1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
//===-- xray_trampoline_s390x.s ---------------------------------*- ASM -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This implements the s390x-specific assembler for the trampolines.
// 2 versions of the functions are provided: one which does not store the
// vector registers, and one which does store them. The compiler decides
// which to call based on the availability of the vector extension.
//
//===----------------------------------------------------------------------===//
.text
// Minimal stack frame size
#define STACKSZ 160
// Minimal stack frame size (160) plus space for 8 vector registers a 16 bytes.
#define STACKSZ_VEC 288
//===----------------------------------------------------------------------===//
.globl __xray_FunctionEntry
.p2align 4
.type __xray_FunctionEntry,@function
__xray_FunctionEntry:
# The registers r2-15 of the instrumented function are already saved in the
# stack frame. On entry, r2 contains the function id, and %r14 the address
# of the first instruction of the instrumented function.
# Register r14 will be stored in the slot reserved for compiler use.
stg %r14, 8(%r15)
std %f0, 128(%r15)
std %f2, 136(%r15)
std %f4, 144(%r15)
std %f6, 152(%r15)
aghi %r15, -STACKSZ
lgrl %r1, _ZN6__xray19XRayPatchedFunctionE@GOT
ltg %r1, 0(%r1)
je .Lrestore0
# Set r3 to XRayEntryType::ENTRY = 0.
# The FuncId is still stored in r2.
lghi %r3, 0
basr %r14, %r1
.Lrestore0:
ld %f6, STACKSZ+152(%r15)
ld %f4, STACKSZ+144(%r15)
ld %f2, STACKSZ+136(%r15)
ld %f0, STACKSZ+128(%r15)
lmg %r1, %r15, STACKSZ+8(%r15)
br %r1
.Lfunc_end0:
.size __xray_FunctionEntry, .Lfunc_end0-__xray_FunctionEntry
//===----------------------------------------------------------------------===//
.globl __xray_FunctionEntryVec
.p2align 4
.type __xray_FunctionEntryVec,@function
__xray_FunctionEntryVec:
# The registers r2-15 of the instrumented function are already saved in the
# stack frame. On entry, r2 contains the function id, and %r14 the address
# of the first instruction of the instrumented function.
# Register r14 will be stored in the slot reserved for compiler use.
stg %r14, 8(%r15)
std %f0, 128(%r15)
std %f2, 136(%r15)
std %f4, 144(%r15)
std %f6, 152(%r15)
aghi %r15, -STACKSZ_VEC
vstm %v24, %v31, 160(%r15)
lgrl %r1, _ZN6__xray19XRayPatchedFunctionE@GOT
ltg %r1, 0(%r1)
je .Lrestore1
# Set r3 to XRayEntryType::ENTRY = 0.
# The FuncId is still stored in r2.
lghi %r3, 0
basr %r14, %r1
.Lrestore1:
vlm %v24, %v31, 160(%r15)
ld %f6, STACKSZ_VEC+152(%r15)
ld %f4, STACKSZ_VEC+144(%r15)
ld %f2, STACKSZ_VEC+136(%r15)
ld %f0, STACKSZ_VEC+128(%r15)
lmg %r1, %r15, STACKSZ_VEC+8(%r15)
br %r1
.Lfunc_end1:
.size __xray_FunctionEntryVec, .Lfunc_end1-__xray_FunctionEntryVec
//===----------------------------------------------------------------------===//
.globl __xray_FunctionExit
.p2align 4
.type __xray_FunctionExit,@function
__xray_FunctionExit:
# The registers r2-15 of the instrumented function are already saved in the
# stack frame. On entry, the register r2 contains the function id.
# At the end, the function jumps to the address saved in the slot for r14,
# which contains the return address into the caller of the instrumented
# function.
std %f0, 128(%r15)
std %f2, 136(%r15)
std %f4, 144(%r15)
std %f6, 152(%r15)
aghi %r15, -STACKSZ
lgrl %r1, _ZN6__xray19XRayPatchedFunctionE@GOT
ltg %r1, 0(%r1)
je .Lrestore2
# Set r3 to XRayEntryType::EXIT = 1.
# The FuncId is still stored in r2.
lghi %r3, 1
basr %r14, %r1
.Lrestore2:
ld %f6, STACKSZ+152(%r15)
ld %f4, STACKSZ+144(%r15)
ld %f2, STACKSZ+136(%r15)
ld %f0, STACKSZ+128(%r15)
lmg %r2, %r15, STACKSZ+16(%r15)
br %r14
.Lfunc_end2:
.size __xray_FunctionExit, .Lfunc_end2-__xray_FunctionExit
//===----------------------------------------------------------------------===//
.globl __xray_FunctionExitVec
.p2align 4
.type __xray_FunctionExitVec,@function
__xray_FunctionExitVec:
# The registers r2-15 of the instrumented function are already saved in the
# stack frame. On entry, the register r2 contains the function id.
# At the end, the function jumps to the address saved in the slot for r14,
# which contains the return address into the caller of the instrumented
# function.
std %f0, 128(%r15)
std %f2, 136(%r15)
std %f4, 144(%r15)
std %f6, 152(%r15)
aghi %r15, -STACKSZ_VEC
vstm %v24, %v31, 160(%r15)
lgrl %r1, _ZN6__xray19XRayPatchedFunctionE@GOT
ltg %r1, 0(%r1)
je .Lrestore3
# Set r3 to XRayEntryType::EXIT = 1.
# The FuncId is still stored in r2.
lghi %r3, 1
basr %r14, %r1
.Lrestore3:
vlm %v24, %v31, 160(%r15)
ld %f6, STACKSZ_VEC+152(%r15)
ld %f4, STACKSZ_VEC+144(%r15)
ld %f2, STACKSZ_VEC+136(%r15)
ld %f0, STACKSZ_VEC+128(%r15)
lmg %r2, %r15, STACKSZ_VEC+16(%r15)
br %r14
.Lfunc_end3:
.size __xray_FunctionExit, .Lfunc_end3-__xray_FunctionExit
//===----------------------------------------------------------------------===//
.section ".note.GNU-stack","",@progbits
|