1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
//===---- EVLIndVarSimplify.cpp - Optimize vectorized loops w/ EVL IV------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes a vectorized loop with canonical IV to using EVL-based
// IV if it was tail-folded by predicated EVL.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/EVLIndVarSimplify.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar/LoopPassManager.h"
#include "llvm/Transforms/Utils/Local.h"
#define DEBUG_TYPE "evl-iv-simplify"
using namespace llvm;
STATISTIC(NumEliminatedCanonicalIV, "Number of canonical IVs we eliminated");
static cl::opt<bool> EnableEVLIndVarSimplify(
"enable-evl-indvar-simplify",
cl::desc("Enable EVL-based induction variable simplify Pass"), cl::Hidden,
cl::init(true));
namespace {
struct EVLIndVarSimplifyImpl {
ScalarEvolution &SE;
OptimizationRemarkEmitter *ORE = nullptr;
EVLIndVarSimplifyImpl(LoopStandardAnalysisResults &LAR,
OptimizationRemarkEmitter *ORE)
: SE(LAR.SE), ORE(ORE) {}
/// Returns true if modify the loop.
bool run(Loop &L);
};
} // anonymous namespace
/// Returns the constant part of vectorization factor from the induction
/// variable's step value SCEV expression.
static uint32_t getVFFromIndVar(const SCEV *Step, const Function &F) {
if (!Step)
return 0U;
// Looking for loops with IV step value in the form of `(<constant VF> x
// vscale)`.
if (const auto *Mul = dyn_cast<SCEVMulExpr>(Step)) {
if (Mul->getNumOperands() == 2) {
const SCEV *LHS = Mul->getOperand(0);
const SCEV *RHS = Mul->getOperand(1);
if (const auto *Const = dyn_cast<SCEVConstant>(LHS);
Const && isa<SCEVVScale>(RHS)) {
uint64_t V = Const->getAPInt().getLimitedValue();
if (llvm::isUInt<32>(V))
return V;
}
}
}
// If not, see if the vscale_range of the parent function is a fixed value,
// which makes the step value to be replaced by a constant.
if (F.hasFnAttribute(Attribute::VScaleRange))
if (const auto *ConstStep = dyn_cast<SCEVConstant>(Step)) {
APInt V = ConstStep->getAPInt().abs();
ConstantRange CR = llvm::getVScaleRange(&F, 64);
if (const APInt *Fixed = CR.getSingleElement()) {
V = V.zextOrTrunc(Fixed->getBitWidth());
uint64_t VF = V.udiv(*Fixed).getLimitedValue();
if (VF && llvm::isUInt<32>(VF) &&
// Make sure step is divisible by vscale.
V.urem(*Fixed).isZero())
return VF;
}
}
return 0U;
}
bool EVLIndVarSimplifyImpl::run(Loop &L) {
if (!EnableEVLIndVarSimplify)
return false;
if (!getBooleanLoopAttribute(&L, "llvm.loop.isvectorized"))
return false;
const MDOperand *EVLMD =
findStringMetadataForLoop(&L, "llvm.loop.isvectorized.tailfoldingstyle")
.value_or(nullptr);
if (!EVLMD || !EVLMD->equalsStr("evl"))
return false;
BasicBlock *LatchBlock = L.getLoopLatch();
ICmpInst *OrigLatchCmp = L.getLatchCmpInst();
if (!LatchBlock || !OrigLatchCmp)
return false;
InductionDescriptor IVD;
PHINode *IndVar = L.getInductionVariable(SE);
if (!IndVar || !L.getInductionDescriptor(SE, IVD)) {
const char *Reason = (IndVar ? "induction descriptor is not available"
: "cannot recognize induction variable");
LLVM_DEBUG(dbgs() << "Cannot retrieve IV from loop " << L.getName()
<< " because" << Reason << "\n");
if (ORE) {
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnrecognizedIndVar",
L.getStartLoc(), L.getHeader())
<< "Cannot retrieve IV because " << ore::NV("Reason", Reason);
});
}
return false;
}
BasicBlock *InitBlock, *BackEdgeBlock;
if (!L.getIncomingAndBackEdge(InitBlock, BackEdgeBlock)) {
LLVM_DEBUG(dbgs() << "Expect unique incoming and backedge in "
<< L.getName() << "\n");
if (ORE) {
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnrecognizedLoopStructure",
L.getStartLoc(), L.getHeader())
<< "Does not have a unique incoming and backedge";
});
}
return false;
}
// Retrieve the loop bounds.
std::optional<Loop::LoopBounds> Bounds = L.getBounds(SE);
if (!Bounds) {
LLVM_DEBUG(dbgs() << "Could not obtain the bounds for loop " << L.getName()
<< "\n");
if (ORE) {
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnrecognizedLoopStructure",
L.getStartLoc(), L.getHeader())
<< "Could not obtain the loop bounds";
});
}
return false;
}
Value *CanonicalIVInit = &Bounds->getInitialIVValue();
Value *CanonicalIVFinal = &Bounds->getFinalIVValue();
const SCEV *StepV = IVD.getStep();
uint32_t VF = getVFFromIndVar(StepV, *L.getHeader()->getParent());
if (!VF) {
LLVM_DEBUG(dbgs() << "Could not infer VF from IndVar step '" << *StepV
<< "'\n");
if (ORE) {
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnrecognizedIndVar",
L.getStartLoc(), L.getHeader())
<< "Could not infer VF from IndVar step "
<< ore::NV("Step", StepV);
});
}
return false;
}
LLVM_DEBUG(dbgs() << "Using VF=" << VF << " for loop " << L.getName()
<< "\n");
// Try to find the EVL-based induction variable.
