1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
|
// RUN: %clang_cc1 -fsyntax-only -Wdangling -Wdangling-field -Wreturn-stack-address -verify %s
#include "Inputs/lifetime-analysis.h"
struct [[gsl::Owner(int)]] MyIntOwner {
MyIntOwner();
int &operator*();
};
struct [[gsl::Pointer(int)]] MyIntPointer {
MyIntPointer(int *p = nullptr);
// Conversion operator and constructor conversion will result in two
// different ASTs. The former is tested with another owner and
// pointer type.
MyIntPointer(const MyIntOwner &);
int &operator*();
MyIntOwner toOwner();
};
struct MySpecialIntPointer : MyIntPointer {
};
// We did see examples in the wild when a derived class changes
// the ownership model. So we have a test for it.
struct [[gsl::Owner(int)]] MyOwnerIntPointer : MyIntPointer {
};
struct [[gsl::Pointer(long)]] MyLongPointerFromConversion {
MyLongPointerFromConversion(long *p = nullptr);
long &operator*();
};
struct [[gsl::Owner(long)]] MyLongOwnerWithConversion {
MyLongOwnerWithConversion();
operator MyLongPointerFromConversion();
long &operator*();
MyIntPointer releaseAsMyPointer();
long *releaseAsRawPointer();
};
void danglingHeapObject() {
new MyLongPointerFromConversion(MyLongOwnerWithConversion{}); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
new MyIntPointer(MyIntOwner{}); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
}
void intentionalFalseNegative() {
int i;
MyIntPointer p{&i};
// In this case we do not have enough information in a statement local
// analysis to detect the problem.
new MyIntPointer(p);
new MyIntPointer(MyIntPointer{p});
}
MyIntPointer ownershipTransferToMyPointer() {
MyLongOwnerWithConversion t;
return t.releaseAsMyPointer(); // ok
}
long *ownershipTransferToRawPointer() {
MyLongOwnerWithConversion t;
return t.releaseAsRawPointer(); // ok
}
struct Y {
int a[4];
};
void dangligGslPtrFromTemporary() {
MyIntPointer p = Y{}.a; // TODO
(void)p;
}
struct DanglingGslPtrField {
MyIntPointer p; // expected-note {{pointer member declared here}}
MyLongPointerFromConversion p2; // expected-note {{pointer member declared here}}
DanglingGslPtrField(int i) : p(&i) {} // TODO
DanglingGslPtrField() : p2(MyLongOwnerWithConversion{}) {} // expected-warning {{initializing pointer member 'p2' to point to a temporary object whose lifetime is shorter than the lifetime of the constructed object}}
DanglingGslPtrField(double) : p(MyIntOwner{}) {} // expected-warning {{initializing pointer member 'p' to point to a temporary object whose lifetime is shorter than the lifetime of the constructed object}}
};
MyIntPointer danglingGslPtrFromLocal() {
int j;
return &j; // TODO
}
MyIntPointer returningLocalPointer() {
MyIntPointer localPointer;
return localPointer; // ok
}
MyIntPointer daglingGslPtrFromLocalOwner() {
MyIntOwner localOwner;
return localOwner; // expected-warning {{address of stack memory associated with local variable 'localOwner' returned}}
}
MyLongPointerFromConversion daglingGslPtrFromLocalOwnerConv() {
MyLongOwnerWithConversion localOwner;
return localOwner; // expected-warning {{address of stack memory associated with local variable 'localOwner' returned}}
}
MyIntPointer danglingGslPtrFromTemporary() {
return MyIntOwner{}; // expected-warning {{returning address of local temporary object}}
}
MyIntOwner makeTempOwner();
MyIntPointer danglingGslPtrFromTemporary2() {
return makeTempOwner(); // expected-warning {{returning address of local temporary object}}
}
MyLongPointerFromConversion danglingGslPtrFromTemporaryConv() {
return MyLongOwnerWithConversion{}; // expected-warning {{returning address of local temporary object}}
}
int *noFalsePositive(MyIntOwner &o) {
MyIntPointer p = o;
return &*p; // ok
}
MyIntPointer global;
MyLongPointerFromConversion global2;
void initLocalGslPtrWithTempOwner() {
MyIntPointer p = MyIntOwner{}; // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
MyIntPointer pp = p = MyIntOwner{}; // expected-warning {{object backing the pointer 'p' will be}}
p = MyIntOwner{}; // expected-warning {{object backing the pointer 'p' }}
pp = p; // no warning
