1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
|
//===- MCExpr.cpp - Assembly Level Expression Implementation --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCExpr.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
using namespace llvm;
#define DEBUG_TYPE "mcexpr"
namespace {
namespace stats {
STATISTIC(MCExprEvaluate, "Number of MCExpr evaluations");
} // end namespace stats
} // end anonymous namespace
static int getPrecedence(MCBinaryExpr::Opcode Op) {
switch (Op) {
case MCBinaryExpr::Add:
case MCBinaryExpr::Sub:
return 1;
default:
return 0;
}
}
// VariantKind printing and formatting utilize MAI. operator<< (dump and some
// target code) specifies MAI as nullptr and should be avoided when MAI is
// needed.
void MCExpr::print(raw_ostream &OS, const MCAsmInfo *MAI,
int SurroundingPrec) const {
constexpr int MaxPrec = 9;
switch (getKind()) {
case MCExpr::Target:
return cast<MCTargetExpr>(this)->printImpl(OS, MAI);
case MCExpr::Constant: {
auto Value = cast<MCConstantExpr>(*this).getValue();
auto PrintInHex = cast<MCConstantExpr>(*this).useHexFormat();
auto SizeInBytes = cast<MCConstantExpr>(*this).getSizeInBytes();
if (Value < 0 && MAI && !MAI->supportsSignedData())
PrintInHex = true;
if (PrintInHex)
switch (SizeInBytes) {
default:
OS << "0x" << Twine::utohexstr(Value);
break;
case 1:
OS << format("0x%02" PRIx64, Value);
break;
case 2:
OS << format("0x%04" PRIx64, Value);
break;
case 4:
OS << format("0x%08" PRIx64, Value);
break;
case 8:
OS << format("0x%016" PRIx64, Value);
break;
}
else
OS << Value;
return;
}
case MCExpr::SymbolRef: {
const MCSymbolRefExpr &SRE = cast<MCSymbolRefExpr>(*this);
const MCSymbol &Sym = SRE.getSymbol();
Sym.print(OS, MAI);
const MCSymbolRefExpr::VariantKind Kind = SRE.getKind();
if (Kind) {
if (!MAI) // should only be used by dump()
OS << "@<variant " << Kind << '>';
else if (MAI->useParensForSpecifier()) // ARM
OS << '(' << MAI->getSpecifierName(Kind) << ')';
else
OS << '@' << MAI->getSpecifierName(Kind);
}
return;
}
case MCExpr::Unary: {
const MCUnaryExpr &UE = cast<MCUnaryExpr>(*this);
switch (UE.getOpcode()) {
case MCUnaryExpr::LNot: OS << '!'; break;
case MCUnaryExpr::Minus: OS << '-'; break;
case MCUnaryExpr::Not: OS << '~'; break;
case MCUnaryExpr::Plus: OS << '+'; break;
}
UE.getSubExpr()->print(OS, MAI, MaxPrec);
return;
}
case MCExpr::Binary: {
const MCBinaryExpr &BE = cast<MCBinaryExpr>(*this);
// We want to avoid redundant parentheses for relocatable expressions like
// a-b+c.
//
// Print '(' if the current operator has lower precedence than the
// surrounding operator, or if the surrounding operator's precedence is
// unknown (set to HighPrecedence).
int Prec = getPrecedence(BE.getOpcode());
bool Paren = Prec < SurroundingPrec;
if (Paren)
OS << '(';
// Many operators' precedence is different from C. Set the precedence to
// HighPrecedence for unknown operators.
int SubPrec = Prec ? Prec : MaxPrec;
BE.getLHS()->print(OS, MAI, SubPrec);
switch (BE.getOpcode()) {
case MCBinaryExpr::Add:
// Print "X-42" instead of "X+-42".
