1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
//===-- size_class_allocator.h ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_SIZE_CLASS_ALLOCATOR_H_
#define SCUDO_SIZE_CLASS_ALLOCATOR_H_
#include "internal_defs.h"
#include "list.h"
#include "platform.h"
#include "report.h"
#include "stats.h"
#include "string_utils.h"
namespace scudo {
template <class SizeClassAllocator> struct SizeClassAllocatorLocalCache {
typedef typename SizeClassAllocator::SizeClassMap SizeClassMap;
typedef typename SizeClassAllocator::CompactPtrT CompactPtrT;
void init(GlobalStats *S, SizeClassAllocator *A) {
DCHECK(isEmpty());
Stats.init();
if (LIKELY(S))
S->link(&Stats);
Allocator = A;
initAllocator();
}
void destroy(GlobalStats *S) {
drain();
if (LIKELY(S))
S->unlink(&Stats);
}
void *allocate(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
PerClass *C = &PerClassArray[ClassId];
if (C->Count == 0) {
// Refill half of the number of max cached.
DCHECK_GT(C->MaxCount / 2, 0U);
if (UNLIKELY(!refill(C, ClassId, C->MaxCount / 2)))
return nullptr;
DCHECK_GT(C->Count, 0);
}
// We read ClassSize first before accessing Chunks because it's adjacent to
// Count, while Chunks might be further off (depending on Count). That keeps
// the memory accesses in close quarters.
const uptr ClassSize = C->ClassSize;
CompactPtrT CompactP = C->Chunks[--C->Count];
Stats.add(StatAllocated, ClassSize);
Stats.sub(StatFree, ClassSize);
return Allocator->decompactPtr(ClassId, CompactP);
}
bool deallocate(uptr ClassId, void *P) {
CHECK_LT(ClassId, NumClasses);
PerClass *C = &PerClassArray[ClassId];
// If the cache is full, drain half of blocks back to the main allocator.
const bool NeedToDrainCache = C->Count == C->MaxCount;
if (NeedToDrainCache)
drain(C, ClassId);
// See comment in allocate() about memory accesses.
const uptr ClassSize = C->ClassSize;
C->Chunks[C->Count++] =
Allocator->compactPtr(ClassId, reinterpret_cast<uptr>(P));
Stats.sub(StatAllocated, ClassSize);
Stats.add(StatFree, ClassSize);
return NeedToDrainCache;
}
bool isEmpty() const {
for (uptr I = 0; I < NumClasses; ++I)
if (PerClassArray[I].Count)
return false;
return true;
}
void drain() {
// Drain BatchClassId last as it may be needed while draining normal blocks.
for (uptr I = 0; I < NumClasses; ++I) {
if (I == BatchClassId)
continue;
while (PerClassArray[I].Count > 0)
drain(&PerClassArray[I], I);
}
while (PerClassArray[BatchClassId].Count > 0)
drain(&PerClassArray[BatchClassId], BatchClassId);
DCHECK(isEmpty());
}
void *getBatchClassBlock() {
void *B = allocate(BatchClassId);
if (UNLIKELY(!B))
reportOutOfMemory(SizeClassAllocator::getSizeByClassId(BatchClassId));
return B;
}
LocalStats &getStats() { return Stats; }
void getStats(ScopedString *Str) {
bool EmptyCache = true;
for (uptr I = 0; I < NumClasses; ++I) {
if (PerClassArray[I].Count == 0)
continue;
EmptyCache = false;
// The size of BatchClass is set to 0 intentionally. See the comment in
// initAllocator() for more details.
const uptr ClassSize = I == BatchClassId
? SizeClassAllocator::getSizeByClassId(I)
: PerClassArray[I].ClassSize;
// Note that the string utils don't support printing u16 thus we cast it
// to a common use type uptr.
