File: RISCVSchedSiFive7.td

package info (click to toggle)
llvm-toolchain-21 1%3A21.1.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,245,028 kB
  • sloc: cpp: 7,619,726; ansic: 1,434,018; asm: 1,058,748; python: 252,740; f90: 94,671; objc: 70,685; lisp: 42,813; pascal: 18,401; sh: 8,601; ml: 5,111; perl: 4,720; makefile: 3,675; awk: 3,523; javascript: 2,409; xml: 892; fortran: 770
file content (1506 lines) | stat: -rw-r--r-- 66,337 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
//==- RISCVSchedSiFive7.td - SiFive7 Scheduling Definitions --*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//

/// c is true if mx has the worst case behavior compared to LMULs in MxList.
/// On the SiFive7, the worst case LMUL is the Largest LMUL
/// and the worst case sew is the smallest SEW for that LMUL.
class SiFive7IsWorstCaseMX<string mx, list<string> MxList> {
  defvar LLMUL = LargestLMUL<MxList>.r;
  bit c = !eq(mx, LLMUL);
}

/// c is true if mx and sew have the worst case behavior compared to LMULs in
/// MxList. On the SiFive7, the worst case LMUL is the Largest LMUL
/// and the worst case sew is the smallest SEW for that LMUL.
class SiFive7IsWorstCaseMXSEW<string mx, int sew, list<string> MxList,
                               bit isF = 0> {
  defvar LLMUL = LargestLMUL<MxList>.r;
  defvar SSEW = SmallestSEW<mx, isF>.r;
  bit c = !and(!eq(mx, LLMUL), !eq(sew, SSEW));
}

/// Number of DLEN parts = (LMUL * VLEN) / DLEN.
/// Since DLEN = VLEN / 2, Num DLEN parts = 2 * LMUL.
class SiFive7GetCyclesDefault<string mx> {
  int c = !cond(
    !eq(mx, "M1") : 2,
    !eq(mx, "M2") : 4,
    !eq(mx, "M4") : 8,
    !eq(mx, "M8") : 16,
    !eq(mx, "MF2") : 1,
    !eq(mx, "MF4") : 1,
    !eq(mx, "MF8") : 1
  );
}

class SiFive7GetCyclesNarrowing<string mx> {
  int c = !cond(
    !eq(mx, "M1") : 4,
    !eq(mx, "M2") : 8,
    !eq(mx, "M4") : 16,
    !eq(mx, "MF2") : 2,
    !eq(mx, "MF4") : 1,
    !eq(mx, "MF8") : 1
  );
}

class SiFive7GetCyclesVMask<string mx> {
  int c = !cond(
    !eq(mx, "M1") : 1,
    !eq(mx, "M2") : 1,
    !eq(mx, "M4") : 1,
    !eq(mx, "M8") : 2,
    !eq(mx, "MF2") : 1,
    !eq(mx, "MF4") : 1,
    !eq(mx, "MF8") : 1
  );
}

/// VLDM and VSTM can't read/write more than 2 DLENs of data.
/// 2 DLENs when LMUL=8. 1 DLEN for all other DLENs
class SiFive7GetMaskLoadStoreCycles<string mx> {
  int c = !cond(
    !eq(mx, "M8")  : 2,
    true : 1
  );
}

// Cycles for nf=2 segmented loads and stores are calculated using the
// formula (2 * VLEN * LMUL) / DLEN = 4 * LMUL
class SiFive7GetCyclesSegmentedSeg2<string mx> {
  int c = !cond(
    !eq(mx, "M1") :  4,
    !eq(mx, "M2") :  8,
    !eq(mx, "M4") :  16,
    !eq(mx, "M8") :  32,
    !eq(mx, "MF2") : 2,
    !eq(mx, "MF4") : 1,
    !eq(mx, "MF8") : 1
  );
}

// Cycles for segmented loads and stores are calculated using the
// formula vl * ceil((SEW * nf) / DLEN), where SEW * nf is the segment size.
class SiFive7GetCyclesSegmented<string mx, int sew, int nf, int VLEN> {
  defvar DLEN = !div(VLEN, 2);
  // (VLEN * LMUL) / SEW
  defvar VLUpperBound  = !cond(
    !eq(mx, "M1") : !div(VLEN, sew),
    !eq(mx, "M2") : !div(!mul(VLEN, 2), sew),
    !eq(mx, "M4") : !div(!mul(VLEN, 4), sew),
    !eq(mx, "M8") : !div(!mul(VLEN, 8), sew),
    !eq(mx, "MF2") : !div(!div(VLEN, 2), sew),
    !eq(mx, "MF4") : !div(!div(VLEN, 4), sew),
    !eq(mx, "MF8") : !div(!div(VLEN, 8), sew),
  );
  // We can calculate ceil(a/b) using (a + b - 1) / b.
  defvar a = !mul(sew, nf);
  defvar b = DLEN;
  int c = !mul(VLUpperBound, !div(!sub(!add(a, b), 1), b));
}

class SiFive7GetCyclesOnePerElement<string mx, int sew, int VLEN> {
  // c = ceil(VLEN / SEW) * LMUL
  // Note: c >= 1 since the smallest VLEN is 512 / 8 = 8, and the
  // largest division performed on VLEN is in MF8 case with division
  // by 8. Therefore, there is no need to ceil the result.
  int numElements = !div(VLEN, sew);
  int c = !cond(
    !eq(mx, "M1")  : numElements,
    !eq(mx, "M2")  : !mul(numElements, 2),
    !eq(mx, "M4")  : !mul(numElements, 4),
    !eq(mx, "M8")  : !mul(numElements, 8),
    !eq(mx, "MF2") : !div(numElements, 2),
    !eq(mx, "MF4") : !div(numElements, 4),
    !eq(mx, "MF8") : !div(numElements, 8)
  );
}

class SiFive7GetDivOrSqrtFactor<int sew> {
  int c = !cond(
    // TODO: Add SchedSEWSetFP upstream and remove the SEW=8 case.
    !eq(sew, 8) : 15,
    !eq(sew, 16) : 15,
    !eq(sew, 32) : 28,
    !eq(sew, 64) : 57
  );
}

/// Cycles for reductions take approximately VL*SEW/DLEN + 5(4 + log(DLEN/SEW))
/// cycles.
class SiFive7GetReductionCycles<string mx, int sew, int VLEN> {
  // VLUpperBound*SEW/DLEN is equivalent to 2*LMUL since
  // VLUpperBound=(VLEN*LMUL)/SEW.
  defvar DLEN = !div(VLEN, 2);
  defvar TwoTimesLMUL = !cond(
    !eq(mx, "M1") : 2,
    !eq(mx, "M2") : 4,
    !eq(mx, "M4") : 8,
    !eq(mx, "M8") : 16,
    !eq(mx, "MF2") : 1,
    !eq(mx, "MF4") : 1,
    !eq(mx, "MF8") : 1
  );
  int c = !add(
    TwoTimesLMUL,
    !mul(5, !add(4, !logtwo(!div(DLEN, sew))))
  );
}

/// Cycles for ordered reductions take approximately 6*VL cycles
class SiFive7GetOrderedReductionCycles<string mx, int sew, int VLEN> {
  // (VLEN * LMUL) / SEW
  defvar VLUpperBound  = !cond(
    !eq(mx, "M1") : !div(VLEN, sew),
    !eq(mx, "M2") : !div(!mul(VLEN, 2), sew),
    !eq(mx, "M4") : !div(!mul(VLEN, 4), sew),
    !eq(mx, "M8") : !div(!mul(VLEN, 8), sew),
    !eq(mx, "MF2") : !div(!div(VLEN, 2), sew),
    !eq(mx, "MF4") : !div(!div(VLEN, 4), sew),
    !eq(mx, "MF8") : !div(!div(VLEN, 8), sew),
  );
  int c = !mul(6, VLUpperBound);
}

class SiFive7GetSiFiveVFNRClipCycles<string mx, int VLEN> {
  int latency = !cond(
    !eq(mx, "MF8"): 7,
    !eq(mx, "MF4"): 8,
    !eq(mx, "MF2"): 10,
    !eq(mx, "M1"): 13,
    !eq(mx, "M2"): 19,
  );

  defvar DLEN = !div(VLEN, 2);
  int occupancy = SiFive7GetCyclesOnePerElement<mx, sew=!div(DLEN, 4),
                                                VLEN=VLEN>.c;
}

class SiFive7FPLatencies {
  int BasicFP16ALU;
  int BasicFP32ALU;
  int BasicFP64ALU;
}

class SiFive7AnyToGPRBypass<SchedRead read, int cycles = 2>
    : ReadAdvance<read, cycles, [WriteIALU, WriteIALU32,
                                 WriteShiftImm, WriteShiftImm32,
                                 WriteShiftReg, WriteShiftReg32,
                                 WriteSHXADD, WriteSHXADD32,
                                 WriteRotateImm, WriteRotateImm32,
                                 WriteRotateReg, WriteRotateReg32,
                                 WriteSingleBit, WriteSingleBitImm,
                                 WriteBEXT, WriteBEXTI,
                                 WriteCLZ, WriteCLZ32, WriteCTZ, WriteCTZ32,
                                 WriteCPOP, WriteCPOP32,
                                 WriteREV8, WriteORCB, WriteIMinMax, WriteSFB,
                                 WriteIMul, WriteIMul32,
                                 WriteIDiv, WriteIDiv32,
                                 WriteIRem, WriteIRem32,
                                 WriteLDB, WriteLDH, WriteLDW, WriteLDD]>;