if (const MCConstantExpr *RHSC = dyn_cast<MCConstantExpr>(BE.getRHS())) {
if (RHSC->getValue() < 0) {
OS << RHSC->getValue();
if (Paren)
OS << ')';
return;
}
}
OS << '+';
break;
case MCBinaryExpr::AShr: OS << ">>"; break;
case MCBinaryExpr::And: OS << '&'; break;
case MCBinaryExpr::Div: OS << '/'; break;
case MCBinaryExpr::EQ: OS << "=="; break;
case MCBinaryExpr::GT: OS << '>'; break;
case MCBinaryExpr::GTE: OS << ">="; break;
case MCBinaryExpr::LAnd: OS << "&&"; break;
case MCBinaryExpr::LOr: OS << "||"; break;
case MCBinaryExpr::LShr: OS << ">>"; break;
case MCBinaryExpr::LT: OS << '<'; break;
case MCBinaryExpr::LTE: OS << "<="; break;
case MCBinaryExpr::Mod: OS << '%'; break;
case MCBinaryExpr::Mul: OS << '*'; break;
case MCBinaryExpr::NE: OS << "!="; break;
case MCBinaryExpr::Or: OS << '|'; break;
case MCBinaryExpr::OrNot: OS << '!'; break;
case MCBinaryExpr::Shl: OS << "<<"; break;
case MCBinaryExpr::Sub: OS << '-'; break;
case MCBinaryExpr::Xor: OS << '^'; break;
}
BE.getRHS()->print(OS, MAI, SubPrec + 1);
if (Paren)
OS << ')';
return;
}
case MCExpr::Specifier: {
auto &SE = cast<MCSpecifierExpr>(*this);
if (MAI)
return MAI->printSpecifierExpr(OS, SE);
// Used by dump features like -show-inst. Regular MCAsmStreamer output must
// set MAI.
OS << "specifier(" << SE.getSpecifier() << ',';
SE.getSubExpr()->print(OS, nullptr);
OS << ')';
return;
}
}
llvm_unreachable("Invalid expression kind!");
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MCExpr::dump() const {
print(dbgs(), nullptr);
dbgs() << '\n';
}
#endif
/* *** */
const MCBinaryExpr *MCBinaryExpr::create(Opcode Opc, const MCExpr *LHS,
const MCExpr *RHS, MCContext &Ctx,
SMLoc Loc) {
return new (Ctx) MCBinaryExpr(Opc, LHS, RHS, Loc);
}
const MCUnaryExpr *MCUnaryExpr::create(Opcode Opc, const MCExpr *Expr,
MCContext &Ctx, SMLoc Loc) {
return new (Ctx) MCUnaryExpr(Opc, Expr, Loc);
}
const MCConstantExpr *MCConstantExpr::create(int64_t Value, MCContext &Ctx,
bool PrintInHex,
unsigned SizeInBytes) {
return new (Ctx) MCConstantExpr(Value, PrintInHex, SizeInBytes);
}
/* *** */
MCSymbolRefExpr::MCSymbolRefExpr(const MCSymbol *Symbol, Spec specifier,
const MCAsmInfo *MAI, SMLoc Loc)
: MCExpr(MCExpr::SymbolRef, Loc, specifier), Symbol(Symbol) {
assert(Symbol);
}
const MCSymbolRefExpr *MCSymbolRefExpr::create(const MCSymbol *Sym,
uint16_t specifier,
MCContext &Ctx, SMLoc Loc) {
return new (Ctx) MCSymbolRefExpr(Sym, specifier, Ctx.getAsmInfo(), Loc);
}
/* *** */
void MCTargetExpr::anchor() {}
/* *** */
bool MCExpr::evaluateAsAbsolute(int64_t &Res) const {
return evaluateAsAbsolute(Res, nullptr, false);
}
bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler &Asm) const {
return evaluateAsAbsolute(Res, &Asm, false);
}
bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm) const {
return evaluateAsAbsolute(Res, Asm, false);
}
bool MCExpr::evaluateKnownAbsolute(int64_t &Res, const MCAssembler &Asm) const {
return evaluateAsAbsolute(Res, &Asm, true);
}
bool MCExpr::evaluateAsAbsolute(int64_t &Res, const MCAssembler *Asm,
bool InSet) const {
MCValue Value;
// Fast path constants.
