1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
// RUN: %clang_cc1 -triple x86_64-linux -verify=both,expected -std=c++11 %s -fexperimental-new-constant-interpreter
// RUN: %clang_cc1 -triple x86_64-linux -verify=both,ref -std=c++11 %s
namespace IntOrEnum {
const int k = 0;
const int &p = k;
template<int n> struct S {};
S<p> s;
}
const int cval = 2;
template <int> struct C{};
template struct C<cval>;
/// FIXME: This example does not get properly diagnosed in the new interpreter.
extern const int recurse1;
const int recurse2 = recurse1; // both-note {{here}}
const int recurse1 = 1;
int array1[recurse1];
int array2[recurse2]; // both-warning {{variable length arrays in C++}} \
// both-note {{initializer of 'recurse2' is not a constant expression}} \
// expected-error {{variable length array declaration not allowed at file scope}} \
// ref-warning {{variable length array folded to constant array as an extension}}
constexpr int b = b; // both-error {{must be initialized by a constant expression}} \
// both-note {{read of object outside its lifetime is not allowed in a constant expression}}
[[clang::require_constant_initialization]] int c = c; // both-error {{variable does not have a constant initializer}} \
// both-note {{attribute here}} \
// both-note {{read of non-const variable}} \
// both-note {{declared here}}
struct S {
int m;
};
constexpr S s = { 5 };
constexpr const int *p = &s.m + 1;
constexpr const int *np2 = &(*(int(*)[4])nullptr)[0]; // ok
constexpr int preDec(int x) { // both-error {{never produces a constant expression}}
return --x; // both-note {{subexpression}}
}
constexpr int postDec(int x) { // both-error {{never produces a constant expression}}
return x--; // both-note {{subexpression}}
}
constexpr int preInc(int x) { // both-error {{never produces a constant expression}}
return ++x; // both-note {{subexpression}}
}
constexpr int postInc(int x) { // both-error {{never produces a constant expression}}
return x++; // both-note {{subexpression}}
}
namespace ReferenceToConst {
template<int n> struct S; // both-note 1{{here}}
struct LiteralType {
constexpr LiteralType(int n) : n(n) {}
int n;
};
template<int n> struct T {
T() {
static const int ki = 42;
const int &i2 = ki;
typename S<i2>::T check5; // both-error {{undefined template}}
}
};
}
namespace GH50055 {
// Enums without fixed underlying type
enum E1 {e11=-4, e12=4};
enum E2 {e21=0, e22=4};
enum E3 {e31=-4, e32=1024};
enum E4 {e41=0};
// Empty but as-if it had a single enumerator with value 0
enum EEmpty {};
// Enum with fixed underlying type because the underlying type is explicitly specified
enum EFixed : int {efixed1=-4, efixed2=4};
// Enum with fixed underlying type because it is scoped
enum class EScoped {escoped1=-4, escoped2=4};
enum EMaxInt {emaxint1=-1, emaxint2=__INT_MAX__};
enum NumberType {};
E2 testDefaultArgForParam(E2 e2Param = (E2)-1) { // ok, not a constant expression context
E2 e2LocalInit = e2Param; // ok, not a constant expression context
return e2LocalInit;
}
// #include <enum-constexpr-conversion-system-header.h>
void testValueInRangeOfEnumerationValues() {
constexpr E1 x1 = static_cast<E1>(-8);
constexpr E1 x2 = static_cast<E1>(8);
// both-error@-1 {{constexpr variable 'x2' must be initialized by a constant expression}}
// both-note@-2 {{integer value 8 is outside the valid range of values [-8, 7] for the enumeration type 'E1'}}
E1 x2b = static_cast<E1>(8); // ok, not a constant expression context
constexpr E2 x3 = static_cast<E2>(-8);
// both-error@-1 {{constexpr variable 'x3' must be initialized by a constant expression}}
// both-note@-2 {{integer value -8 is outside the valid range of values [0, 7] for the enumeration type 'E2'}}
constexpr E2 x4 = static_cast<E2>(0);
constexpr E2 x5 = static_cast<E2>(8);
// both-error@-1 {{constexpr variable 'x5' must be initialized by a constant expression}}
// both-note@-2 {{integer value 8 is outside the valid range of values [0, 7] for the enumeration type 'E2'}}
constexpr E3 x6 = static_cast<E3>(-2048);
constexpr E3 x7 = static_cast<E3>(-8);
constexpr E3 x8 = static_cast<E3>(0);
constexpr E3 x9 = static_cast<E3>(8);
constexpr E3 x10 = static_cast<E3>(2048);
// both-error@-1 {{constexpr variable 'x10' must be initialized by a constant expression}}
// both-note@-2 {{integer value 2048 is outside the valid range of values [-2048, 2047] for the enumeration type 'E3'}}
constexpr E4 x11 = static_cast<E4>(0);
constexpr E4 x12 = static_cast<E4>(1);
constexpr E4 x13 = static_cast<E4>(2);
// both-error@-1 {{constexpr variable 'x13' must be initialized by a constant expression}}
// both-note@-2 {{integer value 2 is outside the valid range of values [0, 1] for the enumeration type 'E4'}}
constexpr EEmpty x14 = static_cast<EEmpty>(0);
constexpr EEmpty x15 = static_cast<EEmpty>(1);
constexpr EEmpty x16 = static_cast<EEmpty>(2);
// both-error@-1 {{constexpr variable 'x16' must be initialized by a constant expression}}
