1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
|
//===-- RISCVAsmBackend.cpp - RISC-V Assembler Backend --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVAsmBackend.h"
#include "RISCVFixupKinds.h"
#include "llvm/ADT/APInt.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// Temporary workaround for old linkers that do not support ULEB128 relocations,
// which are abused by DWARF v5 DW_LLE_offset_pair/DW_RLE_offset_pair
// implemented in Clang/LLVM.
static cl::opt<bool> ULEB128Reloc(
"riscv-uleb128-reloc", cl::init(true), cl::Hidden,
cl::desc("Emit R_RISCV_SET_ULEB128/E_RISCV_SUB_ULEB128 if appropriate"));
RISCVAsmBackend::RISCVAsmBackend(const MCSubtargetInfo &STI, uint8_t OSABI,
bool Is64Bit, const MCTargetOptions &Options)
: MCAsmBackend(llvm::endianness::little), STI(STI), OSABI(OSABI),
Is64Bit(Is64Bit), TargetOptions(Options) {
RISCVFeatures::validate(STI.getTargetTriple(), STI.getFeatureBits());
}
std::optional<MCFixupKind> RISCVAsmBackend::getFixupKind(StringRef Name) const {
if (STI.getTargetTriple().isOSBinFormatELF()) {
unsigned Type;
Type = llvm::StringSwitch<unsigned>(Name)
#define ELF_RELOC(NAME, ID) .Case(#NAME, ID)
#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
#undef ELF_RELOC
#define ELF_RISCV_NONSTANDARD_RELOC(_VENDOR, NAME, ID) .Case(#NAME, ID)
#include "llvm/BinaryFormat/ELFRelocs/RISCV_nonstandard.def"
#undef ELF_RISCV_NONSTANDARD_RELOC
.Case("BFD_RELOC_NONE", ELF::R_RISCV_NONE)
.Case("BFD_RELOC_32", ELF::R_RISCV_32)
.Case("BFD_RELOC_64", ELF::R_RISCV_64)
.Default(-1u);
if (Type != -1u)
return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
}
return std::nullopt;
}
MCFixupKindInfo RISCVAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
const static MCFixupKindInfo Infos[] = {
// This table *must* be in the order that the fixup_* kinds are defined in
// RISCVFixupKinds.h.
//
// name offset bits flags
{"fixup_riscv_hi20", 12, 20, 0},
{"fixup_riscv_lo12_i", 20, 12, 0},
{"fixup_riscv_12_i", 20, 12, 0},
{"fixup_riscv_lo12_s", 0, 32, 0},
{"fixup_riscv_pcrel_hi20", 12, 20, 0},
{"fixup_riscv_pcrel_lo12_i", 20, 12, 0},
{"fixup_riscv_pcrel_lo12_s", 0, 32, 0},
{"fixup_riscv_jal", 12, 20, 0},
{"fixup_riscv_branch", 0, 32, 0},
{"fixup_riscv_rvc_jump", 2, 11, 0},
{"fixup_riscv_rvc_branch", 0, 16, 0},
{"fixup_riscv_rvc_imm", 0, 16, 0},
{"fixup_riscv_call", 0, 64, 0},
{"fixup_riscv_call_plt", 0, 64, 0},
{"fixup_riscv_qc_e_branch", 0, 48, 0},
{"fixup_riscv_qc_e_32", 16, 32, 0},
{"fixup_riscv_qc_abs20_u", 0, 32, 0},
{"fixup_riscv_qc_e_call_plt", 0, 48, 0},
// Andes fixups
{"fixup_riscv_nds_branch_10", 0, 32, 0},
};
static_assert((std::size(Infos)) == RISCV::NumTargetFixupKinds,
"Not all fixup kinds added to Infos array");
// Fixup kinds from raw relocation types and .reloc directives force
// relocations and do not use these fields.
if (mc::isRelocation(Kind))
return {};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < RISCV::NumTargetFixupKinds &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
bool RISCVAsmBackend::fixupNeedsRelaxationAdvanced(const MCFixup &Fixup,
const MCValue &,
uint64_t Value,
bool Resolved) const {
int64_t Offset = int64_t(Value);
auto Kind = Fixup.getKind();
// Return true if the symbol is unresolved.
if (!Resolved)
return true;
switch (Kind) {
default:
return false;
case RISCV::fixup_riscv_rvc_branch:
// For compressed branch instructions the immediate must be
// in the range [-256, 254].
return Offset > 254 || Offset < -256;
case RISCV::fixup_riscv_rvc_jump:
// For compressed jump instructions the immediate must be
// in the range [-2048, 2046].
return Offset > 2046 || Offset < -2048;
case RISCV::fixup_riscv_branch:
case RISCV::fixup_riscv_qc_e_branch:
// For conditional branch instructions the immediate must be
// in the range [-4096, 4094].