// The SiFive7 microarchitecture has three kinds of pipelines: A, B, V.
// Pipe A can handle memory, integer alu and vector operations.
// Pipe B can handle integer alu, control flow, integer multiply and divide,
// and floating point computation.
// The V pipeline is modeled by the VCQ, VA, VL, and VS resources. There can
// be one or two VA (Vector Arithmetic).
multiclass SiFive7ProcResources<bit extraVALU = false> {
  let BufferSize = 0 in {
    def PipeA     : ProcResource<1>;
    def PipeB     : ProcResource<1>;

    def IDiv      : ProcResource<1>; // Int Division
    def FDiv      : ProcResource<1>; // FP Division/Sqrt

    // Arithmetic sequencer(s)
    if extraVALU then {
      // VA1 can handle any vector airthmetic instruction.
      def VA1     : ProcResource<1>;
      // VA2 generally can only handle simple vector arithmetic.
      def VA2     : ProcResource<1>;
    } else {
      def VA      : ProcResource<1>;
    }

    def VL        : ProcResource<1>; // Load sequencer
    def VS        : ProcResource<1>; // Store sequencer
    // The VCQ accepts instructions from the the A Pipe and holds them until the
    // vector unit is ready to dequeue them. The unit dequeues up to one instruction
    // per cycle, in order, as soon as the sequencer for that type of instruction is
    // available. This resource is meant to be used for 1 cycle by all vector
    // instructions, to model that only one vector instruction may be dequeued at a
    // time. The actual dequeueing into the sequencer is modeled by the VA, VL, and
    // VS sequencer resources below. Each of them will only accept a single
    // instruction at a time and remain busy for the number of cycles associated
    // with that instruction.
    def VCQ       : ProcResource<1>; // Vector Command Queue
  }

  def PipeAB : ProcResGroup<[!cast<ProcResource>(NAME#"PipeA"),
                             !cast<ProcResource>(NAME#"PipeB")]>;

  if extraVALU then
  def VA1OrVA2 : ProcResGroup<[!cast<ProcResource>(NAME#"VA1"),
                               !cast<ProcResource>(NAME#"VA2")]>;
}

multiclass SiFive7WriteResBase<int VLEN,
    ProcResourceKind PipeA, ProcResourceKind PipeB, ProcResourceKind PipeAB,
    ProcResourceKind IDiv, ProcResourceKind FDiv,
    ProcResourceKind VA1, ProcResourceKind VA1OrVA2,
    ProcResourceKind VL, ProcResourceKind VS,
    ProcResourceKind VCQ,
    SiFive7FPLatencies fpLatencies,
    bit isFP64Throttled = false> {

  // Branching
  let Latency = 3 in {
    def : WriteRes<WriteJmp, [PipeB]>;
    def : WriteRes<WriteJal, [PipeB]>;
    def : WriteRes<WriteJalr, [PipeB]>;
  }

  //Short forward branch
  def : WriteRes<WriteSFB, [PipeA, PipeB]> {
    let Latency = 3;
    let NumMicroOps = 2;
  }

  // Integer arithmetic and logic
  let Latency = 3 in {
    def : WriteRes<WriteIALU, [PipeAB]>;
    def : WriteRes<WriteIALU32, [PipeAB]>;
    def : WriteRes<WriteShiftImm, [PipeAB]>;
    def : WriteRes<WriteShiftImm32, [PipeAB]>;
    def : WriteRes<WriteShiftReg, [PipeAB]>;
    def : WriteRes<WriteShiftReg32, [PipeAB]>;
  }

  // Integer multiplication
  let Latency = 3 in {
    def : WriteRes<WriteIMul, [PipeB]>;
    def : WriteRes<WriteIMul32, [PipeB]>;
  }

  // Integer division
  def : WriteRes<WriteIDiv, [PipeB, IDiv]> {
    let Latency = 66;
    let ReleaseAtCycles = [1, 65];
  }
  def : WriteRes<WriteIDiv32,  [PipeB, IDiv]> {
    let Latency = 34;
    let ReleaseAtCycles = [1, 33];
  }

  // Integer remainder
  def : WriteRes<WriteIRem, [PipeB, IDiv]> {
    let Latency = 66;
    let ReleaseAtCycles = [1, 65];
  }
  def : WriteRes<WriteIRem32,  [PipeB, IDiv]> {
    let Latency = 34;
    let ReleaseAtCycles = [1, 33];
  }

  // Bitmanip
  let Latency = 3 in {
    // Rotates are in the late-B ALU.
    def : WriteRes<WriteRotateImm, [PipeB]>;
    def : WriteRes<WriteRotateImm32, [PipeB]>;
    def : WriteRes<WriteRotateReg, [PipeB]>;
    def : WriteRes<WriteRotateReg32, [PipeB]>;

    // clz[w]/ctz[w] are in the late-B ALU.
    def : WriteRes<WriteCLZ, [PipeB]>;
    def : WriteRes<WriteCLZ32, [PipeB]>;
    def : WriteRes<WriteCTZ, [PipeB]>;
    def : WriteRes<WriteCTZ32, [PipeB]>;

    // cpop[w] look exactly like multiply.
    def : WriteRes<WriteCPOP, [PipeB]>;
    def : WriteRes<WriteCPOP32, [PipeB]>;

    // orc.b is in the late-B ALU.
    def : WriteRes<WriteORCB, [PipeB]>;

    // min/max are in the late-B ALU
    def : WriteRes<WriteIMinMax, [PipeB]>;

    // rev8 is in the late-A and late-B ALUs.
    def : WriteRes<WriteREV8, [PipeAB]>;

    // shNadd[.uw] is on the early-B and late-B ALUs.
    def : WriteRes<WriteSHXADD, [PipeB]>;
    def : WriteRes<WriteSHXADD32, [PipeB]>;
  }

  // Single-bit instructions
  // BEXT[I] instruction is available on all ALUs and the other instructions
  // are only available on the B pipe.
  let Latency = 3 in {
    def : WriteRes<WriteSingleBit, [PipeB]>;
    def : WriteRes<WriteSingleBitImm, [PipeB]>;
    def : WriteRes<WriteBEXT, [PipeAB]>;
    def : WriteRes<WriteBEXTI, [PipeAB]>;
  }

  // Memory
  def : WriteRes<WriteSTB, [PipeA]>;
  def : WriteRes<WriteSTH, [PipeA]>;
  def : WriteRes<WriteSTW, [PipeA]>;
  def : WriteRes<WriteSTD, [PipeA]>;
  def : WriteRes<WriteFST16, [PipeA]>;
  def : WriteRes<WriteFST32, [PipeA]>;
  def : WriteRes<WriteFST64, [PipeA]>;

  let Latency = 3 in {
  def : WriteRes<WriteLDB, [PipeA]>;
  def : WriteRes<WriteLDH, [PipeA]>;
  def : WriteRes<WriteLDW, [PipeA]>;
  def : WriteRes<WriteLDD, [PipeA]>;
  }

  let Latency = 2 in {
  def : WriteRes<WriteFLD16, [PipeA]>;
  def : WriteRes<WriteFLD32, [PipeA]>;
  def : WriteRes<WriteFLD64, [PipeA]>;
  }

  // Atomic memory
  def : WriteRes<WriteAtomicSTW, [PipeA]>;
  def : WriteRes<WriteAtomicSTD, [PipeA]>;

  let Latency = 3 in {
  def : WriteRes<WriteAtomicW, [PipeA]>;
  def : WriteRes<WriteAtomicD, [PipeA]>;
  def : WriteRes<WriteAtomicLDW, [PipeA]>;
  def : WriteRes<WriteAtomicLDD, [PipeA]>;
  }

  // Half precision.
  let Latency = fpLatencies.BasicFP16ALU in {
  def : WriteRes<WriteFAdd16, [PipeB]>;
  def : WriteRes<WriteFMul16, [PipeB]>;
  def : WriteRes<WriteFMA16, [PipeB]>;
  }
  let Latency = 3 in {
  def : WriteRes<WriteFSGNJ16, [PipeB]>;
  def : WriteRes<WriteFMinMax16, [PipeB]>;
  }

  let Latency = 14, ReleaseAtCycles = [1, 13] in {
  def :  WriteRes<WriteFDiv16, [PipeB, FDiv]>;
  def :  WriteRes<WriteFSqrt16, [PipeB, FDiv]>;
  }

  // Single precision.
  let Latency = fpLatencies.BasicFP32ALU in {
    def : WriteRes<WriteFAdd32, [PipeB]>;
    def : WriteRes<WriteFMul32, [PipeB]>;
    def : WriteRes<WriteFMA32, [PipeB]>;
  }
  let Latency = 3 in {
    def : WriteRes<WriteFSGNJ32, [PipeB]>;
    def : WriteRes<WriteFMinMax32, [PipeB]>;
  }

  def : WriteRes<WriteFDiv32, [PipeB, FDiv]> {
    let Latency = 27;
    let ReleaseAtCycles = [1, 26];
  }
  def : WriteRes<WriteFSqrt32, [PipeB, FDiv]> {
    let Latency = 27;
    let ReleaseAtCycles = [1, 26];
  }