// both-note@-2 {{integer value 2 is outside the valid range of values [0, 1] for the enumeration type 'EEmpty'}}
constexpr EFixed x17 = static_cast<EFixed>(100);
constexpr EScoped x18 = static_cast<EScoped>(100);
constexpr EMaxInt x19 = static_cast<EMaxInt>(__INT_MAX__-1);
constexpr EMaxInt x20 = static_cast<EMaxInt>((long)__INT_MAX__+1);
// both-error@-1 {{constexpr variable 'x20' must be initialized by a constant expression}}
// both-note@-2 {{integer value 2147483648 is outside the valid range of values [-2147483648, 2147483647] for the enumeration type 'EMaxInt'}}
const NumberType neg_one = (NumberType) ((NumberType) 0 - (NumberType) 1); // ok, not a constant expression context
}
template<class T, unsigned size> struct Bitfield {
static constexpr T max = static_cast<T>((1 << size) - 1);
// both-error@-1 {{constexpr variable 'max' must be initialized by a constant expression}}
// both-note@-2 {{integer value 15 is outside the valid range of values [0, 7] for the enumeration type 'E2'}}
};
void testValueInRangeOfEnumerationValuesViaTemplate() {
Bitfield<E2, 3> good;
Bitfield<E2, 4> bad; // both-note {{in instantiation}}
}
enum SortOrder {
AscendingOrder,
DescendingOrder
};
class A {
static void f(SortOrder order);
};
void A::f(SortOrder order) {
if (order == SortOrder(-1)) // ok, not a constant expression context
return;
}
}
namespace FinalLtorDiags {
template<int*> struct A {}; // both-note {{template parameter is declared here}}
int k;
int *q = &k; // both-note {{declared here}}
A<q> c; // both-error {{non-type template argument of type 'int *' is not a constant expression}} \
// both-note {{read of non-constexpr variable 'q' is not allowed in a constant expression}}
}
void lambdas() {
int d;
int a9[1] = {[d = 0] = 1}; // both-error {{not an integral constant expression}}
}
namespace InitLinkToRVO {
struct A {
int y = 3;
int z = 1 + y;
};
constexpr A make() { return A {}; }
static_assert(make().z == 4, "");
}
namespace DynamicCast {
struct S { int x, y; } s;
constexpr S* sptr = &s;
struct Str {
int b : reinterpret_cast<S*>(sptr) == reinterpret_cast<S*>(sptr);
int g : (S*)(void*)(sptr) == sptr;
};
}
namespace GlobalInitializer {
extern int &g; // both-note {{here}}
struct S {
int G : g; // both-error {{constant expression}} \
// both-note {{initializer of 'g' is unknown}}
};
}
namespace ExternPointer {
struct S { int a; };
extern const S pu;
constexpr const int *pua = &pu.a; // Ok.
}
namespace PseudoDtor {
typedef int I;
constexpr int f(int a = 1) { // both-error {{never produces a constant expression}} \
// ref-note {{destroying object 'a' whose lifetime has already ended}}
return (
a.~I(), // both-note {{pseudo-destructor call is not permitted}} \
// expected-note {{pseudo-destructor call is not permitted}}
0);
}
static_assert(f() == 0, ""); // both-error {{constant expression}} \
// expected-note {{in call to}}
}
namespace IntToPtrCast {
typedef __INTPTR_TYPE__ intptr_t;
constexpr intptr_t f(intptr_t x) {
return (((x) >> 21) * 8);
}
extern "C" int foo;
constexpr intptr_t i = f((intptr_t)&foo - 10); // both-error{{constexpr variable 'i' must be initialized by a constant expression}} \
// both-note{{reinterpret_cast}}
}
namespace Volatile {
constexpr int f(volatile int &&r) {
return r; // both-note {{read of volatile-qualified type 'volatile int'}}
}
struct S {
int j : f(0); // both-error {{constant expression}} \
// both-note {{in call to 'f(0)'}}
};
}
namespace ZeroSizeCmp {
extern void (*start[])();
extern void (*end[])();
static_assert(&start != &end, ""); // both-error {{constant expression}} \
// both-note {{comparison of pointers '&start' and '&end' to unrelated zero-sized objects}}
}
namespace OverlappingStrings {
static_assert(+"foo" != +"bar", "");
static_assert(&"xfoo"[1] != &"yfoo"[1], "");
static_assert(+"foot" != +"foo", "");
static_assert(+"foo\0bar" != +"foo\0baz", "");
#define fold(x) (__builtin_constant_p(x) ? (x) : (x))
static_assert(fold((const char*)u"A" != (const char*)"\0A\0x"), "");
static_assert(fold((const char*)u"A" != (const char*)"A\0\0x"), "");
static_assert(fold((const char*)u"AAA" != (const char*)"AAA\0\0x"), "");
constexpr const char *string = "hello";
constexpr const char *also_string = string;
static_assert(string == string, "");
static_assert(string == also_string, "");
// These strings may overlap, and so the result of the comparison is unknown.
constexpr bool may_overlap_1 = +"foo" == +"foo"; // both-error {{}} both-note {{addresses of potentially overlapping literals}}
constexpr bool may_overlap_2 = +"foo" == +"foo\0bar"; // both-error {{}} both-note {{addresses of potentially overlapping literals}}
constexpr bool may_overlap_3 = +"foo" == &"bar\0foo"[4]; // both-error {{}} both-note {{addresses of potentially overlapping literals}}
constexpr bool may_overlap_4 = &"xfoo"[1] == &"xfoo"[1]; // both-error {{}} both-note {{addresses of potentially overlapping literals}}
}
|