return Offset > 4094 || Offset < -4096;
case RISCV::fixup_riscv_jal:
// For jump instructions the immediate must be in the range
// [-1048576, 1048574]
return Offset > 1048574 || Offset < -1048576;
case RISCV::fixup_riscv_rvc_imm:
// This fixup can never be emitted as a relocation, so always needs to be
// relaxed.
return true;
}
}
// Given a compressed control flow instruction this function returns
// the expanded instruction, or the original instruction code if no
// expansion is available.
static unsigned getRelaxedOpcode(unsigned Opcode, ArrayRef<MCOperand> Operands,
const MCSubtargetInfo &STI) {
switch (Opcode) {
case RISCV::C_BEQZ:
return RISCV::BEQ;
case RISCV::C_BNEZ:
return RISCV::BNE;
case RISCV::C_J:
case RISCV::C_JAL: // fall through.
// This only relaxes one "step" - i.e. from C.J to JAL, not from C.J to
// QC.E.J, because we can always relax again if needed.
return RISCV::JAL;
case RISCV::C_LI:
if (!STI.hasFeature(RISCV::FeatureVendorXqcili))
break;
// We only need this because `QC.E.LI` can be compressed into a `C.LI`. This
// happens because the `simm6` MCOperandPredicate accepts bare symbols, and
// `QC.E.LI` is the only instruction that accepts bare symbols at parse-time
// and compresses to `C.LI`. `C.LI` does not itself accept bare symbols at
// parse time.
//
// If we have a bare symbol, we need to turn this back to a `QC.E.LI`, as we
// have no way to emit a relocation on a `C.LI` instruction.
return RISCV::QC_E_LI;
case RISCV::JAL: {
// We can only relax JAL if we have Xqcilb
if (!STI.hasFeature(RISCV::FeatureVendorXqcilb))
break;
// And only if it is using X0 or X1 for rd.
MCRegister Reg = Operands[0].getReg();
if (Reg == RISCV::X0)
return RISCV::QC_E_J;
if (Reg == RISCV::X1)
return RISCV::QC_E_JAL;
break;
}
case RISCV::BEQ:
return RISCV::PseudoLongBEQ;
case RISCV::BNE:
return RISCV::PseudoLongBNE;
case RISCV::BLT:
return RISCV::PseudoLongBLT;
case RISCV::BGE:
return RISCV::PseudoLongBGE;
case RISCV::BLTU:
return RISCV::PseudoLongBLTU;
case RISCV::BGEU:
return RISCV::PseudoLongBGEU;
case RISCV::QC_BEQI:
return RISCV::PseudoLongQC_BEQI;
case RISCV::QC_BNEI:
return RISCV::PseudoLongQC_BNEI;
case RISCV::QC_BLTI:
return RISCV::PseudoLongQC_BLTI;
case RISCV::QC_BGEI:
return RISCV::PseudoLongQC_BGEI;
case RISCV::QC_BLTUI:
return RISCV::PseudoLongQC_BLTUI;
case RISCV::QC_BGEUI:
return RISCV::PseudoLongQC_BGEUI;
case RISCV::QC_E_BEQI:
return RISCV::PseudoLongQC_E_BEQI;
case RISCV::QC_E_BNEI:
return RISCV::PseudoLongQC_E_BNEI;
case RISCV::QC_E_BLTI:
return RISCV::PseudoLongQC_E_BLTI;
case RISCV::QC_E_BGEI:
return RISCV::PseudoLongQC_E_BGEI;
case RISCV::QC_E_BLTUI:
return RISCV::PseudoLongQC_E_BLTUI;
case RISCV::QC_E_BGEUI:
return RISCV::PseudoLongQC_E_BGEUI;
}
// Returning the original opcode means we cannot relax the instruction.
return Opcode;
}
void RISCVAsmBackend::relaxInstruction(MCInst &Inst,
const MCSubtargetInfo &STI) const {
if (STI.hasFeature(RISCV::FeatureExactAssembly))
return;
MCInst Res;
switch (Inst.getOpcode()) {
default:
llvm_unreachable("Opcode not expected!");
case RISCV::C_BEQZ:
case RISCV::C_BNEZ:
case RISCV::C_J:
case RISCV::C_JAL: {
[[maybe_unused]] bool Success = RISCVRVC::uncompress(Res, Inst, STI);
assert(Success && "Can't uncompress instruction");
assert(Res.getOpcode() ==
getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI) &&
"Branch Relaxation Error");
break;
}
case RISCV::JAL: {
// This has to be written manually because the QC.E.J -> JAL is
// compression-only, so that it is not used when printing disassembly.