  // Double precision
  let Latency = fpLatencies.BasicFP64ALU in {
    def : WriteRes<WriteFAdd64, [PipeB]>;
    def : WriteRes<WriteFMul64, [PipeB]>;
    def : WriteRes<WriteFMA64, [PipeB]>;
  }
  let Latency = 3 in {
    def : WriteRes<WriteFSGNJ64, [PipeB]>;
    def : WriteRes<WriteFMinMax64, [PipeB]>;
  }

  def : WriteRes<WriteFDiv64, [PipeB, FDiv]> {
    let Latency = 56;
    let ReleaseAtCycles = [1, 55];
  }
  def : WriteRes<WriteFSqrt64, [PipeB, FDiv]> {
    let Latency = 56;
    let ReleaseAtCycles = [1, 55];
  }

  // Conversions
  let Latency = 3 in {
  def : WriteRes<WriteFCvtI32ToF16, [PipeB]>;
  def : WriteRes<WriteFCvtI32ToF32, [PipeB]>;
  def : WriteRes<WriteFCvtI32ToF64, [PipeB]>;
  def : WriteRes<WriteFCvtI64ToF16, [PipeB]>;
  def : WriteRes<WriteFCvtI64ToF32, [PipeB]>;
  def : WriteRes<WriteFCvtI64ToF64, [PipeB]>;
  def : WriteRes<WriteFCvtF16ToI32, [PipeB]>;
  def : WriteRes<WriteFCvtF16ToI64, [PipeB]>;
  def : WriteRes<WriteFCvtF16ToF32, [PipeB]>;
  def : WriteRes<WriteFCvtF16ToF64, [PipeB]>;
  def : WriteRes<WriteFCvtF32ToI32, [PipeB]>;
  def : WriteRes<WriteFCvtF32ToI64, [PipeB]>;
  def : WriteRes<WriteFCvtF32ToF16, [PipeB]>;
  def : WriteRes<WriteFCvtF32ToF64, [PipeB]>;
  def : WriteRes<WriteFCvtF64ToI32, [PipeB]>;
  def : WriteRes<WriteFCvtF64ToI64, [PipeB]>;
  def : WriteRes<WriteFCvtF64ToF16, [PipeB]>;
  def : WriteRes<WriteFCvtF64ToF32, [PipeB]>;

  def : WriteRes<WriteFClass16, [PipeB]>;
  def : WriteRes<WriteFClass32, [PipeB]>;
  def : WriteRes<WriteFClass64, [PipeB]>;
  def : WriteRes<WriteFCmp16, [PipeB]>;
  def : WriteRes<WriteFCmp32, [PipeB]>;
  def : WriteRes<WriteFCmp64, [PipeB]>;
  def : WriteRes<WriteFMovI16ToF16, [PipeB]>;
  def : WriteRes<WriteFMovF16ToI16, [PipeB]>;
  def : WriteRes<WriteFMovI32ToF32, [PipeB]>;
  def : WriteRes<WriteFMovF32ToI32, [PipeB]>;
  def : WriteRes<WriteFMovI64ToF64, [PipeB]>;
  def : WriteRes<WriteFMovF64ToI64, [PipeB]>;
  }

  // 6. Configuration-Setting Instructions
  let Latency = 3 in {
  def : WriteRes<WriteVSETVLI, [PipeA]>;
  def : WriteRes<WriteVSETIVLI, [PipeA]>;
  def : WriteRes<WriteVSETVL, [PipeA]>;
  }

  // 7. Vector Loads and Stores
  // Unit-stride loads and stores can operate at the full bandwidth of the memory
  // pipe. The memory pipe is DLEN bits wide on x280.
  foreach mx = SchedMxList in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVLDE",    [VCQ, VL], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVLDFF",   [VCQ, VL], mx, IsWorstCase>;
    }
    let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in
    defm : LMULWriteResMX<"WriteVSTE",    [VCQ, VS], mx, IsWorstCase>;
  }

  foreach mx = SchedMxList in {
    defvar Cycles = SiFive7GetMaskLoadStoreCycles<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in
    defm : LMULWriteResMX<"WriteVLDM",    [VCQ, VL], mx, IsWorstCase>;
    let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in
    defm : LMULWriteResMX<"WriteVSTM",    [VCQ, VS], mx, IsWorstCase>;
  }

  // Strided loads and stores operate at one element per cycle and should be
  // scheduled accordingly. Indexed loads and stores operate at one element per
  // cycle, and they stall the machine until all addresses have been generated,
  // so they cannot be scheduled. Indexed and strided loads and stores have LMUL
  // specific suffixes, but since SEW is already encoded in the name of the
  // resource, we do not need to use LMULSEWXXX constructors. However, we do
  // use the SEW from the name to determine the number of Cycles.

  foreach mx = SchedMxList in {
    defvar VLDSX0Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar Cycles = SiFive7GetCyclesOnePerElement<mx, 8, VLEN>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    defm  : LMULWriteResMXVariant<"WriteVLDS8",  VLDSX0Pred, [VCQ, VL],
                                         4, [0, 1], [1, !add(1, VLDSX0Cycles)], !add(3, Cycles),
                                         [0, 1], [1, !add(1, Cycles)], mx, IsWorstCase>;
    let Latency = !add(3, Cycles), AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVLDUX8", [VCQ, VL], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVLDOX8", [VCQ, VL], mx, IsWorstCase>;
    }
    let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVSTS8",  [VCQ, VS], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSTUX8", [VCQ, VS], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSTOX8", [VCQ, VS], mx, IsWorstCase>;
    }
  }
  // TODO: The MxLists need to be filtered by EEW. We only need to support
  // LMUL >= SEW_min/ELEN. Here, the smallest EEW prevents us from having MF8
  // since LMUL >= 16/64.
  foreach mx = ["MF4", "MF2", "M1", "M2", "M4", "M8"] in {
    defvar VLDSX0Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar Cycles = SiFive7GetCyclesOnePerElement<mx, 16, VLEN>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    defm  : LMULWriteResMXVariant<"WriteVLDS16",  VLDSX0Pred, [VCQ, VL],
                                         4, [0, 1], [1, !add(1, VLDSX0Cycles)], !add(3, Cycles),
                                         [0, 1], [1, !add(1, Cycles)], mx, IsWorstCase>;
    let Latency = !add(3, Cycles), AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVLDUX16", [VCQ, VL], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVLDOX16", [VCQ, VL], mx, IsWorstCase>;
    }
    let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVSTS16",  [VCQ, VS], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSTUX16", [VCQ, VS], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSTOX16", [VCQ, VS], mx, IsWorstCase>;
    }
  }
  foreach mx = ["MF2", "M1", "M2", "M4", "M8"] in {
    defvar VLDSX0Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar Cycles = SiFive7GetCyclesOnePerElement<mx, 32, VLEN>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    defm  : LMULWriteResMXVariant<"WriteVLDS32",  VLDSX0Pred, [VCQ, VL],
                                         4, [0, 1], [1, !add(1, VLDSX0Cycles)], !add(3, Cycles),
                                         [0, 1], [1, !add(1, Cycles)], mx, IsWorstCase>;
    let Latency = !add(3, Cycles), AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVLDUX32", [VCQ, VL], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVLDOX32", [VCQ, VL], mx, IsWorstCase>;
    }
    let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVSTS32",  [VCQ, VS], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSTUX32", [VCQ, VS], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSTOX32", [VCQ, VS], mx, IsWorstCase>;
    }
  }
  foreach mx = ["M1", "M2", "M4", "M8"] in {
    defvar VLDSX0Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar Cycles = SiFive7GetCyclesOnePerElement<mx, 64, VLEN>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    defm  : LMULWriteResMXVariant<"WriteVLDS64",  VLDSX0Pred, [VCQ, VL],
                                         4, [0, 1], [1, !add(1, VLDSX0Cycles)], !add(3, Cycles),
                                         [0, 1], [1, !add(1, Cycles)], mx, IsWorstCase>;
    let Latency = !add(3, Cycles), AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVLDUX64", [VCQ, VL], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVLDOX64", [VCQ, VL], mx, IsWorstCase>;
    }
    let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVSTS64",  [VCQ, VS], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSTUX64", [VCQ, VS], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSTOX64", [VCQ, VS], mx, IsWorstCase>;
    }
  }

  // VLD*R is LMUL aware
  let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 2)] in
    def : WriteRes<WriteVLD1R,  [VCQ, VL]>;
  let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 4)] in
    def : WriteRes<WriteVLD2R,  [VCQ, VL]>;
  let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 8)] in
    def : WriteRes<WriteVLD4R,  [VCQ, VL]>;
  let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 16)] in
    def : WriteRes<WriteVLD8R,  [VCQ, VL]>;
  // VST*R is LMUL aware
  let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 2)] in
    def : WriteRes<WriteVST1R,   [VCQ, VS]>;
  let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 4)] in
    def : WriteRes<WriteVST2R,   [VCQ, VS]>;
  let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 8)] in
    def : WriteRes<WriteVST4R,   [VCQ, VS]>;
  let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 16)] in
    def : WriteRes<WriteVST8R,   [VCQ, VS]>;