Str->append(" %02zu (%6zu): cached: %4zu max: %4zu\n", I, ClassSize,
static_cast<uptr>(PerClassArray[I].Count),
static_cast<uptr>(PerClassArray[I].MaxCount));
}
if (EmptyCache)
Str->append(" No block is cached.\n");
}
static u16 getMaxCached(uptr Size) {
return Min(SizeClassMap::MaxNumCachedHint,
SizeClassMap::getMaxCachedHint(Size));
}
private:
static const uptr NumClasses = SizeClassMap::NumClasses;
static const uptr BatchClassId = SizeClassMap::BatchClassId;
struct alignas(SCUDO_CACHE_LINE_SIZE) PerClass {
u16 Count;
u16 MaxCount;
// Note: ClassSize is zero for the transfer batch.
uptr ClassSize;
CompactPtrT Chunks[2 * SizeClassMap::MaxNumCachedHint];
};
PerClass PerClassArray[NumClasses] = {};
LocalStats Stats;
SizeClassAllocator *Allocator = nullptr;
NOINLINE void initAllocator() {
for (uptr I = 0; I < NumClasses; I++) {
PerClass *P = &PerClassArray[I];
const uptr Size = SizeClassAllocator::getSizeByClassId(I);
P->MaxCount = static_cast<u16>(2 * getMaxCached(Size));
if (I != BatchClassId) {
P->ClassSize = Size;
} else {
// ClassSize in this struct is only used for malloc/free stats, which
// should only track user allocations, not internal movements.
P->ClassSize = 0;
}
}
}
NOINLINE bool refill(PerClass *C, uptr ClassId, u16 MaxRefill) {
const u16 NumBlocksRefilled =
Allocator->popBlocks(this, ClassId, C->Chunks, MaxRefill);
DCHECK_LE(NumBlocksRefilled, MaxRefill);
C->Count = static_cast<u16>(C->Count + NumBlocksRefilled);
return NumBlocksRefilled != 0;
}
NOINLINE void drain(PerClass *C, uptr ClassId) {
const u16 Count = Min(static_cast<u16>(C->MaxCount / 2), C->Count);
Allocator->pushBlocks(this, ClassId, &C->Chunks[0], Count);
// u16 will be promoted to int by arithmetic type conversion.
C->Count = static_cast<u16>(C->Count - Count);
for (u16 I = 0; I < C->Count; I++)
C->Chunks[I] = C->Chunks[I + Count];
}
};
template <class SizeClassAllocator> struct SizeClassAllocatorNoCache {
typedef typename SizeClassAllocator::SizeClassMap SizeClassMap;
typedef typename SizeClassAllocator::CompactPtrT CompactPtrT;
void init(GlobalStats *S, SizeClassAllocator *A) {
Stats.init();
if (LIKELY(S))
S->link(&Stats);
Allocator = A;
initAllocator();
}
void destroy(GlobalStats *S) {
if (LIKELY(S))
S->unlink(&Stats);
}
void *allocate(uptr ClassId) {
CompactPtrT CompactPtr;
uptr NumBlocksPopped = Allocator->popBlocks(this, ClassId, &CompactPtr, 1U);
if (NumBlocksPopped == 0)
return nullptr;
DCHECK_EQ(NumBlocksPopped, 1U);
const PerClass *C = &PerClassArray[ClassId];
Stats.add(StatAllocated, C->ClassSize);
Stats.sub(StatFree, C->ClassSize);
return Allocator->decompactPtr(ClassId, CompactPtr);
}
bool deallocate(uptr ClassId, void *P) {
CHECK_LT(ClassId, NumClasses);
if (ClassId == BatchClassId)
return deallocateBatchClassBlock(P);
CompactPtrT CompactPtr =
Allocator->compactPtr(ClassId, reinterpret_cast<uptr>(P));
Allocator->pushBlocks(this, ClassId, &CompactPtr, 1U);
PerClass *C = &PerClassArray[ClassId];
Stats.sub(StatAllocated, C->ClassSize);
Stats.add(StatFree, C->ClassSize);
// The following adopts the same strategy of allocator draining as used
// in SizeClassAllocatorLocalCache so that use the same hint when doing
// a page release.
