1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
//===-- VPlanUnroll.cpp - VPlan unroller ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements explicit unrolling for VPlans.
///
//===----------------------------------------------------------------------===//
#include "VPRecipeBuilder.h"
#include "VPlan.h"
#include "VPlanAnalysis.h"
#include "VPlanCFG.h"
#include "VPlanHelpers.h"
#include "VPlanPatternMatch.h"
#include "VPlanTransforms.h"
#include "VPlanUtils.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/IR/Intrinsics.h"
using namespace llvm;
using namespace llvm::VPlanPatternMatch;
namespace {
/// Helper to hold state needed for unrolling. It holds the Plan to unroll by
/// UF. It also holds copies of VPValues across UF-1 unroll parts to facilitate
/// the unrolling transformation, where the original VPValues are retained for
/// part zero.
class UnrollState {
/// Plan to unroll.
VPlan &Plan;
/// Unroll factor to unroll by.
const unsigned UF;
/// Analysis for types.
VPTypeAnalysis TypeInfo;
/// Unrolling may create recipes that should not be unrolled themselves.
/// Those are tracked in ToSkip.
SmallPtrSet<VPRecipeBase *, 8> ToSkip;
// Associate with each VPValue of part 0 its unrolled instances of parts 1,
// ..., UF-1.
DenseMap<VPValue *, SmallVector<VPValue *>> VPV2Parts;
/// Unroll replicate region \p VPR by cloning the region UF - 1 times.
void unrollReplicateRegionByUF(VPRegionBlock *VPR);
/// Unroll recipe \p R by cloning it UF - 1 times, unless it is uniform across
/// all parts.
void unrollRecipeByUF(VPRecipeBase &R);
/// Unroll header phi recipe \p R. How exactly the recipe gets unrolled
/// depends on the concrete header phi. Inserts newly created recipes at \p
/// InsertPtForPhi.
void unrollHeaderPHIByUF(VPHeaderPHIRecipe *R,
VPBasicBlock::iterator InsertPtForPhi);
/// Unroll a widen induction recipe \p IV. This introduces recipes to compute
/// the induction steps for each part.
void unrollWidenInductionByUF(VPWidenIntOrFpInductionRecipe *IV,
VPBasicBlock::iterator InsertPtForPhi);
VPValue *getConstantVPV(unsigned Part) {
Type *CanIVIntTy = Plan.getCanonicalIV()->getScalarType();
return Plan.getOrAddLiveIn(ConstantInt::get(CanIVIntTy, Part));
}
public:
UnrollState(VPlan &Plan, unsigned UF, LLVMContext &Ctx)
: Plan(Plan), UF(UF), TypeInfo(Plan.getCanonicalIV()->getScalarType()) {}
void unrollBlock(VPBlockBase *VPB);
VPValue *getValueForPart(VPValue *V, unsigned Part) {
if (Part == 0 || V->isLiveIn())
return V;
assert((VPV2Parts.contains(V) && VPV2Parts[V].size() >= Part) &&
"accessed value does not exist");
return VPV2Parts[V][Part - 1];
}
/// Given a single original recipe \p OrigR (of part zero), and its copy \p
/// CopyR for part \p Part, map every VPValue defined by \p OrigR to its
/// corresponding VPValue defined by \p CopyR.
void addRecipeForPart(VPRecipeBase *OrigR, VPRecipeBase *CopyR,
unsigned Part) {
for (const auto &[Idx, VPV] : enumerate(OrigR->definedValues())) {
auto Ins = VPV2Parts.insert({VPV, {}});
assert(Ins.first->second.size() == Part - 1 && "earlier parts not set");
Ins.first->second.push_back(CopyR->getVPValue(Idx));
}
}
/// Given a uniform recipe \p R, add it for all parts.
void addUniformForAllParts(VPSingleDefRecipe *R) {
auto Ins = VPV2Parts.insert({R, {}});
assert(Ins.second && "uniform value already added");
for (unsigned Part = 0; Part != UF; ++Part)
Ins.first->second.push_back(R);
}
bool contains(VPValue *VPV) const { return VPV2Parts.contains(VPV); }
/// Update \p R's operand at \p OpIdx with its corresponding VPValue for part
/// \p P.