  // Segmented Loads and Stores
  // Unit-stride segmented loads and stores are effectively converted into strided
  // segment loads and stores. Strided segment loads and stores operate at up to
  // one segment per cycle if the segment fits within one aligned memory beat.
  // Indexed segment loads and stores operate at the same rate as strided ones,
  // but they stall the machine until all addresses have been generated.
  foreach mx = SchedMxList in {
    foreach eew = [8, 16, 32, 64] in {
      defvar Cycles = SiFive7GetCyclesSegmentedSeg2<mx>.c;
      defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
      // Does not chain so set latency high
      let Latency = !add(3, Cycles), AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
        defm : LMULWriteResMX<"WriteVLSEG2e" # eew,   [VCQ, VL], mx, IsWorstCase>;
        defm : LMULWriteResMX<"WriteVLSEGFF2e" # eew, [VCQ, VL], mx, IsWorstCase>;
      }
      let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in
      defm : LMULWriteResMX<"WriteVSSEG2e" # eew,   [VCQ, VS], mx, IsWorstCase>;
      foreach nf=3-8 in {
        defvar Cycles = SiFive7GetCyclesSegmented<mx, eew, nf, VLEN>.c;
        defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
        // Does not chain so set latency high
        let Latency = !add(3, Cycles), AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
          defm : LMULWriteResMX<"WriteVLSEG" # nf # "e" # eew,   [VCQ, VL], mx, IsWorstCase>;
          defm : LMULWriteResMX<"WriteVLSEGFF" # nf # "e" # eew, [VCQ, VL], mx, IsWorstCase>;
        }
        let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in
        defm : LMULWriteResMX<"WriteVSSEG" # nf # "e" # eew,   [VCQ, VS], mx, IsWorstCase>;
      }
    }
  }
  foreach mx = SchedMxList in {
    foreach nf=2-8 in {
      foreach eew = [8, 16, 32, 64] in {
        defvar Cycles = SiFive7GetCyclesSegmented<mx, eew, nf, VLEN>.c;
        defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
        // Does not chain so set latency high
        let Latency = !add(3, Cycles), AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
          defm : LMULWriteResMX<"WriteVLSSEG" # nf # "e" # eew,  [VCQ, VL], mx, IsWorstCase>;
          defm : LMULWriteResMX<"WriteVLUXSEG" # nf # "e" # eew, [VCQ, VL], mx, IsWorstCase>;
          defm : LMULWriteResMX<"WriteVLOXSEG" # nf # "e" # eew, [VCQ, VL], mx, IsWorstCase>;
        }
        let Latency = 1, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
          defm : LMULWriteResMX<"WriteVSSSEG" # nf # "e" # eew,  [VCQ, VS], mx, IsWorstCase>;
          defm : LMULWriteResMX<"WriteVSUXSEG" # nf # "e" # eew, [VCQ, VS], mx, IsWorstCase>;
          defm : LMULWriteResMX<"WriteVSOXSEG" # nf # "e" # eew, [VCQ, VS], mx, IsWorstCase>;
        }
      }
    }
  }

  // 11. Vector Integer Arithmetic Instructions
  foreach mx = SchedMxList in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVIALUV",     [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIALUX",     [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIALUI",     [VCQ, VA1OrVA2], mx, IsWorstCase>;
      // vmadc requires mask
      defm : LMULWriteResMX<"WriteVICALUV",    [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVICALUX",    [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVICALUI",    [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVICALUMV",   [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVICALUMX",   [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVICALUMI",   [VCQ, VA1], mx, IsWorstCase>;
      // min max require merge
      defm : LMULWriteResMX<"WriteVIMinMaxV",  [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIMinMaxX",  [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIMergeV",   [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIMergeX",   [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIMergeI",   [VCQ, VA1], mx, IsWorstCase>;

      defm : LMULWriteResMX<"WriteVIMovV",     [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIMovX",     [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIMovI",     [VCQ, VA1OrVA2], mx, IsWorstCase>;

      defm : LMULWriteResMX<"WriteVExtV",      [VCQ, VA1], mx, IsWorstCase>;
    }
    let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVShiftV",    [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVShiftX",    [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVShiftI",    [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIMulV",     [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIMulX",     [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIMulAddV",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIMulAddX",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
    }
    // Mask results can't chain.
    let Latency = !add(Cycles, 3), AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVICmpV",     [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVICmpX",     [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVICmpI",     [VCQ, VA1], mx, IsWorstCase>;
    }
  }

  foreach mx = SchedMxList in {
    foreach sew = SchedSEWSet<mx>.val in {
      defvar Cycles = !mul(SiFive7GetDivOrSqrtFactor<sew>.c,
                           !div(SiFive7GetCyclesOnePerElement<mx, sew, VLEN>.c, 4));
      defvar IsWorstCase = SiFive7IsWorstCaseMXSEW<mx, sew, SchedMxList>.c;
      let Latency = Cycles, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
        defm : LMULSEWWriteResMXSEW<"WriteVIDivV", [VCQ, VA1], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVIDivX", [VCQ, VA1], mx, sew, IsWorstCase>;
      }
    }
  }

  // Widening
  foreach mx = SchedMxListW in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxListW>.c;
    let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVIWALUV",    [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIWALUX",    [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIWALUI",    [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIWMulV",    [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIWMulX",    [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIWMulAddV", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIWMulAddX", [VCQ, VA1OrVA2], mx, IsWorstCase>;
    }
  }
  // Narrowing
  foreach mx = SchedMxListW in {
    defvar Cycles = SiFive7GetCyclesNarrowing<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxListW>.c;
    let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVNShiftV",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVNShiftX",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVNShiftI",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
    }
  }

  // 12. Vector Fixed-Point Arithmetic Instructions
  foreach mx = SchedMxList in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVSALUV",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSALUX",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSALUI",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVAALUV",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVAALUX",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSMulV",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSMulX",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSShiftV", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSShiftX", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSShiftI", [VCQ, VA1OrVA2], mx, IsWorstCase>;
    }
  }
  // Narrowing
  foreach mx = SchedMxListW in {
    defvar Cycles = SiFive7GetCyclesNarrowing<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxListW>.c;
    let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVNClipV",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVNClipX",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVNClipI",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
    }
  }

  // 13. Vector Floating-Point Instructions
  foreach mx = SchedMxListF in {
    foreach sew = SchedSEWSet<mx, isF=1>.val in {
      defvar Cycles = !if(!and(isFP64Throttled, !eq(sew, 64)),
                          SiFive7GetCyclesOnePerElement<mx, sew, VLEN>.c,
                          SiFive7GetCyclesDefault<mx>.c);
      defvar Lat8 = !if(!and(isFP64Throttled, !eq(sew, 64)), Cycles, 8);
      defvar VA = !if(!and(isFP64Throttled, !eq(sew, 64)), VA1, VA1OrVA2);
      defvar IsWorstCase = SiFive7IsWorstCaseMXSEW<mx, sew, SchedMxListF, isF=1>.c;
      let Latency = Lat8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
        defm : LMULSEWWriteResMXSEW<"WriteVFALUV",  [VCQ, VA], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFALUF",  [VCQ, VA], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFMulV",  [VCQ, VA], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFMulF",  [VCQ, VA], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFMulAddV", [VCQ, VA], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFMulAddF", [VCQ, VA], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFRecpV",   [VCQ, VA1], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFCvtIToFV", [VCQ, VA1], mx, sew, IsWorstCase>;
      }
      defvar Lat4 = !if(!and(isFP64Throttled, !eq(sew, 64)), Cycles, 4);
      let Latency = Lat4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
        defm : LMULSEWWriteResMXSEW<"WriteVFSgnjV",   [VCQ, VA], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFSgnjF",   [VCQ, VA], mx, sew, IsWorstCase>;
        // min max require merge
        defm : LMULSEWWriteResMXSEW<"WriteVFMinMaxV", [VCQ, VA1], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFMinMaxF", [VCQ, VA1], mx, sew, IsWorstCase>;
      }
    }
  }
  foreach mx = SchedMxList in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVFCvtFToIV",  [VCQ, VA1], mx, IsWorstCase>;
    }
    let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVFClassV",    [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVFMergeV",    [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVFMovV",      [VCQ, VA1OrVA2], mx, IsWorstCase>;
    }
    // Mask results can't chain.
    let Latency = !add(Cycles, 3), AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      // fcmp requires mask
      defm : LMULWriteResMX<"WriteVFCmpV",      [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVFCmpF",      [VCQ, VA1], mx, IsWorstCase>;
    }
  }
  foreach mx = SchedMxListF in {
    foreach sew = SchedSEWSet<mx, isF=1>.val in {
      defvar Cycles = !mul(SiFive7GetDivOrSqrtFactor<sew>.c,
                           !div(SiFive7GetCyclesOnePerElement<mx, sew, VLEN>.c, 4));
      defvar IsWorstCase = SiFive7IsWorstCaseMXSEW<mx, sew, SchedMxListF, 1>.c;
      let Latency = Cycles, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
        defm : LMULSEWWriteResMXSEW<"WriteVFSqrtV", [VCQ, VA1], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFDivV",  [VCQ, VA1], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFDivF",  [VCQ, VA1], mx, sew, IsWorstCase>;
      }
    }
  }

