1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
import sys
import argparse
import subprocess
import tempfile
import json
import os
from datetime import datetime
import numpy as np
from scipy.optimize import curve_fit
from scipy.stats import t
def generate_cpp_cycle_test(n: int) -> str:
"""
Generates a C++ code snippet with a specified number of pointers in a cycle.
Creates a while loop that rotates N pointers.
This pattern tests the convergence speed of the dataflow analysis when
reaching its fixed point.
Example:
struct MyObj { int id; ~MyObj() {} };
void long_cycle_4(bool condition) {
MyObj v1{1};
MyObj v2{1};
MyObj v3{1};
MyObj v4{1};
MyObj* p1 = &v1;
MyObj* p2 = &v2;
MyObj* p3 = &v3;
MyObj* p4 = &v4;
while (condition) {
MyObj* temp = p1;
p1 = p2;
p2 = p3;
p3 = p4;
p4 = temp;
}
}
"""
if n <= 0:
return "// Number of variables must be positive."
cpp_code = "struct MyObj { int id; ~MyObj() {} };\n\n"
cpp_code += f"void long_cycle_{n}(bool condition) {{\n"
for i in range(1, n + 1):
cpp_code += f" MyObj v{i}{{1}};\n"
cpp_code += "\n"
for i in range(1, n + 1):
cpp_code += f" MyObj* p{i} = &v{i};\n"
cpp_code += "\n while (condition) {\n"
if n > 0:
cpp_code += f" MyObj* temp = p1;\n"
for i in range(1, n):
cpp_code += f" p{i} = p{i+1};\n"
cpp_code += f" p{n} = temp;\n"
cpp_code += " }\n}\n"
cpp_code += f"\nint main() {{ long_cycle_{n}(false); return 0; }}\n"
return cpp_code
def generate_cpp_merge_test(n: int) -> str:
"""
Creates N independent if statements that merge at a single point.
This pattern specifically stresses the performance of the
'LifetimeLattice::join' operation.
Example:
struct MyObj { int id; ~MyObj() {} };
void conditional_merges_4(bool condition) {
MyObj v1, v2, v3, v4;
MyObj *p1 = nullptr, *p2 = nullptr, *p3 = nullptr, *p4 = nullptr;
if(condition) { p1 = &v1; }
if(condition) { p2 = &v2; }
if(condition) { p3 = &v3; }
if(condition) { p4 = &v4; }
}
"""
if n <= 0:
return "// Number of variables must be positive."
cpp_code = "struct MyObj { int id; ~MyObj() {} };\n\n"
cpp_code += f"void conditional_merges_{n}(bool condition) {{\n"
decls = [f"v{i}" for i in range(1, n + 1)]
cpp_code += f" MyObj {', '.join(decls)};\n"
ptr_decls = [f"*p{i} = nullptr" for i in range(1, n + 1)]
cpp_code += f" MyObj {', '.join(ptr_decls)};\n\n"
for i in range(1, n + 1):
cpp_code += f" if(condition) {{ p{i} = &v{i}; }}\n"
cpp_code += "}\n"
cpp_code += f"\nint main() {{ conditional_merges_{n}(false); return 0; }}\n"
return cpp_code
def analyze_trace_file(trace_path: str) -> tuple[float, float]:
"""
Parses the -ftime-trace JSON output to find durations.
Returns:
A tuple of (lifetime_analysis_duration_us, total_clang_duration_us).
"""
lifetime_duration = 0.0
total_duration = 0.0
try:
with open(trace_path, "r") as f:
trace_data = json.load(f)
for event in trace_data.get("traceEvents", []):
if event.get("name") == "LifetimeSafetyAnalysis":
lifetime_duration += float(event.get("dur", 0))
if event.get("name") == "ExecuteCompiler":
total_duration += float(event.get("dur", 0))
except (IOError, json.JSONDecodeError) as e:
print(f"Error reading or parsing trace file {trace_path}: {e}", file=sys.stderr)
return 0.0, 0.0
return lifetime_duration, total_duration
def power_law(n, c, k):
"""Represents the power law function: y = c * n^k"""
return c * np.power(n, k)
def human_readable_time(ms: float) -> str:
"""Converts milliseconds to a human-readable string (ms or s)."""
if ms >= 1000:
return f"{ms / 1000:.2f} s"
return f"{ms:.2f} ms"
def generate_markdown_report(results: dict) -> str:
"""Generates a Markdown-formatted report from the benchmark results."""