assert(STI.hasFeature(RISCV::FeatureVendorXqcilb) &&
"JAL is only relaxable with Xqcilb");
assert((Inst.getOperand(0).getReg() == RISCV::X0 ||
Inst.getOperand(0).getReg() == RISCV::X1) &&
"JAL only relaxable with rd=x0 or rd=x1");
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
Res.addOperand(Inst.getOperand(1));
break;
}
case RISCV::C_LI: {
// This should only be hit when trying to relax a `C.LI` into a `QC.E.LI`
// because the `C.LI` has a bare symbol. We cannot use
// `RISCVRVC::uncompress` because it will use decompression patterns. The
// `QC.E.LI` compression pattern to `C.LI` is compression-only (because we
// don't want `c.li` ever printed as `qc.e.li`, which might be done if the
// pattern applied to decompression), but that doesn't help much becuase
// `C.LI` with a bare symbol will decompress to an `ADDI` anyway (because
// `simm12`'s MCOperandPredicate accepts a bare symbol and that pattern
// comes first), and we still cannot emit an `ADDI` with a bare symbol.
assert(STI.hasFeature(RISCV::FeatureVendorXqcili) &&
"C.LI is only relaxable with Xqcili");
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
Res.addOperand(Inst.getOperand(0));
Res.addOperand(Inst.getOperand(1));
break;
}
case RISCV::BEQ:
case RISCV::BNE:
case RISCV::BLT:
case RISCV::BGE:
case RISCV::BLTU:
case RISCV::BGEU:
case RISCV::QC_BEQI:
case RISCV::QC_BNEI:
case RISCV::QC_BLTI:
case RISCV::QC_BGEI:
case RISCV::QC_BLTUI:
case RISCV::QC_BGEUI:
case RISCV::QC_E_BEQI:
case RISCV::QC_E_BNEI:
case RISCV::QC_E_BLTI:
case RISCV::QC_E_BGEI:
case RISCV::QC_E_BLTUI:
case RISCV::QC_E_BGEUI:
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
Res.addOperand(Inst.getOperand(0));
Res.addOperand(Inst.getOperand(1));
Res.addOperand(Inst.getOperand(2));
break;
}
Inst = std::move(Res);
}
bool RISCVAsmBackend::relaxDwarfLineAddr(MCDwarfLineAddrFragment &DF,
bool &WasRelaxed) const {
MCContext &C = getContext();
int64_t LineDelta = DF.getLineDelta();
const MCExpr &AddrDelta = DF.getAddrDelta();
SmallVector<MCFixup, 1> Fixups;
size_t OldSize = DF.getContents().size();
int64_t Value;
[[maybe_unused]] bool IsAbsolute =
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
assert(IsAbsolute && "CFA with invalid expression");
Fixups.clear();
SmallVector<char> Data;
raw_svector_ostream OS(Data);
// INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
if (LineDelta != INT64_MAX) {
OS << uint8_t(dwarf::DW_LNS_advance_line);
encodeSLEB128(LineDelta, OS);
}
unsigned Offset;
std::pair<MCFixupKind, MCFixupKind> Fixup;
// According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
// takes a single unsigned half (unencoded) operand. The maximum encodable
// value is therefore 65535. Set a conservative upper bound for relaxation.
if (Value > 60000) {
unsigned PtrSize = C.getAsmInfo()->getCodePointerSize();
OS << uint8_t(dwarf::DW_LNS_extended_op);
encodeULEB128(PtrSize + 1, OS);
OS << uint8_t(dwarf::DW_LNE_set_address);
Offset = OS.tell();
assert((PtrSize == 4 || PtrSize == 8) && "Unexpected pointer size");
Fixup = RISCV::getRelocPairForSize(PtrSize);
OS.write_zeros(PtrSize);
} else {
OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
Offset = OS.tell();
Fixup = RISCV::getRelocPairForSize(2);
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
}
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup)));
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup)));
if (LineDelta == INT64_MAX) {
OS << uint8_t(dwarf::DW_LNS_extended_op);
OS << uint8_t(1);
OS << uint8_t(dwarf::DW_LNE_end_sequence);
} else {
OS << uint8_t(dwarf::DW_LNS_copy);
}
DF.setContents(Data);
DF.setFixups(Fixups);
WasRelaxed = OldSize != Data.size();
return true;
}
bool RISCVAsmBackend::relaxDwarfCFA(MCDwarfCallFrameFragment &DF,
bool &WasRelaxed) const {
const MCExpr &AddrDelta = DF.getAddrDelta();
SmallVector<MCFixup, 2> Fixups;
size_t OldSize = DF.getContents().size();
int64_t Value;
if (AddrDelta.evaluateAsAbsolute(Value, *Asm))
return false;
[[maybe_unused]] bool IsAbsolute =
