1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
//===- KernelInfo.cpp - Kernel Analysis -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the KernelInfoPrinter class used to emit remarks about
// function properties from a GPU kernel.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/KernelInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
using namespace llvm;
#define DEBUG_TYPE "kernel-info"
namespace {
/// Data structure holding function info for kernels.
class KernelInfo {
void updateForBB(const BasicBlock &BB, OptimizationRemarkEmitter &ORE);
public:
static void emitKernelInfo(Function &F, FunctionAnalysisManager &FAM,
TargetMachine *TM);
/// Whether the function has external linkage and is not a kernel function.
bool ExternalNotKernel = false;
/// Launch bounds.
SmallVector<std::pair<StringRef, int64_t>> LaunchBounds;
/// The number of alloca instructions inside the function, the number of those
/// with allocation sizes that cannot be determined at compile time, and the
/// sum of the sizes that can be.
///
/// With the current implementation for at least some GPU archs,
/// AllocasDyn > 0 might not be possible, but we report AllocasDyn anyway in
/// case the implementation changes.
int64_t Allocas = 0;
int64_t AllocasDyn = 0;
int64_t AllocasStaticSizeSum = 0;
/// Number of direct/indirect calls (anything derived from CallBase).
int64_t DirectCalls = 0;
int64_t IndirectCalls = 0;
/// Number of direct calls made from this function to other functions
/// defined in this module.
int64_t DirectCallsToDefinedFunctions = 0;
/// Number of direct calls to inline assembly.
int64_t InlineAssemblyCalls = 0;
/// Number of calls of type InvokeInst.
int64_t Invokes = 0;
/// Target-specific flat address space.
unsigned FlatAddrspace;
/// Number of flat address space memory accesses (via load, store, etc.).
int64_t FlatAddrspaceAccesses = 0;
};
} // end anonymous namespace
static void identifyCallee(OptimizationRemark &R, const Module *M,
const Value *V, StringRef Kind = "") {
SmallString<100> Name; // might be function name or asm expression
if (const Function *F = dyn_cast<Function>(V)) {
if (auto *SubProgram = F->getSubprogram()) {
if (SubProgram->isArtificial())
R << "artificial ";
Name = SubProgram->getName();
}
}
if (Name.empty()) {
raw_svector_ostream OS(Name);
V->printAsOperand(OS, /*PrintType=*/false, M);
}
if (!Kind.empty())
R << Kind << " ";
R << "'" << Name << "'";
}
static void identifyFunction(OptimizationRemark &R, const Function &F) {
identifyCallee(R, F.getParent(), &F, "function");
}
static void remarkAlloca(OptimizationRemarkEmitter &ORE, const Function &Caller,
const AllocaInst &Alloca,
TypeSize::ScalarTy StaticSize) {
ORE.emit([&] {
StringRef DbgName;
DebugLoc Loc;
bool Artificial = false;
auto DVRs = findDVRDeclares(&const_cast<AllocaInst &>(Alloca));
if (!DVRs.empty()) {
const DbgVariableRecord &DVR = **DVRs.begin();
DbgName = DVR.getVariable()->getName();
Loc = DVR.getDebugLoc();
Artificial = DVR.Variable->isArtificial();
}
OptimizationRemark R(DEBUG_TYPE, "Alloca", DiagnosticLocation(Loc),
Alloca.getParent());
R << "in ";
identifyFunction(R, Caller);
R << ", ";
if (Artificial)
R << "artificial ";
SmallString<20> ValName;
raw_svector_ostream OS(ValName);
Alloca.printAsOperand(OS, /*PrintType=*/false, Caller.getParent());
R << "alloca ('" << ValName << "') ";
if (!DbgName.empty())
R << "for '" << DbgName << "' ";
else
R << "without debug info ";
R << "with ";
if (StaticSize)
R << "static size of " << itostr(StaticSize) << " bytes";
else
R << "dynamic size";
return R;
});
}
static void remarkCall(OptimizationRemarkEmitter &ORE, const Function &Caller,
const CallBase &Call, StringRef CallKind,
StringRef RemarkKind) {
ORE.emit([&] {
OptimizationRemark R(DEBUG_TYPE, RemarkKind, &Call);
R << "in ";
identifyFunction(R, Caller);
R << ", " << CallKind << ", callee is ";
identifyCallee(R, Caller.getParent(), Call.getCalledOperand());
return R;
});
}
static void remarkFlatAddrspaceAccess(OptimizationRemarkEmitter &ORE,
const Function &Caller,
const Instruction &Inst) {
ORE.emit([&] {
OptimizationRemark R(DEBUG_TYPE, "FlatAddrspaceAccess", &Inst);
R << "in ";
identifyFunction(R, Caller);
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst)) {
R << ", '" << II->getCalledFunction()->getName() << "' call";
} else {
R << ", '" << Inst.getOpcodeName() << "' instruction";
}
if (!Inst.getType()->isVoidTy()) {
SmallString<20> Name;
raw_svector_ostream OS(Name);
Inst.printAsOperand(OS, /*PrintType=*/false, Caller.getParent());
R << " ('" << Name << "')";
}
R << " accesses memory in flat address space";