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(this)) {
Res = CE->getValue();
return true;
}
bool IsRelocatable = evaluateAsRelocatableImpl(Value, Asm, InSet);
Res = Value.getConstant();
// Value with RefKind (e.g. %hi(0xdeadbeef) in MIPS) is not considered
// absolute (the value is unknown at parse time), even if it might be resolved
// by evaluateFixup.
return IsRelocatable && Value.isAbsolute() && Value.getSpecifier() == 0;
}
/// Helper method for \see EvaluateSymbolAdd().
static void attemptToFoldSymbolOffsetDifference(const MCAssembler *Asm,
bool InSet, const MCSymbol *&A,
const MCSymbol *&B,
int64_t &Addend) {
if (!A || !B)
return;
const MCSymbol &SA = *A, &SB = *B;
if (SA.isUndefined() || SB.isUndefined())
return;
if (!Asm->getWriter().isSymbolRefDifferenceFullyResolved(SA, SB, InSet))
return;
auto FinalizeFolding = [&]() {
// Pointers to Thumb symbols need to have their low-bit set to allow
// for interworking.
if (Asm->isThumbFunc(&SA))
Addend |= 1;
// Clear the symbol expr pointers to indicate we have folded these
// operands.
A = B = nullptr;
};
const MCFragment *FA = SA.getFragment();
const MCFragment *FB = SB.getFragment();
const MCSection &SecA = *FA->getParent();
const MCSection &SecB = *FB->getParent();
if (&SecA != &SecB)
return;
// When layout is available, we can generally compute the difference using the
// getSymbolOffset path, which also avoids the possible slow fragment walk.
// However, linker relaxation may cause incorrect fold of A-B if A and B are
// separated by a linker-relaxable fragment. If the section contains
// linker-relaxable instruction and InSet is false (not expressions in
// directive like .size/.fill), disable the fast path.
bool Layout = Asm->hasLayout();
if (Layout && (InSet || !SecA.isLinkerRelaxable())) {
// If both symbols are in the same fragment, return the difference of their
// offsets. canGetFragmentOffset(FA) may be false.
if (FA == FB && !SA.isVariable() && !SB.isVariable()) {
Addend += SA.getOffset() - SB.getOffset();
return FinalizeFolding();
}
// Eagerly evaluate when layout is finalized.
Addend += Asm->getSymbolOffset(SA) - Asm->getSymbolOffset(SB);
FinalizeFolding();
} else {
// When layout is not finalized, our ability to resolve differences between
// symbols is limited to specific cases where the fragments between two
// symbols (including the fragments the symbols are defined in) are
// fixed-size fragments so the difference can be calculated. For example,
// this is important when the Subtarget is changed and a new MCDataFragment
// is created in the case of foo: instr; .arch_extension ext; instr .if . -
// foo.
if (SA.isVariable() || SB.isVariable())
return;
// Try to find a constant displacement from FA to FB, add the displacement
// between the offset in FA of SA and the offset in FB of SB.
bool Reverse = false;
if (FA == FB)
Reverse = SA.getOffset() < SB.getOffset();
else
Reverse = FA->getLayoutOrder() < FB->getLayoutOrder();
uint64_t SAOffset = SA.getOffset(), SBOffset = SB.getOffset();
int64_t Displacement = SA.getOffset() - SB.getOffset();
if (Reverse) {
std::swap(FA, FB);
std::swap(SAOffset, SBOffset);
Displacement *= -1;
}
// Track whether B is before a relaxable instruction and whether A is after
// a relaxable instruction. If SA and SB are separated by a linker-relaxable
// instruction, the difference cannot be resolved as it may be changed by
// the linker.