global = MyIntOwner{}; // expected-warning {{object backing the pointer 'global' }}
MyLongPointerFromConversion p2 = MyLongOwnerWithConversion{}; // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
p2 = MyLongOwnerWithConversion{}; // expected-warning {{object backing the pointer 'p2' }}
global2 = MyLongOwnerWithConversion{}; // expected-warning {{object backing the pointer 'global2' }}
}
struct Unannotated {
typedef std::vector<int>::iterator iterator;
iterator begin();
operator iterator() const;
};
void modelIterators() {
std::vector<int>::iterator it = std::vector<int>().begin(); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
(void)it;
}
std::vector<int>::iterator modelIteratorReturn() {
return std::vector<int>().begin(); // expected-warning {{returning address of local temporary object}}
}
const int *modelFreeFunctions() {
return std::data(std::vector<int>()); // expected-warning {{returning address of local temporary object}}
}
int &modelAnyCast() {
return std::any_cast<int&>(std::any{}); // expected-warning {{returning reference to local temporary object}}
}
int modelAnyCast2() {
return std::any_cast<int>(std::any{}); // ok
}
int modelAnyCast3() {
return std::any_cast<int&>(std::any{}); // ok
}
const char *danglingRawPtrFromLocal() {
std::basic_string<char> s;
return s.c_str(); // expected-warning {{address of stack memory associated with local variable 's' returned}}
}
int &danglingRawPtrFromLocal2() {
std::optional<int> o;
return o.value(); // expected-warning {{reference to stack memory associated with local variable 'o' returned}}
}
int &danglingRawPtrFromLocal3() {
std::optional<int> o;
return *o; // expected-warning {{reference to stack memory associated with local variable 'o' returned}}
}
// GH100384
std::string_view containerWithAnnotatedElements() {
std::string_view c1 = std::vector<std::string>().at(0); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
c1 = std::vector<std::string>().at(0); // expected-warning {{object backing the pointer}}
// no warning on constructing from gsl-pointer
std::string_view c2 = std::vector<std::string_view>().at(0);
std::vector<std::string> local;
return local.at(0); // expected-warning {{address of stack memory associated with local variable}}
}
std::string_view localUniquePtr(int i) {
std::unique_ptr<std::string> c1;
if (i)
return *c1; // expected-warning {{address of stack memory associated with local variable}}
std::unique_ptr<std::string_view> c2;
return *c2; // expect no-warning.
}
std::string_view localOptional(int i) {
std::optional<std::string> o;
if (i)
return o.value(); // expected-warning {{address of stack memory associated with local variable}}
std::optional<std::string_view> abc;
return abc.value(); // expect no warning
}
const char *danglingRawPtrFromTemp() {
return std::basic_string<char>().c_str(); // expected-warning {{returning address of local temporary object}}
}
std::unique_ptr<int> getUniquePtr();
int *danglingUniquePtrFromTemp() {
return getUniquePtr().get(); // expected-warning {{returning address of local temporary object}}
}
int *danglingUniquePtrFromTemp2() {
return std::unique_ptr<int>().get(); // expected-warning {{returning address of local temporary object}}
}
void danglingReferenceFromTempOwner() {
int &&r = *std::optional<int>(); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
int &&r2 = *std::optional<int>(5); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
int &&r3 = std::optional<int>(5).value(); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
int &r4 = std::vector<int>().at(3); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
}
std::vector<int> getTempVec();
std::optional<std::vector<int>> getTempOptVec();
void testLoops() {
for (auto i : getTempVec()) // ok
;
for (auto i : *getTempOptVec()) // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
;
}
int &usedToBeFalsePositive(std::vector<int> &v) {
std::vector<int>::iterator it = v.begin();
int& value = *it;
return value; // ok
}
int &doNotFollowReferencesForLocalOwner() {
std::unique_ptr<int> localOwner;
int &p = *localOwner.get();
// In real world code localOwner is usually moved here.
