File: unique_function_test.cpp

package info (click to toggle)
llvm-toolchain-21 1%3A21.1.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,245,028 kB
  • sloc: cpp: 7,619,726; ansic: 1,434,018; asm: 1,058,748; python: 252,740; f90: 94,671; objc: 70,685; lisp: 42,813; pascal: 18,401; sh: 8,601; ml: 5,111; perl: 4,720; makefile: 3,675; awk: 3,523; javascript: 2,409; xml: 892; fortran: 770
file content (169 lines) | stat: -rw-r--r-- 4,761 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
//===-- unique_function_test.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "unique_function.h"
#include "gtest/gtest.h"

using namespace orc_rt;

TEST(UniqueFunctionTest, Basic) {
  unique_function<int(int, int)> Sum = [](int A, int B) { return A + B; };
  EXPECT_EQ(Sum(1, 2), 3);

  unique_function<int(int, int)> Sum2 = std::move(Sum);
  EXPECT_EQ(Sum2(1, 2), 3);

  unique_function<int(int, int)> Sum3 = [](int A, int B) { return A + B; };
  Sum2 = std::move(Sum3);
  EXPECT_EQ(Sum2(1, 2), 3);

  Sum2 = unique_function<int(int, int)>([](int A, int B) { return A + B; });
  EXPECT_EQ(Sum2(1, 2), 3);

  // Explicit self-move test.
  *&Sum2 = std::move(Sum2);
  EXPECT_EQ(Sum2(1, 2), 3);

  Sum2 = unique_function<int(int, int)>();
  EXPECT_FALSE(Sum2);

  // Make sure we can forward through l-value reference parameters.
  unique_function<void(int &)> Inc = [](int &X) { ++X; };
  int X = 42;
  Inc(X);
  EXPECT_EQ(X, 43);

  // Make sure we can forward through r-value reference parameters with
  // move-only types.
  unique_function<int(std::unique_ptr<int> &&)> ReadAndDeallocByRef =
      [](std::unique_ptr<int> &&Ptr) {
        int V = *Ptr;
        Ptr.reset();
        return V;
      };
  std::unique_ptr<int> Ptr{new int(13)};
  EXPECT_EQ(ReadAndDeallocByRef(std::move(Ptr)), 13);
  EXPECT_FALSE((bool)Ptr);

  // Make sure we can pass a move-only temporary as opposed to a local variable.
  EXPECT_EQ(ReadAndDeallocByRef(std::unique_ptr<int>(new int(42))), 42);

  // Make sure we can pass a move-only type by-value.
  unique_function<int(std::unique_ptr<int>)> ReadAndDeallocByVal =
      [](std::unique_ptr<int> Ptr) {
        int V = *Ptr;
        Ptr.reset();
        return V;
      };
  Ptr.reset(new int(13));
  EXPECT_EQ(ReadAndDeallocByVal(std::move(Ptr)), 13);
  EXPECT_FALSE((bool)Ptr);

  EXPECT_EQ(ReadAndDeallocByVal(std::unique_ptr<int>(new int(42))), 42);
}

TEST(UniqueFunctionTest, Captures) {
  long A = 1, B = 2, C = 3, D = 4, E = 5;

  unique_function<long()> Tmp;

  unique_function<long()> C1 = [A]() { return A; };
  EXPECT_EQ(C1(), 1);
  Tmp = std::move(C1);
  EXPECT_EQ(Tmp(), 1);

  unique_function<long()> C2 = [A, B]() { return A + B; };
  EXPECT_EQ(C2(), 3);
  Tmp = std::move(C2);
  EXPECT_EQ(Tmp(), 3);

  unique_function<long()> C3 = [A, B, C]() { return A + B + C; };
  EXPECT_EQ(C3(), 6);
  Tmp = std::move(C3);
  EXPECT_EQ(Tmp(), 6);

  unique_function<long()> C4 = [A, B, C, D]() { return A + B + C + D; };
  EXPECT_EQ(C4(), 10);
  Tmp = std::move(C4);
  EXPECT_EQ(Tmp(), 10);

  unique_function<long()> C5 = [A, B, C, D, E]() { return A + B + C + D + E; };
  EXPECT_EQ(C5(), 15);
  Tmp = std::move(C5);
  EXPECT_EQ(Tmp(), 15);
}

TEST(UniqueFunctionTest, MoveOnly) {
  struct SmallCallable {
    std::unique_ptr<int> A = std::make_unique<int>(1);
    int operator()(int B) { return *A + B; }
  };

  unique_function<int(int)> Small = SmallCallable();
  EXPECT_EQ(Small(2), 3);
  unique_function<int(int)> Small2 = std::move(Small);
  EXPECT_EQ(Small2(2), 3);
}

TEST(UniqueFunctionTest, CountForwardingCopies) {
  struct CopyCounter {
    int &CopyCount;

    CopyCounter(int &CopyCount) : CopyCount(CopyCount) {}
    CopyCounter(const CopyCounter &Arg) : CopyCount(Arg.CopyCount) {
      ++CopyCount;
    }
  };

  unique_function<void(CopyCounter)> ByValF = [](CopyCounter) {};
  int CopyCount = 0;
  ByValF(CopyCounter(CopyCount));
  EXPECT_EQ(1, CopyCount);

  CopyCount = 0;
  {
    CopyCounter Counter{CopyCount};
    ByValF(Counter);
  }
  EXPECT_EQ(2, CopyCount);

  // Check that we don't generate a copy at all when we can bind a reference all
  // the way down, even if that reference could *in theory* allow copies.
  unique_function<void(const CopyCounter &)> ByRefF = [](const CopyCounter &) {
  };
  CopyCount = 0;
  ByRefF(CopyCounter(CopyCount));
  EXPECT_EQ(0, CopyCount);

  CopyCount = 0;
  {
    CopyCounter Counter{CopyCount};
    ByRefF(Counter);
  }
  EXPECT_EQ(0, CopyCount);

  // If we use a reference, we can make a stronger guarantee that *no* copy
  // occurs.
  struct Uncopyable {
    Uncopyable() = default;
    Uncopyable(const Uncopyable &) = delete;
  };
  unique_function<void(const Uncopyable &)> UncopyableF =
      [](const Uncopyable &) {};
  UncopyableF(Uncopyable());
  Uncopyable X;
  UncopyableF(X);
}

TEST(UniqueFunctionTest, BooleanConversion) {
  unique_function<void()> D;
  EXPECT_FALSE(D);

  unique_function<void()> F = []() {};
  EXPECT_TRUE(F);
}