  // Widening
  foreach mx = SchedMxListW in {
    foreach sew = SchedSEWSet<mx, isF=0, isWidening=1>.val in {
      defvar Cycles = !if(!and(isFP64Throttled, !eq(sew, 32)),
                          SiFive7GetCyclesOnePerElement<mx, sew, VLEN>.c,
                          SiFive7GetCyclesDefault<mx>.c);
      defvar IsWorstCase = SiFive7IsWorstCaseMXSEW<mx, sew, SchedMxListW>.c;
      let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in
      defm : LMULSEWWriteResMXSEW<"WriteVFWCvtIToFV", [VCQ, VA1], mx, sew, IsWorstCase>;
    }
  }
  foreach mx = SchedMxListFW in {
    foreach sew = SchedSEWSet<mx, isF=1, isWidening=1>.val in {
      defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
      defvar IsWorstCase = SiFive7IsWorstCaseMXSEW<mx, sew, SchedMxListFW, isF=1>.c;
      let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
        defm : LMULSEWWriteResMXSEW<"WriteVFWALUV", [VCQ, VA1OrVA2], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFWALUF", [VCQ, VA1OrVA2], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFWMulV", [VCQ, VA1OrVA2], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFWMulF", [VCQ, VA1OrVA2], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFWMulAddV", [VCQ, VA1OrVA2], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFWMulAddF", [VCQ, VA1OrVA2], mx, sew, IsWorstCase>;
      }
      defvar CvtCycles = !if(!and(isFP64Throttled, !eq(sew, 32)),
                          SiFive7GetCyclesOnePerElement<mx, sew, VLEN>.c,
                          SiFive7GetCyclesDefault<mx>.c);
      let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, CvtCycles)] in
      defm "" : LMULSEWWriteResMXSEW<"WriteVFWCvtFToFV", [VCQ, VA1], mx, sew, IsWorstCase>;
    }
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxListFW>.c;
    let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in
    defm : LMULWriteResMX<"WriteVFWCvtFToIV", [VCQ, VA1], mx, IsWorstCase>;
  }
  // Narrowing
  foreach mx = SchedMxListW in {
    defvar Cycles = SiFive7GetCyclesNarrowing<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxListW>.c;
    let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVFNCvtFToIV", [VCQ, VA1], mx, IsWorstCase>;
    }
  }
  foreach mx = SchedMxListFW in {
    foreach sew = SchedSEWSet<mx, isF=1, isWidening=1>.val in {
      defvar Cycles = !if(!and(isFP64Throttled, !eq(sew, 32)),
                          SiFive7GetCyclesOnePerElement<mx, sew, VLEN>.c,
                          SiFive7GetCyclesNarrowing<mx>.c);
      defvar IsWorstCase = SiFive7IsWorstCaseMXSEW<mx, sew, SchedMxListFW, isF=1>.c;
      let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
        defm : LMULSEWWriteResMXSEW<"WriteVFNCvtIToFV", [VCQ, VA1], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFNCvtFToFV", [VCQ, VA1], mx, sew, IsWorstCase>;
      }
    }
  }

  // 14. Vector Reduction Operations
  foreach mx = SchedMxList in {
    foreach sew = SchedSEWSet<mx>.val in {
      defvar Cycles = SiFive7GetReductionCycles<mx, sew, VLEN>.c;
      defvar IsWorstCase = SiFive7IsWorstCaseMXSEW<mx, sew, SchedMxList>.c;
      let Latency = Cycles, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
        defm : LMULSEWWriteResMXSEW<"WriteVIRedV_From", [VCQ, VA1],
                                       mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVIRedMinMaxV_From", [VCQ, VA1],
                                       mx, sew, IsWorstCase>;
      }
    }
  }

  foreach mx = SchedMxListWRed in {
    foreach sew = SchedSEWSet<mx, 0, 1>.val in {
      defvar Cycles = SiFive7GetReductionCycles<mx, sew, VLEN>.c;
      defvar IsWorstCase = SiFive7IsWorstCaseMXSEW<mx, sew, SchedMxListWRed>.c;
      let Latency = Cycles, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in
      defm : LMULSEWWriteResMXSEW<"WriteVIWRedV_From", [VCQ, VA1],
                                     mx, sew, IsWorstCase>;
    }
  }

  foreach mx = SchedMxListF in {
    foreach sew = SchedSEWSet<mx, 1>.val in {
      defvar RedCycles = SiFive7GetReductionCycles<mx, sew, VLEN>.c;
      defvar IsWorstCase = SiFive7IsWorstCaseMXSEW<mx, sew, SchedMxListF, 1>.c;
      let Latency = RedCycles, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, RedCycles)] in {
        defm : LMULSEWWriteResMXSEW<"WriteVFRedV_From", [VCQ, VA1],
                                       mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVFRedMinMaxV_From", [VCQ, VA1],
                                       mx, sew, IsWorstCase>;
      }
      defvar OrdRedCycles = SiFive7GetOrderedReductionCycles<mx, sew, VLEN>.c;
      let Latency = OrdRedCycles, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, OrdRedCycles)] in
      defm : LMULSEWWriteResMXSEW<"WriteVFRedOV_From", [VCQ, VA1],
                                     mx, sew, IsWorstCase>;
    }
  }

  foreach mx = SchedMxListFWRed in {
    foreach sew = SchedSEWSet<mx, 1, 1>.val in {
      defvar RedCycles = SiFive7GetReductionCycles<mx, sew, VLEN>.c;
      defvar IsWorstCase = SiFive7IsWorstCaseMXSEW<mx, sew, SchedMxListFWRed, 1>.c;
      let Latency = RedCycles, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, RedCycles)] in
      defm : LMULSEWWriteResMXSEW<"WriteVFWRedV_From", [VCQ, VA1],
                                     mx, sew, IsWorstCase>;
      defvar OrdRedCycles = SiFive7GetOrderedReductionCycles<mx, sew, VLEN>.c;
      let Latency = OrdRedCycles, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, OrdRedCycles)] in
      defm : LMULSEWWriteResMXSEW<"WriteVFWRedOV_From", [VCQ, VA1],
                                     mx, sew, IsWorstCase>;
    }
  }

  // 15. Vector Mask Instructions
  foreach mx = SchedMxList in {
    defvar Cycles = SiFive7GetCyclesVMask<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVMALUV", [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVMPopV", [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVMFFSV", [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVMSFSV", [VCQ, VA1], mx, IsWorstCase>;
    }
  }
  foreach mx = SchedMxList in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVIotaV", [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVIdxV", [VCQ, VA1], mx, IsWorstCase>;
    }
  }

  // 16. Vector Permutation Instructions
  let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 1)] in {
    def : WriteRes<WriteVMovSX, [VCQ, VA1OrVA2]>;
    def : WriteRes<WriteVMovXS, [VCQ, VA1]>;
    def : WriteRes<WriteVMovSF, [VCQ, VA1OrVA2]>;
    def : WriteRes<WriteVMovFS, [VCQ, VA1]>;
  }
  foreach mx = SchedMxList in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    let Latency = 8, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVRGatherVX",    [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVRGatherVI",    [VCQ, VA1], mx, IsWorstCase>;
    }
  }

  foreach mx = SchedMxList in {
    foreach sew = SchedSEWSet<mx>.val in {
      defvar Cycles = SiFive7GetCyclesOnePerElement<mx, sew, VLEN>.c;
      defvar IsWorstCase = SiFive7IsWorstCaseMXSEW<mx, sew, SchedMxList>.c;
      let Latency = !add(Cycles, 3), AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
        defm : LMULSEWWriteResMXSEW<"WriteVRGatherVV", [VCQ, VA1], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVRGatherEI16VV", [VCQ, VA1], mx, sew, IsWorstCase>;
        defm : LMULSEWWriteResMXSEW<"WriteVCompressV", [VCQ, VA1], mx, sew, IsWorstCase>;
      }
    }
  }

  foreach mx = SchedMxList in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVSlideUpX",   [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSlideDownX", [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVSlideI",     [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVISlide1X",   [VCQ, VA1], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVFSlide1F",   [VCQ, VA1], mx, IsWorstCase>;
    }
  }

  // VMov*V is LMUL Aware
  let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 2)] in
    def : WriteRes<WriteVMov1V,     [VCQ, VA1OrVA2]>;
  let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 4)] in
    def : WriteRes<WriteVMov2V,     [VCQ, VA1OrVA2]>;
  let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 8)] in
    def : WriteRes<WriteVMov4V,     [VCQ, VA1OrVA2]>;
  let Latency = 4, AcquireAtCycles = [0, 1], ReleaseAtCycles = [1, !add(1, 16)] in
    def : WriteRes<WriteVMov8V,     [VCQ, VA1OrVA2]>;

  // Others
  def : WriteRes<WriteCSR, [PipeB]>;
  def : WriteRes<WriteNop, []>;
  let Latency = 3 in
    def : WriteRes<WriteRdVLENB, [PipeB]>;

  def : InstRW<[WriteIALU], (instrs COPY)>;