return p; // ok
}
const char *trackThroughMultiplePointer() {
return std::basic_string_view<char>(std::basic_string<char>()).begin(); // expected-warning {{returning address of local temporary object}}
}
struct X {
X(std::unique_ptr<int> up) :
pointee(*up), pointee2(up.get()), pointer(std::move(up)) {}
int &pointee;
int *pointee2;
std::unique_ptr<int> pointer;
};
struct [[gsl::Owner]] XOwner {
int* get() const [[clang::lifetimebound]];
};
struct X2 {
// A common usage that moves the passing owner to the class.
// verify no warning on this case.
X2(XOwner owner) :
pointee(owner.get()),
owner(std::move(owner)) {}
int* pointee;
XOwner owner;
};
std::vector<int>::iterator getIt();
std::vector<int> getVec();
const int &handleGslPtrInitsThroughReference() {
const auto &it = getIt(); // Ok, it is lifetime extended.
return *it;
}
void handleGslPtrInitsThroughReference2() {
const std::vector<int> &v = getVec();
const int *val = v.data(); // Ok, it is lifetime extended.
}
void handleTernaryOperator(bool cond) {
std::basic_string<char> def;
std::basic_string_view<char> v = cond ? def : ""; // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
}
std::string operator+(std::string_view s1, std::string_view s2);
void danglingStringviewAssignment(std::string_view a1, std::string_view a2) {
a1 = std::string(); // expected-warning {{object backing}}
a2 = a1 + a1; // expected-warning {{object backing}}
}
std::reference_wrapper<int> danglingPtrFromNonOwnerLocal() {
int i = 5;
return i; // TODO
}
std::reference_wrapper<int> danglingPtrFromNonOwnerLocal2() {
int i = 5;
return std::ref(i); // TODO
}
std::reference_wrapper<int> danglingPtrFromNonOwnerLocal3() {
int i = 5;
return std::reference_wrapper<int>(i); // TODO
}
std::reference_wrapper<Unannotated> danglingPtrFromNonOwnerLocal4() {
Unannotated i;
return std::reference_wrapper<Unannotated>(i); // TODO
}
std::reference_wrapper<Unannotated> danglingPtrFromNonOwnerLocal5() {
Unannotated i;
return std::ref(i); // TODO
}
int *returnPtrToLocalArray() {
int a[5];
return std::begin(a); // TODO
}
struct ptr_wrapper {
std::vector<int>::iterator member;
};
ptr_wrapper getPtrWrapper();
std::vector<int>::iterator returnPtrFromWrapper() {
ptr_wrapper local = getPtrWrapper();
return local.member;
}
std::vector<int>::iterator returnPtrFromWrapperThroughRef() {
ptr_wrapper local = getPtrWrapper();
ptr_wrapper &local2 = local;
return local2.member;
}
std::vector<int>::iterator returnPtrFromWrapperThroughRef2() {
ptr_wrapper local = getPtrWrapper();
std::vector<int>::iterator &local2 = local.member;
return local2;
}
void checkPtrMemberFromAggregate() {
std::vector<int>::iterator local = getPtrWrapper().member; // OK.