using namespace PatternMatch;
BasicBlock *BB = IndVar->getParent();
Value *EVLIndVar = nullptr;
Value *RemTC = nullptr;
Value *TC = nullptr;
auto IntrinsicMatch = m_Intrinsic<Intrinsic::experimental_get_vector_length>(
m_Value(RemTC), m_SpecificInt(VF),
/*Scalable=*/m_SpecificInt(1));
for (PHINode &PN : BB->phis()) {
if (&PN == IndVar)
continue;
// Check 1: it has to contain both incoming (init) & backedge blocks
// from IndVar.
if (PN.getBasicBlockIndex(InitBlock) < 0 ||
PN.getBasicBlockIndex(BackEdgeBlock) < 0)
continue;
// Check 2: EVL index is always increasing, thus its inital value has to be
// equal to either the initial IV value (when the canonical IV is also
// increasing) or the last IV value (when canonical IV is decreasing).
Value *Init = PN.getIncomingValueForBlock(InitBlock);
using Direction = Loop::LoopBounds::Direction;
switch (Bounds->getDirection()) {
case Direction::Increasing:
if (Init != CanonicalIVInit)
continue;
break;
case Direction::Decreasing:
if (Init != CanonicalIVFinal)
continue;
break;
case Direction::Unknown:
// To be more permissive and see if either the initial or final IV value
// matches PN's init value.
if (Init != CanonicalIVInit && Init != CanonicalIVFinal)
continue;
break;
}
Value *RecValue = PN.getIncomingValueForBlock(BackEdgeBlock);
assert(RecValue && "expect recurrent IndVar value");
LLVM_DEBUG(dbgs() << "Found candidate PN of EVL-based IndVar: " << PN
<< "\n");
// Check 3: Pattern match to find the EVL-based index and total trip count
// (TC).
if (match(RecValue,
m_c_Add(m_ZExtOrSelf(IntrinsicMatch), m_Specific(&PN))) &&
match(RemTC, m_Sub(m_Value(TC), m_Specific(&PN)))) {
EVLIndVar = RecValue;
break;
}
}
if (!EVLIndVar || !TC)
return false;
LLVM_DEBUG(dbgs() << "Using " << *EVLIndVar << " for EVL-based IndVar\n");
if (ORE) {
ORE->emit([&]() {
DebugLoc DL;
BasicBlock *Region = nullptr;
if (auto *I = dyn_cast<Instruction>(EVLIndVar)) {
DL = I->getDebugLoc();
Region = I->getParent();
} else {
DL = L.getStartLoc();
Region = L.getHeader();
}
return OptimizationRemark(DEBUG_TYPE, "UseEVLIndVar", DL, Region)
<< "Using " << ore::NV("EVLIndVar", EVLIndVar)
<< " for EVL-based IndVar";
});
}
// Create an EVL-based comparison and replace the branch to use it as
// predicate.
// Loop::getLatchCmpInst check at the beginning of this function has ensured
// that latch block ends in a conditional branch.
auto *LatchBranch = cast<BranchInst>(LatchBlock->getTerminator());
assert(LatchBranch->isConditional() &&
"expect the loop latch to be ended with a conditional branch");
ICmpInst::Predicate Pred;
if (LatchBranch->getSuccessor(0) == L.getHeader())
Pred = ICmpInst::ICMP_NE;
else
Pred = ICmpInst::ICMP_EQ;
IRBuilder<> Builder(OrigLatchCmp);
auto *NewLatchCmp = Builder.CreateICmp(Pred, EVLIndVar, TC);
OrigLatchCmp->replaceAllUsesWith(NewLatchCmp);
// llvm::RecursivelyDeleteDeadPHINode only deletes cycles whose values are
// not used outside the cycles. However, in this case the now-RAUW-ed
// OrigLatchCmp will be considered a use outside the cycle while in reality
// it's practically dead. Thus we need to remove it before calling
// RecursivelyDeleteDeadPHINode.
(void)RecursivelyDeleteTriviallyDeadInstructions(OrigLatchCmp);
if (llvm::RecursivelyDeleteDeadPHINode(IndVar))
LLVM_DEBUG(dbgs() << "Removed original IndVar\n");
++NumEliminatedCanonicalIV;
return true;
}
PreservedAnalyses EVLIndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &LAM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
Function &F = *L.getHeader()->getParent();
auto &FAMProxy = LAM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
OptimizationRemarkEmitter *ORE =
FAMProxy.getCachedResult<OptimizationRemarkEmitterAnalysis>(F);
if (EVLIndVarSimplifyImpl(AR, ORE).run(L))
return PreservedAnalyses::allInSet<CFGAnalyses>();
return PreservedAnalyses::all();
}
|