mask, __lo) &
0xFFFFFFFFull);
}
// Gets the first floating point value from the active lanes.
_DEFAULT_FN_ATTRS static __inline__ float
__gpu_read_first_lane_f32(uint64_t __lane_mask, float __x) {
return __builtin_bit_cast(
float, __gpu_read_first_lane_u32(__lane_mask,
__builtin_bit_cast(uint32_t, __x)));
}
// Gets the first floating point value from the active lanes.
_DEFAULT_FN_ATTRS static __inline__ double
__gpu_read_first_lane_f64(uint64_t __lane_mask, double __x) {
return __builtin_bit_cast(
double, __gpu_read_first_lane_u64(__lane_mask,
__builtin_bit_cast(uint64_t, __x)));
}
// Shuffles the the lanes according to the given index.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
__gpu_shuffle_idx_u64(uint64_t __lane_mask, uint32_t __idx, uint64_t __x,
uint32_t __width) {
uint32_t __hi = (uint32_t)(__x >> 32ull);
uint32_t __lo = (uint32_t)(__x & 0xFFFFFFFF);
uint32_t __mask = (uint32_t)__lane_mask;
return ((uint64_t)__gpu_shuffle_idx_u32(__mask, __idx, __hi, __width)
<< 32ull) |
((uint64_t)__gpu_shuffle_idx_u32(__mask, __idx, __lo, __width));
}
// Shuffles the the lanes according to the given index.
_DEFAULT_FN_ATTRS static __inline__ float
__gpu_shuffle_idx_f32(uint64_t __lane_mask, uint32_t __idx, float __x,
uint32_t __width) {
return __builtin_bit_cast(
float, __gpu_shuffle_idx_u32(__lane_mask, __idx,
__builtin_bit_cast(uint32_t, __x), __width));
}
// Shuffles the the lanes according to the given index.
_DEFAULT_FN_ATTRS static __inline__ double
__gpu_shuffle_idx_f64(uint64_t __lane_mask, uint32_t __idx, double __x,
uint32_t __width) {
return __builtin_bit_cast(
double,
__gpu_shuffle_idx_u64(__lane_mask, __idx,
__builtin_bit_cast(uint64_t, __x), __width));
}
// Gets the accumulator scan of the threads in the warp or wavefront.
#define __DO_LANE_SCAN(__type, __bitmask_type, __suffix) \
_DEFAULT_FN_ATTRS static __inline__ uint32_t __gpu_lane_scan_##__suffix( \
uint64_t __lane_mask, uint32_t __x) { \
uint64_t __first = __lane_mask >> __builtin_ctzll(__lane_mask); \
bool __divergent = __gpu_read_first_lane_##__suffix( \
__lane_mask, __first & (__first + 1)); \
if (__divergent) { \
__type __accum = 0; \
for (uint64_t __mask = __lane_mask; __mask; __mask &= __mask - 1) { \
__type __index = __builtin_ctzll(__mask); \
__type __tmp = __gpu_shuffle_idx_##__suffix(__lane_mask, __index, __x, \
__gpu_num_lanes()); \
__x = __gpu_lane_id() == __index ? __accum + __tmp : __x; \
__accum += __tmp; \
} \
} else { \
for (uint32_t __step = 1; __step < __gpu_num_lanes(); __step *= 2) { \
uint32_t __index = __gpu_lane_id() - __step; \
__bitmask_type bitmask = __gpu_lane_id() >= __step; \
__x += __builtin_bit_cast( \
__type, \
-bitmask & __builtin_bit_cast(__bitmask_type, \
__gpu_shuffle_idx_##__suffix( \
__lane_mask, __index, __x, \
__gpu_num_lanes()))); \
} \
} \
return __x; \
}
__DO_LANE_SCAN(uint32_t, uint32_t, u32); // uint32_t __gpu_lane_scan_u32(m, x)
__DO_LANE_SCAN(uint64_t, uint64_t, u64); // uint64_t __gpu_lane_scan_u64(m, x)
__DO_LANE_SCAN(float, uint32_t, f32); // float __gpu_lane_scan_f32(m, x)
__DO_LANE_SCAN(double, uint64_t, f64); // double __gpu_lane_scan_f64(m, x)
#undef __DO_LANE_SCAN
// Gets the sum of all lanes inside the warp or wavefront.