report = []
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S %Z")
report.append(f"# Lifetime Analysis Performance Report")
report.append(f"> Generated on: {timestamp}")
report.append("\n---\n")
for test_name, data in results.items():
title = data["title"]
report.append(f"## Test Case: {title}")
report.append("")
# Table header
report.append("| N | Analysis Time | Total Clang Time |")
report.append("|:----|--------------:|-----------------:|")
# Table rows
n_data = np.array(data["n"])
analysis_data = np.array(data["lifetime_ms"])
total_data = np.array(data["total_ms"])
for i in range(len(n_data)):
analysis_str = human_readable_time(analysis_data[i])
total_str = human_readable_time(total_data[i])
report.append(f"| {n_data[i]:<3} | {analysis_str:>13} | {total_str:>16} |")
report.append("")
# Complexity analysis
report.append(f"**Complexity Analysis:**")
try:
# Curve fitting requires at least 3 points
if len(n_data) < 3:
raise ValueError("Not enough data points to perform curve fitting.")
popt, pcov = curve_fit(
power_law, n_data, analysis_data, p0=[0, 2], maxfev=5000
)
_, k = popt
# Confidence Interval for k
alpha = 0.05 # 95% confidence
dof = max(0, len(n_data) - len(popt)) # degrees of freedom
t_val = t.ppf(1.0 - alpha / 2.0, dof)
# Standard error of the parameters
perr = np.sqrt(np.diag(pcov))
k_stderr = perr[1]
k_ci_lower = k - t_val * k_stderr
k_ci_upper = k + t_val * k_stderr
report.append(
f"- The performance for this case scales approx. as **O(n<sup>{k:.2f}</sup>)**."
)
report.append(
f"- **95% Confidence interval for exponent:** `[{k_ci_lower:.2f}, {k_ci_upper:.2f}]`."
)
except (RuntimeError, ValueError) as e:
report.append(f"- Could not determine a best-fit curve for the data: {e}")
report.append("\n---\n")
return "\n".join(report)
def run_single_test(
clang_binary: str, output_dir: str, test_name: str, generator_func, n: int
) -> tuple[float, float]:
"""Generates, compiles, and benchmarks a single test case."""
print(f"--- Running Test: {test_name.capitalize()} with N={n} ---")
generated_code = generator_func(n)
base_name = f"test_{test_name}_{n}"
source_file = os.path.join(output_dir, f"{base_name}.cpp")
trace_file = os.path.join(output_dir, f"{base_name}.json")
with open(source_file, "w") as f:
f.write(generated_code)
clang_command = [
clang_binary,
"-c",
"-o",
"/dev/null",
"-ftime-trace=" + trace_file,
"-Wexperimental-lifetime-safety",
"-std=c++17",
source_file,
]
result = subprocess.run(clang_command, capture_output=True, text=True)
if result.returncode != 0:
print(f"Compilation failed for N={n}!", file=sys.stderr)
print(result.stderr, file=sys.stderr)
return 0.0, 0.0
lifetime_us, total_us = analyze_trace_file(trace_file)
return lifetime_us / 1000.0, total_us / 1000.0
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Generate, compile, and benchmark C++ test cases for Clang's lifetime analysis."
)
parser.add_argument(
"--clang-binary", type=str, required=True, help="Path to the Clang executable."
)
parser.add_argument(
"--output-dir",
type=str,
default="benchmark_results",
help="Directory to save persistent benchmark files. (Default: ./benchmark_results)",
)
args = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
print(f"Benchmark files will be saved in: {os.path.abspath(args.output_dir)}\n")
test_configurations = [
{
"name": "cycle",
"title": "Pointer Cycle in Loop",
"generator_func": generate_cpp_cycle_test,
"n_values": [10, 25, 50, 75, 100, 150],
},
{
"name": "merge",
"title": "CFG Merges",
"generator_func": generate_cpp_merge_test,
"n_values": [10, 50, 100, 200, 400, 800],
},
]
results = {}
print("Running performance benchmarks...")
for config in test_configurations:
test_name = config["name"]
results[test_name] = {
"title": config["title"],
"n": [],
"lifetime_ms": [],
"total_ms": [],
}
for n in config["n_values"]:
lifetime_ms, total_ms = run_single_test(
args.clang_binary,
args.output_dir,
test_name,
config["generator_func"],
n,
)
if total_ms > 0:
results[test_name]["n"].append(n)
results[test_name]["lifetime_ms"].append(lifetime_ms)
results[test_name]["total_ms"].append(total_ms)
print(
f" Total: {human_readable_time(total_ms)} | Analysis: {human_readable_time(lifetime_ms)}"
)
print("\n\n" + "=" * 80)
print("Generating Markdown Report...")
print("=" * 80 + "\n")
markdown_report = generate_markdown_report(results)
print(markdown_report)
|