File: rtsan_test_functional.cpp

package info (click to toggle)
llvm-toolchain-21 1%3A21.1.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,245,028 kB
  • sloc: cpp: 7,619,726; ansic: 1,434,018; asm: 1,058,748; python: 252,740; f90: 94,671; objc: 70,685; lisp: 42,813; pascal: 18,401; sh: 8,601; ml: 5,111; perl: 4,720; makefile: 3,675; awk: 3,523; javascript: 2,409; xml: 892; fortran: 770
file content (230 lines) | stat: -rw-r--r-- 6,802 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
//===--- rtsan_test.cpp - Realtime Sanitizer --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Introduces basic functional tests for the realtime sanitizer.
// Not meant to be exhaustive, testing all interceptors, please see
// test_rtsan_interceptors.cpp for those tests.
//
//===----------------------------------------------------------------------===//

#include "gtest/gtest.h"

#include "rtsan_test_utilities.h"

#include "rtsan/rtsan.h"
#include "sanitizer_common/sanitizer_platform.h"
#include "sanitizer_common/sanitizer_platform_interceptors.h"

#include <array>
#include <atomic>
#include <chrono>
#include <fstream>
#include <mutex>
#include <shared_mutex>
#include <thread>

#if defined(__ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__) &&                  \
    __ENVIRONMENT_MAC_OS_X_VERSION_MIN_REQUIRED__ >= 101200
#define SI_MAC_DEPLOYMENT_AT_LEAST_10_12 1
#else
#define SI_MAC_DEPLOYMENT_AT_LEAST_10_12 0
#endif

#define RTSAN_TEST_SHARED_MUTEX (!(SI_MAC) || SI_MAC_DEPLOYMENT_AT_LEAST_10_12)

using namespace testing;
using namespace rtsan_testing;
using namespace std::chrono_literals;

TEST(TestRtsan, VectorPushBackAllocationDiesWhenRealtime) {
  std::vector<float> vec;
  auto Func = [&vec]() { vec.push_back(0.4f); };
  ExpectRealtimeDeath(Func);
  ASSERT_EQ(0u, vec.size());
  ExpectNonRealtimeSurvival(Func);
  ASSERT_EQ(1u, vec.size());
}

TEST(TestRtsan, DestructionOfObjectOnHeapDiesWhenRealtime) {
  auto allocated_ptr = std::make_unique<std::array<float, 256>>();
  auto Func = [&allocated_ptr]() { allocated_ptr.reset(); };
  ExpectRealtimeDeath(Func);
  ASSERT_NE(nullptr, allocated_ptr.get());
  ExpectNonRealtimeSurvival(Func);
  ASSERT_EQ(nullptr, allocated_ptr.get());
}

TEST(TestRtsan, SleepingAThreadDiesWhenRealtime) {
  auto Func = []() { std::this_thread::sleep_for(1us); };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, YieldingDiesWhenRealtime) {
  auto Func = []() { std::this_thread::yield(); };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, IfstreamCreationDiesWhenRealtime) {
  auto Func = []() { std::ifstream ifs{"./file.txt"}; };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
  std::remove("./file.txt");
}

TEST(TestRtsan, OfstreamCreationDiesWhenRealtime) {
  auto Func = []() { std::ofstream ofs{"./file.txt"}; };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
  std::remove("./file.txt");
}

TEST(TestRtsan, LockingAMutexDiesWhenRealtime) {
  std::mutex mutex;
  auto Func = [&]() { mutex.lock(); };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, UnlockingAMutexDiesWhenRealtime) {
  std::mutex mutex;
  mutex.lock();
  auto Func = [&]() { mutex.unlock(); };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

#if RTSAN_TEST_SHARED_MUTEX

TEST(TestRtsan, LockingASharedMutexDiesWhenRealtime) {
  std::shared_mutex mutex;
  auto Func = [&]() { mutex.lock(); };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, UnlockingASharedMutexDiesWhenRealtime) {
  std::shared_mutex mutex;
  mutex.lock();
  auto Func = [&]() { mutex.unlock(); };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, SharedLockingASharedMutexDiesWhenRealtime) {
  std::shared_mutex mutex;
  auto Func = [&]() { mutex.lock_shared(); };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, SharedUnlockingASharedMutexDiesWhenRealtime) {
  std::shared_mutex mutex;
  mutex.lock_shared();
  auto Func = [&]() { mutex.unlock_shared(); };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

#endif // RTSAN_TEST_SHARED_MUTEX

TEST(TestRtsan, LaunchingAThreadDiesWhenRealtime) {
  auto Func = [&]() {
    std::thread Thread{[]() {}};
    Thread.join();
  };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

namespace {
void InvokeStdFunction(std::function<void()> &&function) { function(); }

template <typename T> void HideMemoryFromCompiler(T *memory) {
  // Pass the pointer to an empty assembly block as an input, and inform
  // the compiler that memory is read to and possibly modified. This should not
  // be architecture specific, since the asm block is empty.
  __asm__ __volatile__("" ::"r"(memory) : "memory");
}
} // namespace

TEST(TestRtsan, CopyingALambdaWithLargeCaptureDiesWhenRealtime) {
  std::array<float, 16> lots_of_data;
  auto LargeLambda = [lots_of_data]() mutable {
    lots_of_data[3] = 0.25f;
    // In LTO builds, this lambda can be optimized away, since the compiler can
    // see through the memory accesses after inlining across TUs. Ensure it can
    // no longer reason about the memory access, so that won't happen.
    HideMemoryFromCompiler(&lots_of_data[3]);
    EXPECT_EQ(16u, lots_of_data.size());
    EXPECT_EQ(0.25f, lots_of_data[3]);
  };
  auto Func = [&]() { InvokeStdFunction(LargeLambda); };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, AccessingALargeAtomicVariableDiesWhenRealtime) {
  std::atomic<float> small_atomic{0.0f};
  ASSERT_TRUE(small_atomic.is_lock_free());
  RealtimeInvoke([&small_atomic]() {
    float x = small_atomic.load();
    return x;
  });

  std::atomic<std::array<float, 2048>> large_atomic;
  ASSERT_FALSE(large_atomic.is_lock_free());
  auto Func = [&]() {
    std::array<float, 2048> x = large_atomic.load();
    return x;
  };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, FirstCoutDiesWhenRealtime) {
  auto Func = []() { std::cout << "Hello, world!" << std::endl; };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, SecondCoutDiesWhenRealtime) {
  std::cout << "Hello, world";
  auto Func = []() { std::cout << "Hello, again!" << std::endl; };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, PrintfDiesWhenRealtime) {
  auto Func = []() { printf("Hello, world!\n"); };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, ThrowingAnExceptionDiesWhenRealtime) {
  auto Func = [&]() {
    try {
      throw std::exception();
    } catch (std::exception &) {
    }
  };
  ExpectRealtimeDeath(Func);
  ExpectNonRealtimeSurvival(Func);
}

TEST(TestRtsan, DoesNotDieIfTurnedOff) {
  std::mutex mutex;
  auto RealtimeBlockingFunc = [&]() {
    __rtsan_disable();
    mutex.lock();
    mutex.unlock();
    __rtsan_enable();
  };
  RealtimeInvoke(RealtimeBlockingFunc);
}