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
assert(IsAbsolute && "CFA with invalid expression");
assert(getContext().getAsmInfo()->getMinInstAlignment() == 1 &&
"expected 1-byte alignment");
if (Value == 0) {
DF.clearContents();
DF.clearFixups();
WasRelaxed = OldSize != DF.getContents().size();
return true;
}
auto AddFixups = [&Fixups, &AddrDelta](unsigned Offset,
std::pair<unsigned, unsigned> Fixup) {
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup)));
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup)));
};
SmallVector<char, 8> Data;
raw_svector_ostream OS(Data);
if (isUIntN(6, Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc);
AddFixups(0, {ELF::R_RISCV_SET6, ELF::R_RISCV_SUB6});
} else if (isUInt<8>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc1);
support::endian::write<uint8_t>(OS, 0, llvm::endianness::little);
AddFixups(1, {ELF::R_RISCV_SET8, ELF::R_RISCV_SUB8});
} else if (isUInt<16>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc2);
support::endian::write<uint16_t>(OS, 0, llvm::endianness::little);
AddFixups(1, {ELF::R_RISCV_SET16, ELF::R_RISCV_SUB16});
} else if (isUInt<32>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc4);
support::endian::write<uint32_t>(OS, 0, llvm::endianness::little);
AddFixups(1, {ELF::R_RISCV_SET32, ELF::R_RISCV_SUB32});
} else {
llvm_unreachable("unsupported CFA encoding");
}
DF.setContents(Data);
DF.setFixups(Fixups);
WasRelaxed = OldSize != Data.size();
return true;
}
std::pair<bool, bool> RISCVAsmBackend::relaxLEB128(MCLEBFragment &LF,
int64_t &Value) const {
if (LF.isSigned())
return std::make_pair(false, false);
const MCExpr &Expr = LF.getValue();
if (ULEB128Reloc) {
LF.addFixup(MCFixup::create(0, &Expr, FK_Data_leb128));
}
return std::make_pair(Expr.evaluateKnownAbsolute(Value, *Asm), false);
}
bool RISCVAsmBackend::mayNeedRelaxation(unsigned Opcode,
ArrayRef<MCOperand> Operands,
const MCSubtargetInfo &STI) const {
// This function has access to two STIs, the member of the AsmBackend, and the
// one passed as an argument. The latter is more specific, so we query it for
// specific features.
if (STI.hasFeature(RISCV::FeatureExactAssembly))
return false;
return getRelaxedOpcode(Opcode, Operands, STI) != Opcode;
}
bool RISCVAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
const MCSubtargetInfo *STI) const {
// We mostly follow binutils' convention here: align to even boundary with a
// 0-fill padding. We emit up to 1 2-byte nop, though we use c.nop if RVC is
// enabled or 0-fill otherwise. The remainder is now padded with 4-byte nops.
// Instructions always are at even addresses. We must be in a data area or
// be unaligned due to some other reason.
if (Count % 2) {
OS.write("\0", 1);
Count -= 1;
}
if (Count % 4 == 2) {
// The canonical nop with Zca is c.nop.
OS.write(STI->hasFeature(RISCV::FeatureStdExtZca) ? "\x01\0" : "\0\0", 2);
Count -= 2;
}
// The canonical nop on RISC-V is addi x0, x0, 0.
for (; Count >= 4; Count -= 4)
OS.write("\x13\0\0\0", 4);
return true;
}
static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
MCContext &Ctx) {
switch (Fixup.getKind()) {
default:
llvm_unreachable("Unknown fixup kind!");
case FK_Data_1:
case FK_Data_2:
case FK_Data_4:
case FK_Data_8:
case FK_Data_leb128:
return Value;
case RISCV::fixup_riscv_lo12_i:
case RISCV::fixup_riscv_pcrel_lo12_i:
return Value & 0xfff;
case RISCV::fixup_riscv_12_i:
if (!isInt<12>(Value)) {
Ctx.reportError(Fixup.getLoc(),
"operand must be a constant 12-bit integer");
}
return Value & 0xfff;
case RISCV::fixup_riscv_lo12_s:
case RISCV::fixup_riscv_pcrel_lo12_s:
return (((Value >> 5) & 0x7f) << 25) | ((Value & 0x1f) << 7);
case RISCV::fixup_riscv_hi20:
case RISCV::fixup_riscv_pcrel_hi20:
// Add 1 if bit 11 is 1, to compensate for low 12 bits being negative.
return ((Value + 0x800) >> 12) & 0xfffff;
case RISCV::fixup_riscv_jal: {
if (!isInt<21>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
// Need to produce imm[19|10:1|11|19:12] from the 21-bit Value.