}
std::vector<int>::iterator doNotInterferWithUnannotated() {
Unannotated value;
// Conservative choice for now. Probably not ok, but we do not warn.
return std::begin(value);
}
std::vector<int>::iterator doNotInterferWithUnannotated2() {
Unannotated value;
return value;
}
std::vector<int>::iterator supportDerefAddrofChain(int a, std::vector<int>::iterator value) {
switch (a) {
default:
return value;
case 1:
return *&value;
case 2:
return *&*&value;
case 3:
return *&*&*&value;
}
}
int &supportDerefAddrofChain2(int a, std::vector<int>::iterator value) {
switch (a) {
default:
return *value;
case 1:
return **&value;
case 2:
return **&*&value;
case 3:
return **&*&*&value;
}
}
int *supportDerefAddrofChain3(int a, std::vector<int>::iterator value) {
switch (a) {
default:
return &*value;
case 1:
return &*&*value;
case 2:
return &*&**&value;
case 3:
return &*&**&*&value;
}
}
MyIntPointer handleDerivedToBaseCast1(MySpecialIntPointer ptr) {
return ptr;
}
MyIntPointer handleDerivedToBaseCast2(MyOwnerIntPointer ptr) {
return ptr; // expected-warning {{address of stack memory associated with parameter 'ptr' returned}}
}
std::vector<int>::iterator noFalsePositiveWithVectorOfPointers() {
std::vector<std::vector<int>::iterator> iters;
return iters.at(0);
}
void testForBug49342()
{
auto it = std::iter<char>{} - 2; // Used to be false positive.
}
namespace GH93386 {
// verify no duplicated diagnostics are emitted.
struct [[gsl::Pointer]] S {
S(const std::vector<int>& abc [[clang::lifetimebound]]);
};
S test(std::vector<int> a) {
return S(a); // expected-warning {{address of stack memory associated with}}
}
auto s = S(std::vector<int>()); // expected-warning {{temporary whose address is used as value of local variable}}
// Verify no regression on the follow case.
std::string_view test2(int i, std::optional<std::string_view> a) {
if (i)
return std::move(*a);
return std::move(a.value());
}
struct Foo;
struct FooView {
FooView(const Foo& foo [[clang::lifetimebound]]);
};
FooView test3(int i, std::optional<Foo> a) {
if (i)
return *a; // expected-warning {{address of stack memory}}
return a.value(); // expected-warning {{address of stack memory}}
}
} // namespace GH93386
namespace GH100549 {
struct UrlAnalyzed {
UrlAnalyzed(std::string_view url [[clang::lifetimebound]]);
};
std::string StrCat(std::string_view, std::string_view);
void test1() {
UrlAnalyzed url(StrCat("abc", "bcd")); // expected-warning {{object backing the pointer will be destroyed}}
}
std::string_view ReturnStringView(std::string_view abc [[clang::lifetimebound]]);
void test() {
std::string_view svjkk1 = ReturnStringView(StrCat("bar", "x")); // expected-warning {{object backing the pointer will be destroyed at the end of the full-expression}}
}
} // namespace GH100549
namespace GH108272 {
template <typename T>
struct [[gsl::Owner]] StatusOr {
const T &value() [[clang::lifetimebound]];
};
template <typename V>
class Wrapper1 {
public:
operator V() const;
V value;
};
std::string_view test1() {
StatusOr<Wrapper1<std::string_view>> k;
// Be conservative in this case, as there is not enough information available
// to infer the lifetime relationship for the Wrapper1 type.
std::string_view good = StatusOr<Wrapper1<std::string_view>>().value();
return k.value();
}
template <typename V>
class Wrapper2 {
public:
operator V() const [[clang::lifetimebound]];
V value;
};
std::string_view test2() {
StatusOr<Wrapper2<std::string_view>> k;
// We expect dangling issues as the conversion operator is lifetimebound。
std::string_view bad = StatusOr<Wrapper2<std::string_view>>().value(); // expected-warning {{temporary whose address is used as value of}}
return k.value(); // expected-warning {{address of stack memory associated}}
}
} // namespace GH108272
namespace GH100526 {
void test() {
std::vector<std::string_view> v1({std::string()}); // expected-warning {{object backing the pointer will be destroyed at the end}}
std::vector<std::string_view> v2({
std::string(), // expected-warning {{object backing the pointer will be destroyed at the end}}
std::string_view()
});
std::vector<std::string_view> v3({
std::string_view(),
std::string() // expected-warning {{object backing the pointer will be destroyed at the end}}
});
std::optional<std::string_view> o1 = std::string(); // expected-warning {{object backing the pointer}}
std::string s;
// This is a tricky use-after-free case, what it does:
// 1. make_optional creates a temporary "optional<string>"" object
// 2. the temporary object owns the underlying string which is copied from s.