bool BBeforeRelax = false, AAfterRelax = false;
for (auto F = FB; F; F = F->getNext()) {
auto DF = dyn_cast<MCDataFragment>(F);
if (DF && DF->isLinkerRelaxable()) {
if (&*F != FB || SBOffset != DF->getContents().size())
BBeforeRelax = true;
if (&*F != FA || SAOffset == DF->getContents().size())
AAfterRelax = true;
if (BBeforeRelax && AAfterRelax)
return;
}
const auto *RF = dyn_cast<MCRelaxableFragment>(F);
if (RF && RF->isLinkerRelaxable())
return;
if (&*F == FA) {
// If FA and FB belong to the same subsection, the loop will find FA and
// we can resolve the difference.
Addend += Reverse ? -Displacement : Displacement;
FinalizeFolding();
return;
}
int64_t Num;
unsigned Count;
if (DF) {
Displacement += DF->getContents().size();
} else if (auto *RF = dyn_cast<MCRelaxableFragment>(F);
RF && Asm->hasFinalLayout()) {
// Before finishLayout, a relaxable fragment's size is indeterminate.
// After layout, during relocation generation, it can be treated as a
// data fragment.
Displacement += RF->getContents().size();
} else if (auto *AF = dyn_cast<MCAlignFragment>(F);
AF && Layout && AF->hasEmitNops() &&
!Asm->getBackend().shouldInsertExtraNopBytesForCodeAlign(
*AF, Count)) {
Displacement += Asm->computeFragmentSize(*AF);
} else if (auto *FF = dyn_cast<MCFillFragment>(F);
FF && FF->getNumValues().evaluateAsAbsolute(Num)) {
Displacement += Num * FF->getValueSize();
} else {
return;
}
}
}
}
// Evaluate the sum of two relocatable expressions.
//
// Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
//
// This routine attempts to aggressively fold the operands such that the result
// is representable in an MCValue, but may not always succeed.
//
// LHS_A and RHS_A might have relocation specifiers while LHS_B and RHS_B
// cannot have specifiers.
//
// \returns True on success, false if the result is not representable in an
// MCValue.
// NOTE: This function can be used before layout is done (see the object
// streamer for example) and having the Asm argument lets us avoid relaxations
// early.
bool MCExpr::evaluateSymbolicAdd(const MCAssembler *Asm, bool InSet,
const MCValue &LHS, const MCValue &RHS,
MCValue &Res) {
const MCSymbol *LHS_A = LHS.getAddSym();
const MCSymbol *LHS_B = LHS.getSubSym();
int64_t LHS_Cst = LHS.getConstant();
const MCSymbol *RHS_A = RHS.getAddSym();
const MCSymbol *RHS_B = RHS.getSubSym();
int64_t RHS_Cst = RHS.getConstant();
// Fold the result constant immediately.
int64_t Result_Cst = LHS_Cst + RHS_Cst;
// If we have a layout, we can fold resolved differences.
if (Asm && !LHS.getSpecifier() && !RHS.getSpecifier()) {
// While LHS_A-LHS_B and RHS_A-RHS_B from recursive calls have already been
// folded, reassociating terms in
// Result = (LHS_A - LHS_B + LHS_Cst) + (RHS_A - RHS_B + RHS_Cst).
// might bring more opportunities.
if (LHS_A && RHS_B) {
attemptToFoldSymbolOffsetDifference(Asm, InSet, LHS_A, RHS_B, Result_Cst);
}
if (RHS_A && LHS_B) {
attemptToFoldSymbolOffsetDifference(Asm, InSet, RHS_A, LHS_B, Result_Cst);
}
}
// We can't represent the addition or subtraction of two symbols.
if ((LHS_A && RHS_A) || (LHS_B && RHS_B))
return false;
// At this point, we have at most one additive symbol and one subtractive
// symbol -- find them.