unsigned Sbit = (Value >> 20) & 0x1;
unsigned Hi8 = (Value >> 12) & 0xff;
unsigned Mid1 = (Value >> 11) & 0x1;
unsigned Lo10 = (Value >> 1) & 0x3ff;
// Inst{31} = Sbit;
// Inst{30-21} = Lo10;
// Inst{20} = Mid1;
// Inst{19-12} = Hi8;
Value = (Sbit << 19) | (Lo10 << 9) | (Mid1 << 8) | Hi8;
return Value;
}
case RISCV::fixup_riscv_qc_e_branch:
case RISCV::fixup_riscv_branch: {
if (!isInt<13>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
// Need to extract imm[12], imm[10:5], imm[4:1], imm[11] from the 13-bit
// Value.
unsigned Sbit = (Value >> 12) & 0x1;
unsigned Hi1 = (Value >> 11) & 0x1;
unsigned Mid6 = (Value >> 5) & 0x3f;
unsigned Lo4 = (Value >> 1) & 0xf;
// Inst{31} = Sbit;
// Inst{30-25} = Mid6;
// Inst{11-8} = Lo4;
// Inst{7} = Hi1;
Value = (Sbit << 31) | (Mid6 << 25) | (Lo4 << 8) | (Hi1 << 7);
return Value;
}
case RISCV::fixup_riscv_call:
case RISCV::fixup_riscv_call_plt: {
// Jalr will add UpperImm with the sign-extended 12-bit LowerImm,
// we need to add 0x800ULL before extract upper bits to reflect the
// effect of the sign extension.
uint64_t UpperImm = (Value + 0x800ULL) & 0xfffff000ULL;
uint64_t LowerImm = Value & 0xfffULL;
return UpperImm | ((LowerImm << 20) << 32);
}
case RISCV::fixup_riscv_rvc_jump: {
if (!isInt<12>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
// Need to produce offset[11|4|9:8|10|6|7|3:1|5] from the 11-bit Value.
unsigned Bit11 = (Value >> 11) & 0x1;
unsigned Bit4 = (Value >> 4) & 0x1;
unsigned Bit9_8 = (Value >> 8) & 0x3;
unsigned Bit10 = (Value >> 10) & 0x1;
unsigned Bit6 = (Value >> 6) & 0x1;
unsigned Bit7 = (Value >> 7) & 0x1;
unsigned Bit3_1 = (Value >> 1) & 0x7;
unsigned Bit5 = (Value >> 5) & 0x1;
Value = (Bit11 << 10) | (Bit4 << 9) | (Bit9_8 << 7) | (Bit10 << 6) |
(Bit6 << 5) | (Bit7 << 4) | (Bit3_1 << 1) | Bit5;
return Value;
}
case RISCV::fixup_riscv_rvc_branch: {
if (!isInt<9>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
// Need to produce offset[8|4:3], [reg 3 bit], offset[7:6|2:1|5]
unsigned Bit8 = (Value >> 8) & 0x1;
unsigned Bit7_6 = (Value >> 6) & 0x3;
unsigned Bit5 = (Value >> 5) & 0x1;
unsigned Bit4_3 = (Value >> 3) & 0x3;
unsigned Bit2_1 = (Value >> 1) & 0x3;
Value = (Bit8 << 12) | (Bit4_3 << 10) | (Bit7_6 << 5) | (Bit2_1 << 3) |
(Bit5 << 2);
return Value;
}
case RISCV::fixup_riscv_rvc_imm: {
if (!isInt<6>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
unsigned Bit5 = (Value >> 5) & 0x1;
unsigned Bit4_0 = Value & 0x1f;
Value = (Bit5 << 12) | (Bit4_0 << 2);
return Value;
}
case RISCV::fixup_riscv_qc_e_32: {
if (!isInt<32>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
return Value & 0xffffffffu;
}
case RISCV::fixup_riscv_qc_abs20_u: {
if (!isInt<20>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
unsigned Bit19 = (Value >> 19) & 0x1;
unsigned Bit14_0 = Value & 0x7fff;
unsigned Bit18_15 = (Value >> 15) & 0xf;
Value = (Bit19 << 31) | (Bit14_0 << 16) | (Bit18_15 << 12);
return Value;
}
case RISCV::fixup_riscv_qc_e_call_plt: {
if (!isInt<32>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
uint64_t Bit31_16 = (Value >> 16) & 0xffff;
uint64_t Bit12 = (Value >> 12) & 0x1;
uint64_t Bit10_5 = (Value >> 5) & 0x3f;
uint64_t Bit15_13 = (Value >> 13) & 0x7;
uint64_t Bit4_1 = (Value >> 1) & 0xf;
uint64_t Bit11 = (Value >> 11) & 0x1;
Value = (Bit31_16 << 32ull) | (Bit12 << 31) | (Bit10_5 << 25) |
(Bit15_13 << 17) | (Bit4_1 << 8) | (Bit11 << 7);
return Value;
}
case RISCV::fixup_riscv_nds_branch_10: {
if (!isInt<11>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
// Need to extract imm[10], imm[9:5], imm[4:1] from the 11-bit Value.