return R;
});
}
void KernelInfo::updateForBB(const BasicBlock &BB,
OptimizationRemarkEmitter &ORE) {
const Function &F = *BB.getParent();
const Module &M = *F.getParent();
const DataLayout &DL = M.getDataLayout();
for (const Instruction &I : BB.instructionsWithoutDebug()) {
if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&I)) {
++Allocas;
TypeSize::ScalarTy StaticSize = 0;
if (std::optional<TypeSize> Size = Alloca->getAllocationSize(DL)) {
StaticSize = Size->getFixedValue();
assert(StaticSize <=
(TypeSize::ScalarTy)std::numeric_limits<int64_t>::max());
AllocasStaticSizeSum += StaticSize;
} else {
++AllocasDyn;
}
remarkAlloca(ORE, F, *Alloca, StaticSize);
} else if (const CallBase *Call = dyn_cast<CallBase>(&I)) {
SmallString<40> CallKind;
SmallString<40> RemarkKind;
if (Call->isIndirectCall()) {
++IndirectCalls;
CallKind += "indirect";
RemarkKind += "Indirect";
} else {
++DirectCalls;
CallKind += "direct";
RemarkKind += "Direct";
}
if (isa<InvokeInst>(Call)) {
++Invokes;
CallKind += " invoke";
RemarkKind += "Invoke";
} else {
CallKind += " call";
RemarkKind += "Call";
}
if (!Call->isIndirectCall()) {
if (const Function *Callee = Call->getCalledFunction()) {
if (!Callee->isIntrinsic() && !Callee->isDeclaration()) {
++DirectCallsToDefinedFunctions;
CallKind += " to defined function";
RemarkKind += "ToDefinedFunction";
}
} else if (Call->isInlineAsm()) {
++InlineAssemblyCalls;
CallKind += " to inline assembly";
RemarkKind += "ToInlineAssembly";
}
}
remarkCall(ORE, F, *Call, CallKind, RemarkKind);
if (const AnyMemIntrinsic *MI = dyn_cast<AnyMemIntrinsic>(Call)) {
if (MI->getDestAddressSpace() == FlatAddrspace) {
++FlatAddrspaceAccesses;
remarkFlatAddrspaceAccess(ORE, F, I);
} else if (const AnyMemTransferInst *MT =
dyn_cast<AnyMemTransferInst>(MI)) {
if (MT->getSourceAddressSpace() == FlatAddrspace) {
++FlatAddrspaceAccesses;
remarkFlatAddrspaceAccess(ORE, F, I);
}
}
}
} else if (const LoadInst *Load = dyn_cast<LoadInst>(&I)) {
if (Load->getPointerAddressSpace() == FlatAddrspace) {
++FlatAddrspaceAccesses;
remarkFlatAddrspaceAccess(ORE, F, I);
}
} else if (const StoreInst *Store = dyn_cast<StoreInst>(&I)) {
if (Store->getPointerAddressSpace() == FlatAddrspace) {
++FlatAddrspaceAccesses;
remarkFlatAddrspaceAccess(ORE, F, I);
}
} else if (const AtomicRMWInst *At = dyn_cast<AtomicRMWInst>(&I)) {
if (At->getPointerAddressSpace() == FlatAddrspace) {
++FlatAddrspaceAccesses;
remarkFlatAddrspaceAccess(ORE, F, I);
}
} else if (const AtomicCmpXchgInst *At = dyn_cast<AtomicCmpXchgInst>(&I)) {
if (At->getPointerAddressSpace() == FlatAddrspace) {
++FlatAddrspaceAccesses;
remarkFlatAddrspaceAccess(ORE, F, I);
}
}
}
}
static void remarkProperty(OptimizationRemarkEmitter &ORE, const Function &F,
StringRef Name, int64_t Value) {
ORE.emit([&] {
OptimizationRemark R(DEBUG_TYPE, Name, &F);
R << "in ";
identifyFunction(R, F);
R << ", " << Name << " = " << itostr(Value);
return R;
});
}
static std::optional<int64_t> parseFnAttrAsInteger(Function &F,
StringRef Name) {
if (!F.hasFnAttribute(Name))
return std::nullopt;
return F.getFnAttributeAsParsedInteger(Name);
}
void KernelInfo::emitKernelInfo(Function &F, FunctionAnalysisManager &FAM,
TargetMachine *TM) {
KernelInfo KI;
TargetTransformInfo &TheTTI = FAM.getResult<TargetIRAnalysis>(F);
KI.FlatAddrspace = TheTTI.getFlatAddressSpace();
// Record function properties.
KI.ExternalNotKernel = F.hasExternalLinkage() && !F.hasKernelCallingConv();
for (StringRef Name : {"omp_target_num_teams", "omp_target_thread_limit"}) {
if (auto Val = parseFnAttrAsInteger(F, Name))
KI.LaunchBounds.push_back({Name, *Val});
}
TheTTI.collectKernelLaunchBounds(F, KI.LaunchBounds);
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
for (const auto &BB : F)
KI.updateForBB(BB, ORE);
#define REMARK_PROPERTY(PROP_NAME) \
remarkProperty(ORE, F, #PROP_NAME, KI.PROP_NAME)
REMARK_PROPERTY(ExternalNotKernel);
for (auto LB : KI.LaunchBounds)
remarkProperty(ORE, F, LB.first, LB.second);
REMARK_PROPERTY(Allocas);
REMARK_PROPERTY(AllocasStaticSizeSum);
REMARK_PROPERTY(AllocasDyn);
REMARK_PROPERTY(DirectCalls);
REMARK_PROPERTY(IndirectCalls);
REMARK_PROPERTY(DirectCallsToDefinedFunctions);
REMARK_PROPERTY(InlineAssemblyCalls);
REMARK_PROPERTY(Invokes);
REMARK_PROPERTY(FlatAddrspaceAccesses);
#undef REMARK_PROPERTY
}
PreservedAnalyses KernelInfoPrinter::run(Function &F,
FunctionAnalysisManager &AM) {
// Skip it if remarks are not enabled as it will do nothing useful.
if (F.getContext().getDiagHandlerPtr()->isPassedOptRemarkEnabled(DEBUG_TYPE))
KernelInfo::emitKernelInfo(F, AM, TM);
return PreservedAnalyses::all();
}
|