// 3. the t3 object holds the view to the underlying string of the temporary object.
std::optional<std::string_view> o2 = std::make_optional(s); // expected-warning {{object backing the pointer}}
std::optional<std::string_view> o3 = std::optional<std::string>(s); // expected-warning {{object backing the pointer}}
std::optional<std::string_view> o4 = std::optional<std::string_view>(s);
// FIXME: should work for assignment cases
v1 = {std::string()};
o1 = std::string();
// no warning on copying pointers.
std::vector<std::string_view> n1 = {std::string_view()};
std::optional<std::string_view> n2 = {std::string_view()};
std::optional<std::string_view> n3 = std::string_view();
std::optional<std::string_view> n4 = std::make_optional(std::string_view());
const char* b = "";
std::optional<std::string_view> n5 = std::make_optional(b);
std::optional<std::string_view> n6 = std::make_optional("test");
}
std::vector<std::string_view> test2(int i) {
std::vector<std::string_view> t;
if (i)
return t; // this is fine, no dangling
return std::vector<std::string_view>(t.begin(), t.end());
}
class Foo {
public:
operator std::string_view() const { return ""; }
};
class [[gsl::Owner]] FooOwner {
public:
operator std::string_view() const { return ""; }
};
std::optional<Foo> GetFoo();
std::optional<FooOwner> GetFooOwner();
template <typename T>
struct [[gsl::Owner]] Container1 {
Container1();
};
template <typename T>
struct [[gsl::Owner]] Container2 {
template<typename U>
Container2(const Container1<U>& C2);
};
std::optional<std::string_view> test3(int i) {
std::string s;
std::string_view sv;
if (i)
return s; // expected-warning {{address of stack memory associated}}
return sv; // fine
Container2<std::string_view> c1 = Container1<Foo>(); // no diagnostic as Foo is not an Owner.
Container2<std::string_view> c2 = Container1<FooOwner>(); // expected-warning {{object backing the pointer will be destroyed}}
return GetFoo(); // fine, we don't know Foo is owner or not, be conservative.
return GetFooOwner(); // expected-warning {{returning address of local temporary object}}
}
std::optional<int*> test4(int a) {
return std::make_optional(nullptr); // fine
}
template <typename T>
struct [[gsl::Owner]] StatusOr {
const T &valueLB() const [[clang::lifetimebound]];
const T &valueNoLB() const;
};
template<typename T>
struct [[gsl::Pointer]] Span {
Span(const std::vector<T> &V);
const int& getFieldLB() const [[clang::lifetimebound]];
const int& getFieldNoLB() const;
};
/////// From Owner<Pointer> ///////
// Pointer from Owner<Pointer>
std::string_view test5() {
// The Owner<Pointer> doesn't own the object which its inner pointer points to.
std::string_view a = StatusOr<std::string_view>().valueLB(); // OK
return StatusOr<std::string_view>().valueLB(); // OK
// No dangling diagnostics on non-lifetimebound methods.
std::string_view b = StatusOr<std::string_view>().valueNoLB();
return StatusOr<std::string_view>().valueNoLB();
}
// Pointer<Pointer> from Owner<Pointer>
// Prevent regression GH108463
Span<int*> test6(std::vector<int*> v) {
Span<int *> dangling = std::vector<int*>(); // expected-warning {{object backing the pointer}}
dangling = std::vector<int*>(); // expected-warning {{object backing the pointer}}
return v; // expected-warning {{address of stack memory}}
}
/////// From Owner<Owner<Pointer>> ///////
// Pointer from Owner<Owner<Pointer>>
int* test7(StatusOr<StatusOr<int*>> aa) {
// No dangling diagnostic on pointer.
return aa.valueLB().valueLB(); // OK.