unsigned Sbit = (Value >> 10) & 0x1;
unsigned Hi5 = (Value >> 5) & 0x1f;
unsigned Lo4 = (Value >> 1) & 0xf;
// Inst{31} = Sbit;
// Inst{29-25} = Hi5;
// Inst{11-8} = Lo4;
Value = (Sbit << 31) | (Hi5 << 25) | (Lo4 << 8);
return Value;
}
}
}
bool RISCVAsmBackend::isPCRelFixupResolved(const MCSymbol *SymA,
const MCFragment &F) {
// If the section does not contain linker-relaxable fragments, PC-relative
// fixups can be resolved.
if (!F.getParent()->isLinkerRelaxable())
return true;
// Otherwise, check if the offset between the symbol and fragment is fully
// resolved, unaffected by linker-relaxable fragments (e.g. instructions or
// offset-affected MCAlignFragment). Complements the generic
// isSymbolRefDifferenceFullyResolvedImpl.
if (!PCRelTemp)
PCRelTemp = getContext().createTempSymbol();
PCRelTemp->setFragment(const_cast<MCFragment *>(&F));
MCValue Res;
MCExpr::evaluateSymbolicAdd(Asm, false, MCValue::get(SymA),
MCValue::get(nullptr, PCRelTemp), Res);
return !Res.getSubSym();
}
// Get the corresponding PC-relative HI fixup that a S_PCREL_LO points to, and
// optionally the fragment containing it.
//
// \returns nullptr if this isn't a S_PCREL_LO pointing to a known PC-relative
// HI fixup.
static const MCFixup *getPCRelHiFixup(const MCSpecifierExpr &Expr,
const MCFragment **DFOut) {
MCValue AUIPCLoc;
if (!Expr.getSubExpr()->evaluateAsRelocatable(AUIPCLoc, nullptr))
return nullptr;
const MCSymbol *AUIPCSymbol = AUIPCLoc.getAddSym();
if (!AUIPCSymbol)
return nullptr;
const auto *DF = dyn_cast_or_null<MCDataFragment>(AUIPCSymbol->getFragment());
if (!DF)
return nullptr;
uint64_t Offset = AUIPCSymbol->getOffset();
if (DF->getContents().size() == Offset) {
DF = dyn_cast_or_null<MCDataFragment>(DF->getNext());
if (!DF)
return nullptr;
Offset = 0;
}
for (const MCFixup &F : DF->getFixups()) {
if (F.getOffset() != Offset)
continue;
auto Kind = F.getKind();
if (!mc::isRelocation(F.getKind())) {
if (Kind == RISCV::fixup_riscv_pcrel_hi20) {
*DFOut = DF;
return &F;
}
break;
}
switch (Kind) {
case ELF::R_RISCV_GOT_HI20:
case ELF::R_RISCV_TLS_GOT_HI20:
case ELF::R_RISCV_TLS_GD_HI20:
case ELF::R_RISCV_TLSDESC_HI20:
*DFOut = DF;
return &F;
}
}
return nullptr;
}
std::optional<bool> RISCVAsmBackend::evaluateFixup(const MCFragment &,
MCFixup &Fixup,
MCValue &Target,
uint64_t &Value) {
const MCFixup *AUIPCFixup;
const MCFragment *AUIPCDF;
MCValue AUIPCTarget;
switch (Fixup.getKind()) {
default:
// Use default handling for `Value` and `IsResolved`.
return {};
case RISCV::fixup_riscv_pcrel_lo12_i:
case RISCV::fixup_riscv_pcrel_lo12_s: {
AUIPCFixup =
getPCRelHiFixup(cast<MCSpecifierExpr>(*Fixup.getValue()), &AUIPCDF);
if (!AUIPCFixup) {
getContext().reportError(Fixup.getLoc(),
"could not find corresponding %pcrel_hi");
return true;
}
// MCAssembler::evaluateFixup will emit an error for this case when it sees
// the %pcrel_hi, so don't duplicate it when also seeing the %pcrel_lo.