auto *A = LHS_A ? LHS_A : RHS_A;
auto *B = LHS_B ? LHS_B : RHS_B;
auto Spec = LHS.getSpecifier();
if (!Spec)
Spec = RHS.getSpecifier();
Res = MCValue::get(A, B, Result_Cst, Spec);
return true;
}
bool MCExpr::evaluateAsRelocatable(MCValue &Res, const MCAssembler *Asm) const {
return evaluateAsRelocatableImpl(Res, Asm, false);
}
bool MCExpr::evaluateAsValue(MCValue &Res, const MCAssembler &Asm) const {
return evaluateAsRelocatableImpl(Res, &Asm, true);
}
bool MCExpr::evaluateAsRelocatableImpl(MCValue &Res, const MCAssembler *Asm,
bool InSet) const {
++stats::MCExprEvaluate;
switch (getKind()) {
case Target:
return cast<MCTargetExpr>(this)->evaluateAsRelocatableImpl(Res, Asm);
case Constant:
Res = MCValue::get(cast<MCConstantExpr>(this)->getValue());
return true;
case SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(this);
MCSymbol &Sym = const_cast<MCSymbol &>(SRE->getSymbol());
const auto Kind = SRE->getKind();
bool Layout = Asm && Asm->hasLayout();
// If the symbol is equated, resolve the inner expression.
// However, when two IMAGE_WEAK_EXTERN_ANTI_DEPENDENCY symbols reference
// each other, we retain the equated symbol to avoid a cyclic definition
// error.
if (Sym.isResolving()) {
if (Asm && Asm->hasFinalLayout()) {
Asm->getContext().reportError(
Sym.getVariableValue()->getLoc(),
"cyclic dependency detected for symbol '" + Sym.getName() + "'");
Sym.setVariableValue(MCConstantExpr::create(0, Asm->getContext()));
}
return false;
}
if (Sym.isVariable() && (Kind == 0 || Layout) && !Sym.isWeakExternal()) {
Sym.setIsResolving(true);
auto _ = make_scope_exit([&] { Sym.setIsResolving(false); });
bool IsMachO =
Asm && Asm->getContext().getAsmInfo()->hasSubsectionsViaSymbols();
if (!Sym.getVariableValue()->evaluateAsRelocatableImpl(Res, Asm,
InSet || IsMachO))
return false;
// When generating relocations, if Sym resolves to a symbol relative to a
// section, relocations are generated against Sym. Treat label differences
// as constants.
auto *A = Res.getAddSym();
auto *B = Res.getSubSym();
if (InSet || !(A && !B && A->isInSection())) {
if (Kind) {
if (Res.isAbsolute()) {
Res = MCValue::get(&Sym, nullptr, 0, Kind);
return true;
}
// If the reference has a variant kind, we can only handle expressions
// which evaluate exactly to a single unadorned symbol. Attach the
// original VariantKind to SymA of the result.
if (Res.getSpecifier() || !Res.getAddSym() || Res.getSubSym() ||
Res.getConstant())
return false;
Res.Specifier = Kind;
}
if (!IsMachO)
return true;
// FIXME: This is small hack. Given
// a = b + 4
// .long a
// the OS X assembler will completely drop the 4. We should probably
// include it in the relocation or produce an error if that is not
// possible.
// Allow constant expressions.
if (!A && !B)
return true;
// Allows aliases with zero offset.
if (Res.getConstant() == 0 && (!A || !B))
return true;
}
}
Res = MCValue::get(&Sym, nullptr, 0, Kind);
return true;
}
case Unary: {
const MCUnaryExpr *AUE = cast<MCUnaryExpr>(this);
MCValue Value;
if (!AUE->getSubExpr()->evaluateAsRelocatableImpl(Value, Asm, InSet))
return false;
switch (AUE->getOpcode()) {
case MCUnaryExpr::LNot:
if (!Value.isAbsolute())
return false;
Res = MCValue::get(!Value.getConstant());
break;
case MCUnaryExpr::Minus:
/// -(a - b + const) ==> (b - a - const)
if (Value.getAddSym() && !Value.getSubSym())
return false;
// The cast avoids undefined behavior if the constant is INT64_MIN.
