File: timing.h

package info (click to toggle)
llvm-toolchain-21 1%3A21.1.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,245,028 kB
  • sloc: cpp: 7,619,726; ansic: 1,434,018; asm: 1,058,748; python: 252,740; f90: 94,671; objc: 70,685; lisp: 42,813; pascal: 18,401; sh: 8,601; ml: 5,111; perl: 4,720; makefile: 3,675; awk: 3,523; javascript: 2,409; xml: 892; fortran: 770
file content (152 lines) | stat: -rw-r--r-- 4,534 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
//===------------- NVPTX implementation of timing utils ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_UTILS_GPU_TIMING_NVPTX
#define LLVM_LIBC_UTILS_GPU_TIMING_NVPTX

#include "src/__support/CPP/array.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/GPU/utils.h"
#include "src/__support/common.h"
#include "src/__support/macros/attributes.h"
#include "src/__support/macros/config.h"

#include <stdint.h>

namespace LIBC_NAMESPACE_DECL {

// Returns the overhead associated with calling the profiling region. This
// allows us to substract the constant-time overhead from the latency to
// obtain a true result. This can vary with system load.
[[gnu::noinline]] static uint64_t overhead() {
  volatile uint32_t x = 1;
  uint32_t y = x;
  uint64_t start = gpu::processor_clock();
  asm("" ::"llr"(start));
  uint32_t result = y;
  asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));
  uint64_t stop = gpu::processor_clock();
  volatile auto storage = result;
  return stop - start;
}

// Stimulate a simple function and obtain its latency in clock cycles on the
// system. This function cannot be inlined or else it will disturb the very
// delicate balance of hard-coded dependencies.
template <typename F, typename T>
[[gnu::noinline]] static LIBC_INLINE uint64_t latency(F f, T t) {
  // We need to store the input somewhere to guarantee that the compiler will
  // not constant propagate it and remove the profiling region.
  volatile T storage = t;
  T arg = storage;

  // Get the current timestamp from the clock.
  gpu::memory_fence();
  uint64_t start = gpu::processor_clock();

  // This forces the compiler to load the input argument and run the clock cycle
  // counter before the profiling region.
  asm("" ::"llr"(start));

  // Run the function under test and return its value.
  auto result = f(arg);

  // This inline assembly performs a no-op which forces the result to both be
  // used and prevents us from exiting this region before it's complete.
  asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));

  // Obtain the current timestamp after running the calculation and force
  // ordering.
  uint64_t stop = gpu::processor_clock();
  gpu::memory_fence();
  asm("" ::"r"(stop));
  volatile T output = result;

  // Return the time elapsed.
  return stop - start;
}

template <typename F, typename T1, typename T2>
static LIBC_INLINE uint64_t latency(F f, T1 t1, T2 t2) {
  volatile T1 storage = t1;
  volatile T2 storage2 = t2;
  T1 arg = storage;
  T2 arg2 = storage2;

  gpu::memory_fence();
  uint64_t start = gpu::processor_clock();

  asm("" ::"llr"(start));

  auto result = f(arg, arg2);

  asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));

  uint64_t stop = gpu::processor_clock();
  gpu::memory_fence();
  asm("" ::"r"(stop));
  volatile auto output = result;

  return stop - start;
}

// Provides throughput benchmarking.
template <typename F, typename T, size_t N>
[[gnu::noinline]] static LIBC_INLINE uint64_t
throughput(F f, const cpp::array<T, N> &inputs) {
  asm("" ::"r"(&inputs));

  gpu::memory_fence();
  uint64_t start = gpu::processor_clock();

  asm("" ::"llr"(start));

  uint64_t result;
  for (auto input : inputs) {
    asm("" ::"r"(input));
    result = f(input);
    asm("" ::"r"(result));
  }

  uint64_t stop = gpu::processor_clock();
  gpu::memory_fence();
  asm("" ::"r"(stop));
  volatile auto output = result;

  // Return the time elapsed.
  return stop - start;
}

// Provides throughput benchmarking for 2 arguments (e.g. atan2())
template <typename F, typename T, size_t N>
[[gnu::noinline]] static LIBC_INLINE uint64_t throughput(
    F f, const cpp::array<T, N> &inputs1, const cpp::array<T, N> &inputs2) {
  asm("" ::"r"(&inputs1), "r"(&inputs2));

  gpu::memory_fence();
  uint64_t start = gpu::processor_clock();

  asm("" ::"llr"(start));

  uint64_t result;
  for (size_t i = 0; i < inputs1.size(); i++) {
    result = f(inputs1[i], inputs2[i]);
    asm("" ::"r"(result));
  }

  uint64_t stop = gpu::processor_clock();
  gpu::memory_fence();
  asm("" ::"r"(stop));
  volatile auto output = result;

  // Return the time elapsed.
  return stop - start;
}
} // namespace LIBC_NAMESPACE_DECL

#endif // LLVM_LIBC_UTILS_GPU_TIMING_NVPTX