const MCExpr *AUIPCExpr = AUIPCFixup->getValue();
if (!AUIPCExpr->evaluateAsRelocatable(AUIPCTarget, Asm))
return true;
break;
}
}
if (!AUIPCTarget.getAddSym())
return false;
const MCSymbolELF &SA = cast<MCSymbolELF>(*AUIPCTarget.getAddSym());
if (SA.isUndefined())
return false;
bool IsResolved = &SA.getSection() == AUIPCDF->getParent() &&
SA.getBinding() == ELF::STB_LOCAL &&
SA.getType() != ELF::STT_GNU_IFUNC;
if (!IsResolved)
return false;
Value = Asm->getSymbolOffset(SA) + AUIPCTarget.getConstant();
Value -= Asm->getFragmentOffset(*AUIPCDF) + AUIPCFixup->getOffset();
return AUIPCFixup->getKind() == RISCV::fixup_riscv_pcrel_hi20 &&
isPCRelFixupResolved(AUIPCTarget.getAddSym(), *AUIPCDF);
}
void RISCVAsmBackend::maybeAddVendorReloc(const MCFragment &F,
const MCFixup &Fixup) {
StringRef VendorIdentifier;
switch (Fixup.getKind()) {
default:
// No Vendor Relocation Required.
return;
case RISCV::fixup_riscv_qc_e_branch:
case RISCV::fixup_riscv_qc_abs20_u:
case RISCV::fixup_riscv_qc_e_32:
case RISCV::fixup_riscv_qc_e_call_plt:
VendorIdentifier = "QUALCOMM";
break;
case RISCV::fixup_riscv_nds_branch_10:
VendorIdentifier = "ANDES";
break;
}
// Create a local symbol for the vendor relocation to reference. It's fine if
// the symbol has the same name as an existing symbol.
MCContext &Ctx = Asm->getContext();
MCSymbol *VendorSymbol = Ctx.createLocalSymbol(VendorIdentifier);
auto [It, Inserted] =
VendorSymbols.try_emplace(VendorIdentifier, VendorSymbol);
if (Inserted) {
// Setup the just-created symbol
VendorSymbol->setVariableValue(MCConstantExpr::create(0, Ctx));
Asm->registerSymbol(*VendorSymbol);
} else {
// Fetch the existing symbol
VendorSymbol = It->getValue();
}
MCFixup VendorFixup =
MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_VENDOR);
// Explicitly create MCValue rather than using an MCExpr and evaluating it so
// that the absolute vendor symbol is not evaluated to constant 0.
MCValue VendorTarget = MCValue::get(VendorSymbol);
uint64_t VendorValue;
Asm->getWriter().recordRelocation(F, VendorFixup, VendorTarget, VendorValue);
}
static bool relaxableFixupNeedsRelocation(const MCFixupKind Kind) {
// Some Fixups are marked as LinkerRelaxable by
// `RISCVMCCodeEmitter::getImmOpValue` only because they may be
// (assembly-)relaxed into a linker-relaxable instruction. This function
// should return `false` for those fixups so they do not get a `R_RISCV_RELAX`
// relocation emitted in addition to the relocation.
switch (Kind) {
default:
break;
case RISCV::fixup_riscv_rvc_jump:
case RISCV::fixup_riscv_rvc_branch:
case RISCV::fixup_riscv_jal:
return false;
}
return true;
}
bool RISCVAsmBackend::addReloc(const MCFragment &F, const MCFixup &Fixup,
const MCValue &Target, uint64_t &FixedValue,
bool IsResolved) {
uint64_t FixedValueA, FixedValueB;
if (Target.getSubSym()) {
assert(Target.getSpecifier() == 0 &&
"relocatable SymA-SymB cannot have relocation specifier");
unsigned TA = 0, TB = 0;
switch (Fixup.getKind()) {
case llvm::FK_Data_1:
TA = ELF::R_RISCV_ADD8;
TB = ELF::R_RISCV_SUB8;
break;
case llvm::FK_Data_2:
TA = ELF::R_RISCV_ADD16;
TB = ELF::R_RISCV_SUB16;
break;
case llvm::FK_Data_4:
TA = ELF::R_RISCV_ADD32;
TB = ELF::R_RISCV_SUB32;
break;
case llvm::FK_Data_8:
TA = ELF::R_RISCV_ADD64;
TB = ELF::R_RISCV_SUB64;
break;
case llvm::FK_Data_leb128:
TA = ELF::R_RISCV_SET_ULEB128;
TB = ELF::R_RISCV_SUB_ULEB128;
break;
default:
llvm_unreachable("unsupported fixup size");
}
MCValue A = MCValue::get(Target.getAddSym(), nullptr, Target.getConstant());
MCValue B = MCValue::get(Target.getSubSym());
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, TA);
auto FB = MCFixup::create(Fixup.getOffset(), nullptr, TB);
Asm->getWriter().recordRelocation(F, FA, A, FixedValueA);
Asm->getWriter().recordRelocation(F, FB, B, FixedValueB);
FixedValue = FixedValueA - FixedValueB;
return false;
}
// If linker relaxation is enabled and supported by the current fixup, then we
// always want to generate a relocation.