Res = MCValue::get(Value.getSubSym(), Value.getAddSym(),
-(uint64_t)Value.getConstant());
break;
case MCUnaryExpr::Not:
if (!Value.isAbsolute())
return false;
Res = MCValue::get(~Value.getConstant());
break;
case MCUnaryExpr::Plus:
Res = Value;
break;
}
return true;
}
case Binary: {
const MCBinaryExpr *ABE = cast<MCBinaryExpr>(this);
MCValue LHSValue, RHSValue;
if (!ABE->getLHS()->evaluateAsRelocatableImpl(LHSValue, Asm, InSet) ||
!ABE->getRHS()->evaluateAsRelocatableImpl(RHSValue, Asm, InSet)) {
// Check if both are Target Expressions, see if we can compare them.
if (const MCTargetExpr *L = dyn_cast<MCTargetExpr>(ABE->getLHS())) {
if (const MCTargetExpr *R = dyn_cast<MCTargetExpr>(ABE->getRHS())) {
switch (ABE->getOpcode()) {
case MCBinaryExpr::EQ:
Res = MCValue::get(L->isEqualTo(R) ? -1 : 0);
return true;
case MCBinaryExpr::NE:
Res = MCValue::get(L->isEqualTo(R) ? 0 : -1);
return true;
default:
break;
}
}
}
return false;
}
// We only support a few operations on non-constant expressions, handle
// those first.
auto Op = ABE->getOpcode();
int64_t LHS = LHSValue.getConstant(), RHS = RHSValue.getConstant();
if (!LHSValue.isAbsolute() || !RHSValue.isAbsolute()) {
switch (Op) {
default:
return false;
case MCBinaryExpr::Add:
case MCBinaryExpr::Sub:
if (Op == MCBinaryExpr::Sub) {
std::swap(RHSValue.SymA, RHSValue.SymB);
RHSValue.Cst = -(uint64_t)RHSValue.Cst;
}
if (RHSValue.isAbsolute()) {
LHSValue.Cst += RHSValue.Cst;
Res = LHSValue;
return true;
}
if (LHSValue.isAbsolute()) {
RHSValue.Cst += LHSValue.Cst;
Res = RHSValue;
return true;
}
if (LHSValue.SymB && LHSValue.Specifier)
return false;
if (RHSValue.SymB && RHSValue.Specifier)
return false;
return evaluateSymbolicAdd(Asm, InSet, LHSValue, RHSValue, Res);
}
}
// FIXME: We need target hooks for the evaluation. It may be limited in
// width, and gas defines the result of comparisons differently from
// Apple as.
int64_t Result = 0;
switch (Op) {
case MCBinaryExpr::AShr: Result = LHS >> RHS; break;
case MCBinaryExpr::Add: Result = LHS + RHS; break;
case MCBinaryExpr::And: Result = LHS & RHS; break;
case MCBinaryExpr::Div:
case MCBinaryExpr::Mod:
// Handle division by zero. gas just emits a warning and keeps going,
// we try to be stricter.
// FIXME: Currently the caller of this function has no way to understand
// we're bailing out because of 'division by zero'. Therefore, it will
// emit a 'expected relocatable expression' error. It would be nice to
// change this code to emit a better diagnostic.