  // VCIX
  //
  // In principle we don't know the latency of any VCIX instructions (they
  // depends on a particular coprocessor implementation). However, the default
  // latency of 1 can lead to issues [1]. So instead we set the latency to the
  // default provided by `SiFive7GetCyclesDefault`. This is still not accurate
  // and can lead to suboptimal codegen, but should hopefully be a better
  // starting point.
  //
  // [1] https://github.com/llvm/llvm-project/issues/83391
  foreach mx = SchedMxList in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxList>.c;
    let Latency = Cycles,
        AcquireAtCycles = [0, 1],
        ReleaseAtCycles = [1, !add(1, Cycles)] in {
      defm : LMULWriteResMX<"WriteVC_V_I",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_V_X",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_V_IV",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_V_VV",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_V_XV",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_V_IVV", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_V_IVW", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_V_VVV", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_V_VVW", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_V_XVV", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_V_XVW", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      foreach f = ["FPR16", "FPR32", "FPR64"] in {
        defm : LMULWriteResMX<"WriteVC_V_" # f # "V",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
        defm : LMULWriteResMX<"WriteVC_V_" # f # "VV", [VCQ, VA1OrVA2], mx, IsWorstCase>;
        defm : LMULWriteResMX<"WriteVC_V_" # f # "VW", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      }
      defm : LMULWriteResMX<"WriteVC_I",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_X",   [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_IV",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_VV",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_XV",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_IVV", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_IVW", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_VVV", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_VVW", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_XVV", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      defm : LMULWriteResMX<"WriteVC_XVW", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      foreach f = ["FPR16", "FPR32", "FPR64"] in {
        defm : LMULWriteResMX<"WriteVC_" # f # "V",  [VCQ, VA1OrVA2], mx, IsWorstCase>;
        defm : LMULWriteResMX<"WriteVC_" # f # "VV", [VCQ, VA1OrVA2], mx, IsWorstCase>;
        defm : LMULWriteResMX<"WriteVC_" # f # "VW", [VCQ, VA1OrVA2], mx, IsWorstCase>;
      }
    }
  }

  foreach mx = !listremove(SchedMxListW, ["M4"]) in {
    defvar Cycles = SiFive7GetSiFiveVFNRClipCycles<mx, VLEN>;
    let Latency = Cycles.latency,
        AcquireAtCycles = [0, 1],
        ReleaseAtCycles = [1, !add(1, Cycles.occupancy)] in
    defm : LMULWriteResMX<"WriteSF_VFNRClipV", [VCQ, VA1], mx,
                          IsWorstCase=!eq(mx, "M2")>;
  }

  // XSfvqmaccdod
  foreach mx = ["M1", "M2", "M4", "M8"] in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    let Latency = 8,
        AcquireAtCycles = [0, 1],
        ReleaseAtCycles = [1, !add(1, Cycles)] in
    defm : LMULWriteResMX<"WriteSF_VQMACC_DOD", [VCQ, VA1], mx,
                          IsWorstCase=!eq(mx, "M8")>;
  }

  // XSfvqmaccqoq
  foreach mx = ["MF2", "M1", "M2", "M4"] in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    let Latency = 8,
        AcquireAtCycles = [0, 1],
        ReleaseAtCycles = [1, !add(1, Cycles)] in
    defm : LMULWriteResMX<"WriteSF_VQMACC_QOQ", [VCQ, VA1], mx,
                          IsWorstCase=!eq(mx, "M4")>;
  }

  // XSfvfwmaccqqq
  foreach mx = SchedMxListFW in {
    defvar Cycles = SiFive7GetCyclesDefault<mx>.c;
    defvar IsWorstCase = SiFive7IsWorstCaseMX<mx, SchedMxListFW>.c;
    let Latency = 8,
        AcquireAtCycles = [0, 1],
        ReleaseAtCycles = [1, !add(1, Cycles)] in
    defm : LMULWriteResMX<"WriteSF_VFWMACC_QQQ", [VCQ, VA1], mx, IsWorstCase>;
  }
}

//===----------------------------------------------------------------------===//

multiclass SiFive7ReadAdvance {
  // Bypass and advance
  def : SiFive7AnyToGPRBypass<ReadJmp>;
  def : SiFive7AnyToGPRBypass<ReadJalr>;
  def : ReadAdvance<ReadCSR, 0>;
  def : SiFive7AnyToGPRBypass<ReadStoreData>;
  def : ReadAdvance<ReadMemBase, 0>;
  def : SiFive7AnyToGPRBypass<ReadIALU>;
  def : SiFive7AnyToGPRBypass<ReadIALU32>;
  def : SiFive7AnyToGPRBypass<ReadShiftImm>;
  def : SiFive7AnyToGPRBypass<ReadShiftImm32>;
  def : SiFive7AnyToGPRBypass<ReadShiftReg>;
  def : SiFive7AnyToGPRBypass<ReadShiftReg32>;
  def : ReadAdvance<ReadIDiv, 0>;
  def : ReadAdvance<ReadIDiv32, 0>;
  def : ReadAdvance<ReadIRem, 0>;
  def : ReadAdvance<ReadIRem32, 0>;
  def : ReadAdvance<ReadIMul, 0>;
  def : ReadAdvance<ReadIMul32, 0>;
  def : ReadAdvance<ReadAtomicWA, 0>;
  def : ReadAdvance<ReadAtomicWD, 0>;
  def : ReadAdvance<ReadAtomicDA, 0>;
  def : ReadAdvance<ReadAtomicDD, 0>;
  def : ReadAdvance<ReadAtomicLDW, 0>;
  def : ReadAdvance<ReadAtomicLDD, 0>;
  def : ReadAdvance<ReadAtomicSTW, 0>;
  def : ReadAdvance<ReadAtomicSTD, 0>;
  def : ReadAdvance<ReadFStoreData, 0>;
  def : ReadAdvance<ReadFMemBase, 0>;
  def : ReadAdvance<ReadFAdd16, 0>;
  def : ReadAdvance<ReadFAdd32, 0>;
  def : ReadAdvance<ReadFAdd64, 0>;
  def : ReadAdvance<ReadFMul16, 0>;
  def : ReadAdvance<ReadFMA16, 0>;
  def : ReadAdvance<ReadFMA16Addend, 0>;
  def : ReadAdvance<ReadFMul32, 0>;
  def : ReadAdvance<ReadFMul64, 0>;
  def : ReadAdvance<ReadFMA32, 0>;
  def : ReadAdvance<ReadFMA32Addend, 0>;
  def : ReadAdvance<ReadFMA64, 0>;
  def : ReadAdvance<ReadFMA64Addend, 0>;
  def : ReadAdvance<ReadFDiv16, 0>;
  def : ReadAdvance<ReadFDiv32, 0>;
  def : ReadAdvance<ReadFDiv64, 0>;
  def : ReadAdvance<ReadFSqrt16, 0>;
  def : ReadAdvance<ReadFSqrt32, 0>;
  def : ReadAdvance<ReadFSqrt64, 0>;
  def : ReadAdvance<ReadFCmp16, 0>;
  def : ReadAdvance<ReadFCmp32, 0>;
  def : ReadAdvance<ReadFCmp64, 0>;
  def : ReadAdvance<ReadFSGNJ16, 0>;
  def : ReadAdvance<ReadFSGNJ32, 0>;
  def : ReadAdvance<ReadFSGNJ64, 0>;
  def : ReadAdvance<ReadFMinMax16, 0>;
  def : ReadAdvance<ReadFMinMax32, 0>;
  def : ReadAdvance<ReadFMinMax64, 0>;
  def : ReadAdvance<ReadFCvtF16ToI32, 0>;
  def : ReadAdvance<ReadFCvtF16ToI64, 0>;
  def : ReadAdvance<ReadFCvtF32ToI32, 0>;
  def : ReadAdvance<ReadFCvtF32ToI64, 0>;
  def : ReadAdvance<ReadFCvtF64ToI32, 0>;
  def : ReadAdvance<ReadFCvtF64ToI64, 0>;
  def : ReadAdvance<ReadFCvtI32ToF16, 0>;
  def : ReadAdvance<ReadFCvtI32ToF32, 0>;
  def : ReadAdvance<ReadFCvtI32ToF64, 0>;
  def : ReadAdvance<ReadFCvtI64ToF16, 0>;
  def : ReadAdvance<ReadFCvtI64ToF32, 0>;
  def : ReadAdvance<ReadFCvtI64ToF64, 0>;
  def : ReadAdvance<ReadFCvtF32ToF64, 0>;
  def : ReadAdvance<ReadFCvtF64ToF32, 0>;
  def : ReadAdvance<ReadFCvtF16ToF32, 0>;
  def : ReadAdvance<ReadFCvtF32ToF16, 0>;
  def : ReadAdvance<ReadFCvtF16ToF64, 0>;
  def : ReadAdvance<ReadFCvtF64ToF16, 0>;
  def : ReadAdvance<ReadFMovF16ToI16, 0>;
  def : ReadAdvance<ReadFMovI16ToF16, 0>;
  def : ReadAdvance<ReadFMovF32ToI32, 0>;
  def : ReadAdvance<ReadFMovI32ToF32, 0>;
  def : ReadAdvance<ReadFMovF64ToI64, 0>;
  def : ReadAdvance<ReadFMovI64ToF64, 0>;
  def : ReadAdvance<ReadFClass16, 0>;
  def : ReadAdvance<ReadFClass32, 0>;
  def : ReadAdvance<ReadFClass64, 0>;

  def : SiFive7AnyToGPRBypass<ReadSFBJmp, 0>;
  def : SiFive7AnyToGPRBypass<ReadSFBALU, 0>;