bool NeedsRelax = Fixup.isLinkerRelaxable() &&
relaxableFixupNeedsRelocation(Fixup.getKind());
if (NeedsRelax)
IsResolved = false;
if (IsResolved && Fixup.isPCRel())
IsResolved = isPCRelFixupResolved(Target.getAddSym(), F);
if (!IsResolved) {
// Some Fixups require a VENDOR relocation, record it (directly) before we
// add the relocation.
maybeAddVendorReloc(F, Fixup);
Asm->getWriter().recordRelocation(F, Fixup, Target, FixedValue);
if (NeedsRelax) {
// Some Fixups get a RELAX relocation, record it (directly) after we add
// the relocation.
MCFixup RelaxFixup =
MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_RELAX);
MCValue RelaxTarget = MCValue::get(nullptr);
uint64_t RelaxValue;
Asm->getWriter().recordRelocation(F, RelaxFixup, RelaxTarget, RelaxValue);
}
}
return false;
}
void RISCVAsmBackend::applyFixup(const MCFragment &F, const MCFixup &Fixup,
const MCValue &Target,
MutableArrayRef<char> Data, uint64_t Value,
bool IsResolved) {
IsResolved = addReloc(F, Fixup, Target, Value, IsResolved);
MCFixupKind Kind = Fixup.getKind();
if (mc::isRelocation(Kind))
return;
MCContext &Ctx = getContext();
MCFixupKindInfo Info = getFixupKindInfo(Kind);
if (!Value)
return; // Doesn't change encoding.
// Apply any target-specific value adjustments.
Value = adjustFixupValue(Fixup, Value, Ctx);
// Shift the value into position.
Value <<= Info.TargetOffset;
unsigned Offset = Fixup.getOffset();
unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;
assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
// For each byte of the fragment that the fixup touches, mask in the
// bits from the fixup value.
for (unsigned i = 0; i != NumBytes; ++i) {
Data[Offset + i] |= uint8_t((Value >> (i * 8)) & 0xff);
}
}
// Linker relaxation may change code size. We have to insert Nops
// for .align directive when linker relaxation enabled. So then Linker
// could satisfy alignment by removing Nops.
// The function return the total Nops Size we need to insert.
bool RISCVAsmBackend::shouldInsertExtraNopBytesForCodeAlign(
const MCAlignFragment &AF, unsigned &Size) {
// Calculate Nops Size only when linker relaxation enabled.
const MCSubtargetInfo *STI = AF.getSubtargetInfo();
if (!STI->hasFeature(RISCV::FeatureRelax))
return false;
unsigned MinNopLen = STI->hasFeature(RISCV::FeatureStdExtZca) ? 2 : 4;
if (AF.getAlignment() <= MinNopLen) {
return false;
} else {
Size = AF.getAlignment().value() - MinNopLen;
return true;
}
}
// We need to insert R_RISCV_ALIGN relocation type to indicate the
// position of Nops and the total bytes of the Nops have been inserted
// when linker relaxation enabled.
// The function insert fixup_riscv_align fixup which eventually will
// transfer to R_RISCV_ALIGN relocation type.
bool RISCVAsmBackend::shouldInsertFixupForCodeAlign(MCAssembler &Asm,
MCAlignFragment &AF) {
// Insert the fixup only when linker relaxation enabled.
const MCSubtargetInfo *STI = AF.getSubtargetInfo();
if (!STI->hasFeature(RISCV::FeatureRelax))
return false;
// Calculate total Nops we need to insert. If there are none to insert
// then simply return.
unsigned Count;
if (!shouldInsertExtraNopBytesForCodeAlign(AF, Count) || (Count == 0))
return false;
MCContext &Ctx = getContext();
const MCExpr *Dummy = MCConstantExpr::create(0, Ctx);
MCFixup Fixup = MCFixup::create(0, Dummy, ELF::R_RISCV_ALIGN);
uint64_t FixedValue = 0;
MCValue NopBytes = MCValue::get(Count);
Asm.getWriter().recordRelocation(AF, Fixup, NopBytes, FixedValue);
return true;
}
std::unique_ptr<MCObjectTargetWriter>
RISCVAsmBackend::createObjectTargetWriter() const {
return createRISCVELFObjectWriter(OSABI, Is64Bit);
}
MCAsmBackend *llvm::createRISCVAsmBackend(const Target &T,
const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI,
const MCTargetOptions &Options) {
const Triple &TT = STI.getTargetTriple();
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
return new RISCVAsmBackend(STI, OSABI, TT.isArch64Bit(), Options);
}
|