if (RHS == 0)
return false;
if (ABE->getOpcode() == MCBinaryExpr::Div)
Result = LHS / RHS;
else
Result = LHS % RHS;
break;
case MCBinaryExpr::EQ: Result = LHS == RHS; break;
case MCBinaryExpr::GT: Result = LHS > RHS; break;
case MCBinaryExpr::GTE: Result = LHS >= RHS; break;
case MCBinaryExpr::LAnd: Result = LHS && RHS; break;
case MCBinaryExpr::LOr: Result = LHS || RHS; break;
case MCBinaryExpr::LShr: Result = uint64_t(LHS) >> uint64_t(RHS); break;
case MCBinaryExpr::LT: Result = LHS < RHS; break;
case MCBinaryExpr::LTE: Result = LHS <= RHS; break;
case MCBinaryExpr::Mul: Result = LHS * RHS; break;
case MCBinaryExpr::NE: Result = LHS != RHS; break;
case MCBinaryExpr::Or: Result = LHS | RHS; break;
case MCBinaryExpr::OrNot: Result = LHS | ~RHS; break;
case MCBinaryExpr::Shl: Result = uint64_t(LHS) << uint64_t(RHS); break;
case MCBinaryExpr::Sub: Result = LHS - RHS; break;
case MCBinaryExpr::Xor: Result = LHS ^ RHS; break;
}
switch (Op) {
default:
Res = MCValue::get(Result);
break;
case MCBinaryExpr::EQ:
case MCBinaryExpr::GT:
case MCBinaryExpr::GTE:
case MCBinaryExpr::LT:
case MCBinaryExpr::LTE:
case MCBinaryExpr::NE:
// A comparison operator returns a -1 if true and 0 if false.
Res = MCValue::get(Result ? -1 : 0);
break;
}
return true;
}
case Specifier:
// Fold the expression during relocation generation. As parse time Asm might
// be null, and targets should not rely on the folding.
return Asm && Asm->getContext().getAsmInfo()->evaluateAsRelocatableImpl(
cast<MCSpecifierExpr>(*this), Res, Asm);
}
llvm_unreachable("Invalid assembly expression kind!");
}
MCFragment *MCExpr::findAssociatedFragment() const {
switch (getKind()) {
case Target:
// We never look through target specific expressions.
return cast<MCTargetExpr>(this)->findAssociatedFragment();
case Constant:
return MCSymbol::AbsolutePseudoFragment;
case SymbolRef: {
auto &Sym =
const_cast<MCSymbol &>(cast<MCSymbolRefExpr>(this)->getSymbol());
if (Sym.Fragment)
return Sym.Fragment;
if (Sym.isResolving())
return MCSymbol::AbsolutePseudoFragment;
Sym.setIsResolving(true);
auto *F = Sym.getFragment();
Sym.setIsResolving(false);
return F;
}
case Unary:
return cast<MCUnaryExpr>(this)->getSubExpr()->findAssociatedFragment();
case Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(this);
MCFragment *LHS_F = BE->getLHS()->findAssociatedFragment();
MCFragment *RHS_F = BE->getRHS()->findAssociatedFragment();
// If either is absolute, return the other.
if (LHS_F == MCSymbol::AbsolutePseudoFragment)
return RHS_F;
if (RHS_F == MCSymbol::AbsolutePseudoFragment)
return LHS_F;
// Not always correct, but probably the best we can do without more context.
if (BE->getOpcode() == MCBinaryExpr::Sub)
return MCSymbol::AbsolutePseudoFragment;
// Otherwise, return the first non-null fragment.
return LHS_F ? LHS_F : RHS_F;
}
case Specifier:
return cast<MCSpecifierExpr>(this)->getSubExpr()->findAssociatedFragment();
}
llvm_unreachable("Invalid assembly expression kind!");
}
const MCSpecifierExpr *MCSpecifierExpr::create(const MCExpr *Expr, Spec S,
MCContext &Ctx, SMLoc Loc) {
return new (Ctx) MCSpecifierExpr(Expr, S, Loc);
}
const MCSpecifierExpr *MCSpecifierExpr::create(const MCSymbol *Sym, Spec S,
MCContext &Ctx, SMLoc Loc) {
return new (Ctx) MCSpecifierExpr(MCSymbolRefExpr::create(Sym, Ctx), S, Loc);
}
|