  // Bitmanip
  def : SiFive7AnyToGPRBypass<ReadRotateImm>;
  def : SiFive7AnyToGPRBypass<ReadRotateImm32>;
  def : SiFive7AnyToGPRBypass<ReadRotateReg>;
  def : SiFive7AnyToGPRBypass<ReadRotateReg32>;
  def : SiFive7AnyToGPRBypass<ReadCLZ>;
  def : SiFive7AnyToGPRBypass<ReadCLZ32>;
  def : SiFive7AnyToGPRBypass<ReadCTZ>;
  def : SiFive7AnyToGPRBypass<ReadCTZ32>;
  def : ReadAdvance<ReadCPOP, 0>;
  def : ReadAdvance<ReadCPOP32, 0>;
  def : SiFive7AnyToGPRBypass<ReadORCB>;
  def : SiFive7AnyToGPRBypass<ReadIMinMax>;
  def : SiFive7AnyToGPRBypass<ReadREV8>;
  def : SiFive7AnyToGPRBypass<ReadSHXADD>;
  def : SiFive7AnyToGPRBypass<ReadSHXADD32>;
  // Single-bit instructions
  def : SiFive7AnyToGPRBypass<ReadSingleBit>;
  def : SiFive7AnyToGPRBypass<ReadSingleBitImm>;

  // 6. Configuration-Setting Instructions
  def : ReadAdvance<ReadVSETVLI, 2>;
  def : ReadAdvance<ReadVSETVL, 2>;

  // 7. Vector Loads and Stores
  def : ReadAdvance<ReadVLDX, 0>;
  def : ReadAdvance<ReadVSTX, 0>;
  defm : LMULReadAdvance<"ReadVSTEV", 0>;
  defm : LMULReadAdvance<"ReadVSTM", 0>;
  def : ReadAdvance<ReadVLDSX, 0>;
  def : ReadAdvance<ReadVSTSX, 0>;
  defm : LMULReadAdvance<"ReadVSTS8V", 0>;
  defm : LMULReadAdvance<"ReadVSTS16V", 0>;
  defm : LMULReadAdvance<"ReadVSTS32V", 0>;
  defm : LMULReadAdvance<"ReadVSTS64V", 0>;
  defm : LMULReadAdvance<"ReadVLDUXV", 0>;
  defm : LMULReadAdvance<"ReadVLDOXV", 0>;
  defm : LMULReadAdvance<"ReadVSTUX8", 0>;
  defm : LMULReadAdvance<"ReadVSTUX16", 0>;
  defm : LMULReadAdvance<"ReadVSTUX32", 0>;
  defm : LMULReadAdvance<"ReadVSTUX64", 0>;
  defm : LMULReadAdvance<"ReadVSTUXV", 0>;
  defm : LMULReadAdvance<"ReadVSTUX8V", 0>;
  defm : LMULReadAdvance<"ReadVSTUX16V", 0>;
  defm : LMULReadAdvance<"ReadVSTUX32V", 0>;
  defm : LMULReadAdvance<"ReadVSTUX64V", 0>;
  defm : LMULReadAdvance<"ReadVSTOX8", 0>;
  defm : LMULReadAdvance<"ReadVSTOX16", 0>;
  defm : LMULReadAdvance<"ReadVSTOX32", 0>;
  defm : LMULReadAdvance<"ReadVSTOX64", 0>;
  defm : LMULReadAdvance<"ReadVSTOXV", 0>;
  defm : LMULReadAdvance<"ReadVSTOX8V", 0>;
  defm : LMULReadAdvance<"ReadVSTOX16V", 0>;
  defm : LMULReadAdvance<"ReadVSTOX32V", 0>;
  defm : LMULReadAdvance<"ReadVSTOX64V", 0>;
  // LMUL Aware
  def : ReadAdvance<ReadVST1R, 0>;
  def : ReadAdvance<ReadVST2R, 0>;
  def : ReadAdvance<ReadVST4R, 0>;
  def : ReadAdvance<ReadVST8R, 0>;

  // 11. Vector Integer Arithmetic Instructions
  defm : LMULReadAdvance<"ReadVIALUV", 0>;
  defm : LMULReadAdvance<"ReadVIALUX", 0>;
  defm : LMULReadAdvanceW<"ReadVIWALUV", 0>;
  defm : LMULReadAdvanceW<"ReadVIWALUX", 0>;
  defm : LMULReadAdvance<"ReadVExtV", 0>;
  defm : LMULReadAdvance<"ReadVICALUV", 0>;
  defm : LMULReadAdvance<"ReadVICALUX", 0>;
  defm : LMULReadAdvance<"ReadVShiftV", 0>;
  defm : LMULReadAdvance<"ReadVShiftX", 0>;
  defm : LMULReadAdvanceW<"ReadVNShiftV", 0>;
  defm : LMULReadAdvanceW<"ReadVNShiftX", 0>;
  defm : LMULReadAdvance<"ReadVICmpV", 0>;
  defm : LMULReadAdvance<"ReadVICmpX", 0>;
  defm : LMULReadAdvance<"ReadVIMinMaxV", 0>;
  defm : LMULReadAdvance<"ReadVIMinMaxX", 0>;
  defm : LMULReadAdvance<"ReadVIMulV", 0>;
  defm : LMULReadAdvance<"ReadVIMulX", 0>;
  defm : LMULSEWReadAdvance<"ReadVIDivV", 0>;
  defm : LMULSEWReadAdvance<"ReadVIDivX", 0>;
  defm : LMULReadAdvanceW<"ReadVIWMulV", 0>;
  defm : LMULReadAdvanceW<"ReadVIWMulX", 0>;
  defm : LMULReadAdvance<"ReadVIMulAddV", 0>;
  defm : LMULReadAdvance<"ReadVIMulAddX", 0>;
  defm : LMULReadAdvanceW<"ReadVIWMulAddV", 0>;
  defm : LMULReadAdvanceW<"ReadVIWMulAddX", 0>;
  defm : LMULReadAdvance<"ReadVIMergeV", 0>;
  defm : LMULReadAdvance<"ReadVIMergeX", 0>;
  defm : LMULReadAdvance<"ReadVIMovV", 0>;
  defm : LMULReadAdvance<"ReadVIMovX", 0>;

  // 12. Vector Fixed-Point Arithmetic Instructions
  defm : LMULReadAdvance<"ReadVSALUV", 0>;
  defm : LMULReadAdvance<"ReadVSALUX", 0>;
  defm : LMULReadAdvance<"ReadVAALUV", 0>;
  defm : LMULReadAdvance<"ReadVAALUX", 0>;
  defm : LMULReadAdvance<"ReadVSMulV", 0>;
  defm : LMULReadAdvance<"ReadVSMulX", 0>;
  defm : LMULReadAdvance<"ReadVSShiftV", 0>;
  defm : LMULReadAdvance<"ReadVSShiftX", 0>;
  defm : LMULReadAdvanceW<"ReadVNClipV", 0>;
  defm : LMULReadAdvanceW<"ReadVNClipX", 0>;

  // 13. Vector Floating-Point Instructions
  defm : LMULSEWReadAdvanceF<"ReadVFALUV", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFALUF", 0>;
  defm : LMULSEWReadAdvanceFW<"ReadVFWALUV", 0>;
  defm : LMULSEWReadAdvanceFW<"ReadVFWALUF", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFMulV", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFMulF", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFDivV", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFDivF", 0>;
  defm : LMULSEWReadAdvanceFW<"ReadVFWMulV", 0>;
  defm : LMULSEWReadAdvanceFW<"ReadVFWMulF", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFMulAddV", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFMulAddF", 0>;
  defm : LMULSEWReadAdvanceFW<"ReadVFWMulAddV", 0>;
  defm : LMULSEWReadAdvanceFW<"ReadVFWMulAddF", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFSqrtV", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFRecpV", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFMinMaxV", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFMinMaxF", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFSgnjV", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFSgnjF", 0>;
  defm : LMULReadAdvance<"ReadVFCmpV", 0>;
  defm : LMULReadAdvance<"ReadVFCmpF", 0>;
  defm : LMULReadAdvance<"ReadVFClassV", 0>;
  defm : LMULReadAdvance<"ReadVFMergeV", 0>;
  defm : LMULReadAdvance<"ReadVFMergeF", 0>;
  defm : LMULReadAdvance<"ReadVFMovF", 0>;
  defm : LMULSEWReadAdvanceF<"ReadVFCvtIToFV", 0>;
  defm : LMULReadAdvance<"ReadVFCvtFToIV", 0>;
  defm : LMULSEWReadAdvanceW<"ReadVFWCvtIToFV", 0>;
  defm : LMULReadAdvanceFW<"ReadVFWCvtFToIV", 0>;
  defm : LMULSEWReadAdvanceFW<"ReadVFWCvtFToFV", 0>;
  defm : LMULSEWReadAdvanceFW<"ReadVFNCvtIToFV", 0>;
  defm : LMULReadAdvanceW<"ReadVFNCvtFToIV", 0>;
  defm : LMULSEWReadAdvanceFW<"ReadVFNCvtFToFV", 0>;