++C->Count;
const bool SuggestDraining = C->Count >= C->MaxCount;
if (SuggestDraining)
C->Count = 0;
return SuggestDraining;
}
void *getBatchClassBlock() {
PerClass *C = &PerClassArray[BatchClassId];
if (C->Count == 0) {
const u16 NumBlocksRefilled = Allocator->popBlocks(
this, BatchClassId, BatchClassStorage, C->MaxCount);
if (NumBlocksRefilled == 0)
reportOutOfMemory(SizeClassAllocator::getSizeByClassId(BatchClassId));
DCHECK_LE(NumBlocksRefilled, SizeClassMap::MaxNumCachedHint);
C->Count = NumBlocksRefilled;
}
const uptr ClassSize = C->ClassSize;
CompactPtrT CompactP = BatchClassStorage[--C->Count];
Stats.add(StatAllocated, ClassSize);
Stats.sub(StatFree, ClassSize);
return Allocator->decompactPtr(BatchClassId, CompactP);
}
LocalStats &getStats() { return Stats; }
void getStats(ScopedString *Str) { Str->append(" No block is cached.\n"); }
bool isEmpty() const {
const PerClass *C = &PerClassArray[BatchClassId];
return C->Count == 0;
}
void drain() {
PerClass *C = &PerClassArray[BatchClassId];
if (C->Count > 0) {
Allocator->pushBlocks(this, BatchClassId, BatchClassStorage, C->Count);
C->Count = 0;
}
}
static u16 getMaxCached(uptr Size) {
return Min(SizeClassMap::MaxNumCachedHint,
SizeClassMap::getMaxCachedHint(Size));
}
private:
static const uptr NumClasses = SizeClassMap::NumClasses;
static const uptr BatchClassId = SizeClassMap::BatchClassId;
struct alignas(SCUDO_CACHE_LINE_SIZE) PerClass {
u16 Count = 0;
u16 MaxCount;
// Note: ClassSize is zero for the transfer batch.
uptr ClassSize;
};
PerClass PerClassArray[NumClasses] = {};
// Popping BatchClass blocks requires taking a certain amount of blocks at
// once. This restriction comes from how we manage the storing of BatchClass
// in the primary allocator. See more details in `popBlocksImpl` in the
// primary allocator.
CompactPtrT BatchClassStorage[SizeClassMap::MaxNumCachedHint] = {};
LocalStats Stats;
SizeClassAllocator *Allocator = nullptr;
bool deallocateBatchClassBlock(void *P) {
PerClass *C = &PerClassArray[BatchClassId];
// Drain all the blocks.
if (C->Count >= C->MaxCount) {
Allocator->pushBlocks(this, BatchClassId, BatchClassStorage, C->Count);
C->Count = 0;
}
BatchClassStorage[C->Count++] =
Allocator->compactPtr(BatchClassId, reinterpret_cast<uptr>(P));
// Currently, BatchClass doesn't support page releasing, so we always return
// false.
return false;
}
NOINLINE void initAllocator() {
for (uptr I = 0; I < NumClasses; I++) {
PerClass *P = &PerClassArray[I];
const uptr Size = SizeClassAllocator::getSizeByClassId(I);
if (I != BatchClassId) {
P->ClassSize = Size;
P->MaxCount = static_cast<u16>(2 * getMaxCached(Size));
} else {
// ClassSize in this struct is only used for malloc/free stats, which
// should only track user allocations, not internal movements.
P->ClassSize = 0;
P->MaxCount = SizeClassMap::MaxNumCachedHint;
}
}
}
};
} // namespace scudo
#endif // SCUDO_SIZE_CLASS_ALLOCATOR_H_
|