#define __DO_LANE_SUM(__type, __suffix) \
_DEFAULT_FN_ATTRS static __inline__ __type __gpu_lane_sum_##__suffix( \
uint64_t __lane_mask, __type __x) { \
uint64_t __first = __lane_mask >> __builtin_ctzll(__lane_mask); \
bool __divergent = __gpu_read_first_lane_##__suffix( \
__lane_mask, __first & (__first + 1)); \
if (__divergent) { \
return __gpu_shuffle_idx_##__suffix( \
__lane_mask, 63 - __builtin_clzll(__lane_mask), \
__gpu_lane_scan_##__suffix(__lane_mask, __x), __gpu_num_lanes()); \
} else { \
for (uint32_t __step = 1; __step < __gpu_num_lanes(); __step *= 2) { \
uint32_t __index = __step + __gpu_lane_id(); \
__x += __gpu_shuffle_idx_##__suffix(__lane_mask, __index, __x, \
__gpu_num_lanes()); \
} \
return __gpu_read_first_lane_##__suffix(__lane_mask, __x); \
} \
}
__DO_LANE_SUM(uint32_t, u32); // uint32_t __gpu_lane_sum_u32(m, x)
__DO_LANE_SUM(uint64_t, u64); // uint64_t __gpu_lane_sum_u64(m, x)
__DO_LANE_SUM(float, f32); // float __gpu_lane_sum_f32(m, x)
__DO_LANE_SUM(double, f64); // double __gpu_lane_sum_f64(m, x)
#undef __DO_LANE_SUM
// Returns a bitmask marking all lanes that have the same value of __x.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
__gpu_match_any_u32_impl(uint64_t __lane_mask, uint32_t __x) {
uint64_t __match_mask = 0;
bool __done = 0;
for (uint64_t __active_mask = __lane_mask; __active_mask;
__active_mask = __gpu_ballot(__lane_mask, !__done)) {
if (!__done) {
uint32_t __first = __gpu_read_first_lane_u32(__active_mask, __x);
if (__first == __x) {
__match_mask = __gpu_lane_mask();
__done = 1;
}
}
}
__gpu_sync_lane(__lane_mask);
return __match_mask;
}
// Returns a bitmask marking all lanes that have the same value of __x.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
__gpu_match_any_u64_impl(uint64_t __lane_mask, uint64_t __x) {
uint64_t __match_mask = 0;
bool __done = 0;
for (uint64_t __active_mask = __lane_mask; __active_mask;
__active_mask = __gpu_ballot(__lane_mask, !__done)) {
if (!__done) {
uint64_t __first = __gpu_read_first_lane_u64(__active_mask, __x);
if (__first == __x) {
__match_mask = __gpu_lane_mask();
__done = 1;
}
}
}
__gpu_sync_lane(__lane_mask);
return __match_mask;
}
// Returns the current lane mask if every lane contains __x.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
__gpu_match_all_u32_impl(uint64_t __lane_mask, uint32_t __x) {
uint32_t __first = __gpu_read_first_lane_u32(__lane_mask, __x);
uint64_t __ballot = __gpu_ballot(__lane_mask, __x == __first);
__gpu_sync_lane(__lane_mask);
return __ballot == __gpu_lane_mask() ? __gpu_lane_mask() : 0ull;
}
// Returns the current lane mask if every lane contains __x.
_DEFAULT_FN_ATTRS static __inline__ uint64_t
__gpu_match_all_u64_impl(uint64_t __lane_mask, uint64_t __x) {
uint64_t __first = __gpu_read_first_lane_u64(__lane_mask, __x);
uint64_t __ballot = __gpu_ballot(__lane_mask, __x == __first);
__gpu_sync_lane(__lane_mask);
return __ballot == __gpu_lane_mask() ? __gpu_lane_mask() : 0ull;
}
_Pragma("omp end declare variant");
_Pragma("omp end declare target");
#if !defined(__cplusplus)
_Pragma("pop_macro(\"bool\")");
#endif
#undef _DEFAULT_FN_ATTRS
#endif // __GPUINTRIN_H
|