  // 14. Vector Reduction Operations
  def : ReadAdvance<ReadVIRedV, 0>;
  def : ReadAdvance<ReadVIRedV0, 0>;
  def : ReadAdvance<ReadVIWRedV, 0>;
  def : ReadAdvance<ReadVIWRedV0, 0>;
  def : ReadAdvance<ReadVFRedV, 0>;
  def : ReadAdvance<ReadVFRedV0, 0>;
  def : ReadAdvance<ReadVFRedOV, 0>;
  def : ReadAdvance<ReadVFRedOV0, 0>;
  def : ReadAdvance<ReadVFWRedV, 0>;
  def : ReadAdvance<ReadVFWRedV0, 0>;
  def : ReadAdvance<ReadVFWRedOV, 0>;
  def : ReadAdvance<ReadVFWRedOV0, 0>;

  // 15. Vector Mask Instructions
  defm : LMULReadAdvance<"ReadVMALUV", 0>;
  defm : LMULReadAdvance<"ReadVMPopV", 0>;
  defm : LMULReadAdvance<"ReadVMFFSV", 0>;
  defm : LMULReadAdvance<"ReadVMSFSV", 0>;
  defm : LMULReadAdvance<"ReadVIotaV", 0>;

  // 16. Vector Permutation Instructions
  def : ReadAdvance<ReadVMovXS, 0>;
  def : ReadAdvance<ReadVMovSX_V, 0>;
  def : ReadAdvance<ReadVMovSX_X, 0>;
  def : ReadAdvance<ReadVMovFS, 0>;
  def : ReadAdvance<ReadVMovSF_V, 0>;
  def : ReadAdvance<ReadVMovSF_F, 0>;
  defm : LMULReadAdvance<"ReadVISlideV", 0>;
  defm : LMULReadAdvance<"ReadVISlideX", 0>;
  defm : LMULReadAdvance<"ReadVFSlideV", 0>;
  defm : LMULReadAdvance<"ReadVFSlideF", 0>;
  defm : LMULSEWReadAdvance<"ReadVRGatherVV_data", 0>;
  defm : LMULSEWReadAdvance<"ReadVRGatherVV_index", 0>;
  defm : LMULSEWReadAdvance<"ReadVRGatherEI16VV_data", 0>;
  defm : LMULSEWReadAdvance<"ReadVRGatherEI16VV_index", 0>;
  defm : LMULReadAdvance<"ReadVRGatherVX_data", 0>;
  defm : LMULReadAdvance<"ReadVRGatherVX_index", 0>;
  defm : LMULReadAdvance<"ReadVRGatherVI_data", 0>;
  defm : LMULSEWReadAdvance<"ReadVCompressV", 0>;
  // LMUL Aware
  def : ReadAdvance<ReadVMov1V, 0>;
  def : ReadAdvance<ReadVMov2V, 0>;
  def : ReadAdvance<ReadVMov4V, 0>;
  def : ReadAdvance<ReadVMov8V, 0>;

  // XSfvfnrclipxfqf
  defm : LMULReadAdvance<"ReadSF_VFNRClipV", 0>;
  defm : LMULReadAdvance<"ReadSF_VFNRClipF", 0>;

  // SiFive VMACC
  defm : LMULReadAdvance<"ReadSF_VQMACC_DOD",  0>;
  defm : LMULReadAdvance<"ReadSF_VQMACC_QOQ",  0>;
  defm : LMULReadAdvance<"ReadSF_VFWMACC_QQQ", 0>;

  // Others
  def : ReadAdvance<ReadVMask, 0>;
  def : ReadAdvance<ReadVPassthru_WorstCase, 0>;
  foreach mx = SchedMxList in {
    def : ReadAdvance<!cast<SchedRead>("ReadVPassthru_" # mx), 0>;
    foreach sew = SchedSEWSet<mx>.val in
      def : ReadAdvance<!cast<SchedRead>("ReadVPassthru_" # mx  # "_E" # sew), 0>;
  }
}

//===----------------------------------------------------------------------===//

/// This multiclass is a "bundle" of (1) processor resources (i.e. pipes) and
/// (2) WriteRes entries. It's parameterized by config values that will
/// eventually be supplied by different SchedMachineModels.
multiclass SiFive7SchedResources<int vlen, bit extraVALU,
                                 SiFive7FPLatencies fpLatencies,
                                 bit isFP64Throttled> {
  defm SiFive7 : SiFive7ProcResources<extraVALU>;

  // Pull out defs from SiFive7ProcResources so we can refer to them by name.
  defvar SiFive7PipeA = !cast<ProcResource>(NAME # SiFive7PipeA);
  defvar SiFive7PipeB = !cast<ProcResource>(NAME # SiFive7PipeB);
  defvar SiFive7PipeAB = !cast<ProcResGroup>(NAME # SiFive7PipeAB);
  defvar SiFive7IDiv = !cast<ProcResource>(NAME # SiFive7IDiv);
  defvar SiFive7FDiv = !cast<ProcResource>(NAME # SiFive7FDiv);
  // Pass SiFive7VA for VA1 and VA1OrVA2 if there is only 1 VALU.
  defvar SiFive7VA1 = !if (extraVALU,
                            !cast<ProcResource>(NAME # SiFive7VA1),
                            !cast<ProcResource>(NAME # SiFive7VA));
  defvar SiFive7VA1OrVA2 = !if (extraVALU,
                            !cast<ProcResGroup>(NAME # SiFive7VA1OrVA2),
                            !cast<ProcResource>(NAME # SiFive7VA));
  defvar SiFive7VA = !cast<ProcResource>(NAME # SiFive7VA);
  defvar SiFive7VL = !cast<ProcResource>(NAME # SiFive7VL);
  defvar SiFive7VS = !cast<ProcResource>(NAME # SiFive7VS);
  defvar SiFive7VCQ = !cast<ProcResource>(NAME # SiFive7VCQ);

  // Define WriteRes records that are the same across all SiFive7 derived
  // SchedModels.
  defm SiFive7
      : SiFive7WriteResBase<vlen, SiFive7PipeA, SiFive7PipeB, SiFive7PipeAB,
                            SiFive7IDiv, SiFive7FDiv, SiFive7VA1,
                            SiFive7VA1OrVA2, SiFive7VL, SiFive7VS,
                            SiFive7VCQ, fpLatencies, isFP64Throttled>;

  //===----------------------------------------------------------------------===//
  // Bypass and advance

  defm SiFive7 : SiFive7ReadAdvance;
  //===----------------------------------------------------------------------===//
  // Unsupported extensions
  defm : UnsupportedSchedQ;
  defm : UnsupportedSchedZabha;
  defm : UnsupportedSchedZbc;
  defm : UnsupportedSchedZbkb;
  defm : UnsupportedSchedZbkx;
  defm : UnsupportedSchedZfa;
  defm : UnsupportedSchedZvk;
}

class SiFive7SchedMachineModel<int vlen> : SchedMachineModel {
  let MicroOpBufferSize = 0; // Explicitly set to zero since SiFive7 is in-order.
  let IssueWidth = 2;        // 2 micro-ops are dispatched per cycle.
  let LoadLatency = 3;
  let MispredictPenalty = 3;
  let CompleteModel = 0;
  let EnableIntervals = true;
  let UnsupportedFeatures = [HasStdExtZbkb, HasStdExtZbkc, HasStdExtZbkx,
                             HasStdExtZcmt, HasStdExtZknd, HasStdExtZkne,
                             HasStdExtZknh, HasStdExtZksed, HasStdExtZksh,
                             HasStdExtZkr];
  int VLEN = vlen;
  bit HasExtraVALU = false;

  SiFive7FPLatencies FPLatencies;
  bit IsFP64Throttled = false;

  string Name = !subst("Model", "", !subst("SiFive7", "", NAME));
}

/// Auxiliary config values.
def SiFive7DefaultFPLatencies : SiFive7FPLatencies {
  let BasicFP16ALU = 5;
  let BasicFP32ALU = 5;
  let BasicFP64ALU = 7;
}

def SiFive7LowFPLatencies : SiFive7FPLatencies {
  let BasicFP16ALU = 4;
  let BasicFP32ALU = 4;
  let BasicFP64ALU = 4;
}

/// Models
def SiFive7VLEN512Model : SiFive7SchedMachineModel<512> {
  let FPLatencies = SiFive7DefaultFPLatencies;
}

def SiFive7VLEN1024X300Model : SiFive7SchedMachineModel<1024> {
  let HasExtraVALU = true;
  let FPLatencies = SiFive7LowFPLatencies;
  let IsFP64Throttled = true;
}

/// Binding models to their scheduling resources.
foreach model = [SiFive7VLEN512Model, SiFive7VLEN1024X300Model] in {
  let SchedModel = model in
  defm model.Name : SiFive7SchedResources<model.VLEN, model.HasExtraVALU,
                                          model.FPLatencies,
                                          model.IsFP64Throttled>;
}

// Some model name aliases.
defvar SiFive7Model = SiFive7VLEN512Model;
defvar SiFiveX390Model = SiFive7VLEN1024X300Model;