}
// Owner<Pointer> from Owner<Owner<Pointer>>
std::vector<int*> test8(StatusOr<std::vector<int*>> aa) {
return aa.valueLB(); // OK, no pointer being construct on this case.
return aa.valueNoLB();
}
// Pointer<Pointer> from Owner<Owner<Pointer>>
Span<int*> test9(StatusOr<std::vector<int*>> aa) {
return aa.valueLB(); // expected-warning {{address of stack memory associated}}
return aa.valueNoLB(); // OK.
}
/////// From Owner<Owner> ///////
// Pointer<Owner>> from Owner<Owner>
Span<std::string> test10(StatusOr<std::vector<std::string>> aa) {
return aa.valueLB(); // expected-warning {{address of stack memory}}
return aa.valueNoLB(); // OK.
}
/////// From Owner<Pointer<Owner>> ///////
// Pointer<Owner>> from Owner<Pointer<Owner>>
Span<std::string> test11(StatusOr<Span<std::string>> aa) {
return aa.valueLB(); // OK
return aa.valueNoLB(); // OK.
}
// Lifetimebound and gsl::Pointer.
const int& test12(Span<int> a) {
return a.getFieldLB(); // expected-warning {{reference to stack memory associated}}
return a.getFieldNoLB(); // OK.
}
void test13() {
// FIXME: RHS is Owner<Pointer>, we skip this case to avoid false positives.
std::optional<Span<int*>> abc = std::vector<int*>{};
std::optional<Span<int>> t = std::vector<int> {}; // expected-warning {{object backing the pointer will be destroyed}}
}
} // namespace GH100526
namespace std {
template <typename T>
class __set_iterator {};
template<typename T>
struct BB {
typedef __set_iterator<T> iterator;
};
template <typename T>
class set {
public:
typedef typename BB<T>::iterator iterator;
iterator begin() const;
};
} // namespace std
namespace GH118064{
void test() {
auto y = std::set<int>{}.begin(); // expected-warning {{object backing the pointer}}
}
} // namespace GH118064
namespace LifetimeboundInterleave {
const std::string& Ref(const std::string& abc [[clang::lifetimebound]]);
std::string_view TakeSv(std::string_view abc [[clang::lifetimebound]]);
std::string_view TakeStrRef(const std::string& abc [[clang::lifetimebound]]);
std::string_view TakeStr(std::string abc [[clang::lifetimebound]]);
std::string_view test1() {
std::string_view t1 = Ref(std::string()); // expected-warning {{object backing}}
t1 = Ref(std::string()); // expected-warning {{object backing}}
return Ref(std::string()); // expected-warning {{returning address}}
std::string_view t2 = TakeSv(std::string()); // expected-warning {{object backing}}
t2 = TakeSv(std::string()); // expected-warning {{object backing}}
return TakeSv(std::string()); // expected-warning {{returning address}}
std::string_view t3 = TakeStrRef(std::string()); // expected-warning {{temporary}}
t3 = TakeStrRef(std::string()); // expected-warning {{object backing}}
return TakeStrRef(std::string()); // expected-warning {{returning address}}
std::string_view t4 = TakeStr(std::string());
t4 = TakeStr(std::string());
return TakeStr(std::string());
}
template <typename T>
struct Foo {
const T& get() const [[clang::lifetimebound]];
const T& getNoLB() const;
};
std::string_view test2(Foo<std::string> r1, Foo<std::string_view> r2) {
std::string_view t1 = Foo<std::string>().get(); // expected-warning {{object backing}}
t1 = Foo<std::string>().get(); // expected-warning {{object backing}}
return r1.get(); // expected-warning {{address of stack}}
std::string_view t2 = Foo<std::string_view>().get();
t2 = Foo<std::string_view>().get();
return r2.get();
// no warning on no-LB-annotated method.
