1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
//===------------- NVPTX implementation of timing utils ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_GPU_TIMING_NVPTX
#define LLVM_LIBC_UTILS_GPU_TIMING_NVPTX
#include "src/__support/CPP/array.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/GPU/utils.h"
#include "src/__support/common.h"
#include "src/__support/macros/attributes.h"
#include "src/__support/macros/config.h"
#include <stdint.h>
namespace LIBC_NAMESPACE_DECL {
// Returns the overhead associated with calling the profiling region. This
// allows us to substract the constant-time overhead from the latency to
// obtain a true result. This can vary with system load.
[[gnu::noinline]] static uint64_t overhead() {
volatile uint32_t x = 1;
uint32_t y = x;
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
uint32_t result = y;
asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));
uint64_t stop = gpu::processor_clock();
volatile auto storage = result;
return stop - start;
}
// Stimulate a simple function and obtain its latency in clock cycles on the
// system. This function cannot be inlined or else it will disturb the very
// delicate balance of hard-coded dependencies.
template <typename F, typename T>
[[gnu::noinline]] static LIBC_INLINE uint64_t latency(F f, T t) {
// We need to store the input somewhere to guarantee that the compiler will
// not constant propagate it and remove the profiling region.
volatile T storage = t;
T arg = storage;
// Get the current timestamp from the clock.
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
// This forces the compiler to load the input argument and run the clock cycle
// counter before the profiling region.
asm("" ::"llr"(start));
// Run the function under test and return its value.
auto result = f(arg);
// This inline assembly performs a no-op which forces the result to both be
// used and prevents us from exiting this region before it's complete.
asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));
// Obtain the current timestamp after running the calculation and force
// ordering.
uint64_t stop = gpu::processor_clock();
gpu::memory_fence();
asm("" ::"r"(stop));
volatile T output = result;
// Return the time elapsed.
return stop - start;
}
template <typename F, typename T1, typename T2>
static LIBC_INLINE uint64_t latency(F f, T1 t1, T2 t2) {
volatile T1 storage = t1;
volatile T2 storage2 = t2;
T1 arg = storage;
T2 arg2 = storage2;
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
auto result = f(arg, arg2);
asm("or.b32 %[v_reg], %[v_reg], 0;" ::[v_reg] "r"(result));
uint64_t stop = gpu::processor_clock();
gpu::memory_fence();
asm("" ::"r"(stop));
volatile auto output = result;
return stop - start;
}
// Provides throughput benchmarking.
template <typename F, typename T, size_t N>
[[gnu::noinline]] static LIBC_INLINE uint64_t
throughput(F f, const cpp::array<T, N> &inputs) {
asm("" ::"r"(&inputs));
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
uint64_t result;
for (auto input : inputs) {
asm("" ::"r"(input));
result = f(input);
asm("" ::"r"(result));
}
uint64_t stop = gpu::processor_clock();
gpu::memory_fence();
asm("" ::"r"(stop));
volatile auto output = result;
// Return the time elapsed.
return stop - start;
}
// Provides throughput benchmarking for 2 arguments (e.g. atan2())
template <typename F, typename T, size_t N>
[[gnu::noinline]] static LIBC_INLINE uint64_t throughput(
F f, const cpp::array<T, N> &inputs1, const cpp::array<T, N> &inputs2) {
asm("" ::"r"(&inputs1), "r"(&inputs2));
gpu::memory_fence();
uint64_t start = gpu::processor_clock();
asm("" ::"llr"(start));
uint64_t result;
for (size_t i = 0; i < inputs1.size(); i++) {
result = f(inputs1[i], inputs2[i]);
asm("" ::"r"(result));
}
uint64_t stop = gpu::processor_clock();
gpu::memory_fence();
asm("" ::"r"(stop));
volatile auto output = result;
// Return the time elapsed.
return stop - start;
}
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_UTILS_GPU_TIMING_NVPTX
|