std::string_view t3 = Foo<std::string>().getNoLB();
t3 = Foo<std::string>().getNoLB();
return r1.getNoLB();
}
struct Bar {};
struct [[gsl::Pointer]] Pointer {
Pointer(const Bar & bar [[clang::lifetimebound]]);
};
Pointer test3(Bar bar) {
Pointer p = Pointer(Bar()); // expected-warning {{temporary}}
p = Pointer(Bar()); // expected-warning {{object backing}}
return bar; // expected-warning {{address of stack}}
}
template<typename T>
struct MySpan {
MySpan(const std::vector<T>& v);
using iterator = std::iterator<T>;
iterator begin() const [[clang::lifetimebound]];
};
template <typename T>
typename MySpan<T>::iterator ReturnFirstIt(const MySpan<T>& v [[clang::lifetimebound]]);
void test4() {
std::vector<int> v{1};
// MySpan<T> doesn't own any underlying T objects, the pointee object of
// the MySpan iterator is still alive when the whole span is destroyed, thus
// no diagnostic.
const int& t1 = *MySpan<int>(v).begin();
const int& t2 = *ReturnFirstIt(MySpan<int>(v));
// Ideally, we would diagnose the following case, but due to implementation
// constraints, we do not.
const int& t4 = *MySpan<int>(std::vector<int>{}).begin();
auto it1 = MySpan<int>(v).begin(); // expected-warning {{temporary whose address is use}}
auto it2 = ReturnFirstIt(MySpan<int>(v)); // expected-warning {{temporary whose address is used}}
}
} // namespace LifetimeboundInterleave
namespace GH120206 {
struct S {
std::string_view s;
};
struct [[gsl::Owner]] Q1 {
const S* get() const [[clang::lifetimebound]];
};
std::string_view test1(int c, std::string_view sv) {
std::string_view k = c > 1 ? Q1().get()->s : sv;
if (c == 1)
return c > 1 ? Q1().get()->s : sv;
Q1 q;
return c > 1 ? q.get()->s : sv;
}
struct Q2 {
const S* get() const [[clang::lifetimebound]];
};
std::string_view test2(int c, std::string_view sv) {
std::string_view k = c > 1 ? Q2().get()->s : sv;
if (c == 1)
return c > 1 ? Q2().get()->s : sv;
Q2 q;
return c > 1 ? q.get()->s : sv;
}
} // namespace GH120206
namespace GH120543 {
struct S {
std::string_view sv;
std::string s;
};
struct Q {
const S* get() const [[clang::lifetimebound]];
};
std::string_view foo(std::string_view sv [[clang::lifetimebound]]);
void test1() {
std::string_view k1 = S().sv; // OK
std::string_view k2 = S().s; // expected-warning {{object backing the pointer will}}
std::string_view k3 = Q().get()->sv; // OK
std::string_view k4 = Q().get()->s; // expected-warning {{object backing the pointer will}}
std::string_view lb1 = foo(S().s); // expected-warning {{object backing the pointer will}}
std::string_view lb2 = foo(Q().get()->s); // expected-warning {{object backing the pointer will}}
}
struct Bar {};
struct Foo {
std::vector<Bar> v;
};
Foo getFoo();
void test2() {
const Foo& foo = getFoo();
const Bar& bar = foo.v.back(); // OK
}
struct Foo2 {
std::unique_ptr<Bar> bar;
};
struct Test {
Test(Foo2 foo) : bar(foo.bar.get()), // OK
storage(std::move(foo.bar)) {};
Bar* bar;
std::unique_ptr<Bar> storage;
};
} // namespace GH120543
namespace GH127195 {
template <typename T>
struct StatusOr {
T* operator->() [[clang::lifetimebound]];
T* value() [[clang::lifetimebound]];
};
const char* foo() {
StatusOr<std::string> s;
return s->data(); // expected-warning {{address of stack memory associated with local variable}}
StatusOr<std::string_view> s2;
return s2->data();
StatusOr<StatusOr<std::string_view>> s3;
return s3.value()->value()->data();
// FIXME: nested cases are not supported now.
StatusOr<StatusOr<std::string>> s4;
return s4.value()->value()->data();
}
} // namespace GH127195
|