void remapOperand(VPRecipeBase *R, unsigned OpIdx, unsigned Part) {
auto *Op = R->getOperand(OpIdx);
R->setOperand(OpIdx, getValueForPart(Op, Part));
}
/// Update \p R's operands with their corresponding VPValues for part \p P.
void remapOperands(VPRecipeBase *R, unsigned Part) {
for (const auto &[OpIdx, Op] : enumerate(R->operands()))
R->setOperand(OpIdx, getValueForPart(Op, Part));
}
};
} // namespace
void UnrollState::unrollReplicateRegionByUF(VPRegionBlock *VPR) {
VPBlockBase *InsertPt = VPR->getSingleSuccessor();
for (unsigned Part = 1; Part != UF; ++Part) {
auto *Copy = VPR->clone();
VPBlockUtils::insertBlockBefore(Copy, InsertPt);
auto PartI = vp_depth_first_shallow(Copy->getEntry());
auto Part0 = vp_depth_first_shallow(VPR->getEntry());
for (const auto &[PartIVPBB, Part0VPBB] :
zip(VPBlockUtils::blocksOnly<VPBasicBlock>(PartI),
VPBlockUtils::blocksOnly<VPBasicBlock>(Part0))) {
for (const auto &[PartIR, Part0R] : zip(*PartIVPBB, *Part0VPBB)) {
remapOperands(&PartIR, Part);
if (auto *ScalarIVSteps = dyn_cast<VPScalarIVStepsRecipe>(&PartIR)) {
ScalarIVSteps->addOperand(getConstantVPV(Part));
}
addRecipeForPart(&Part0R, &PartIR, Part);
}
}
}
}
void UnrollState::unrollWidenInductionByUF(
VPWidenIntOrFpInductionRecipe *IV, VPBasicBlock::iterator InsertPtForPhi) {
VPBasicBlock *PH = cast<VPBasicBlock>(
IV->getParent()->getEnclosingLoopRegion()->getSinglePredecessor());
Type *IVTy = TypeInfo.inferScalarType(IV);
auto &ID = IV->getInductionDescriptor();
VPIRFlags Flags;
if (isa_and_present<FPMathOperator>(ID.getInductionBinOp()))
Flags = ID.getInductionBinOp()->getFastMathFlags();
VPValue *ScalarStep = IV->getStepValue();
VPBuilder Builder(PH);
VPInstruction *VectorStep = Builder.createNaryOp(
VPInstruction::WideIVStep, {&Plan.getVF(), ScalarStep}, IVTy, Flags,
IV->getDebugLoc());
ToSkip.insert(VectorStep);
// Now create recipes to compute the induction steps for part 1 .. UF. Part 0
// remains the header phi. Parts > 0 are computed by adding Step to the
// previous part. The header phi recipe will get 2 new operands: the step
// value for a single part and the last part, used to compute the backedge
// value during VPWidenIntOrFpInductionRecipe::execute. %Part.0 =
// VPWidenIntOrFpInductionRecipe %Start, %ScalarStep, %VectorStep, %Part.3
// %Part.1 = %Part.0 + %VectorStep
// %Part.2 = %Part.1 + %VectorStep
// %Part.3 = %Part.2 + %VectorStep
//
// The newly added recipes are added to ToSkip to avoid interleaving them
// again.
VPValue *Prev = IV;
Builder.setInsertPoint(IV->getParent(), InsertPtForPhi);
unsigned AddOpc =
IVTy->isFloatingPointTy() ? ID.getInductionOpcode() : Instruction::Add;
for (unsigned Part = 1; Part != UF; ++Part) {
std::string Name =
Part > 1 ? "step.add." + std::to_string(Part) : "step.add";
VPInstruction *Add = Builder.createNaryOp(AddOpc,
{
Prev,
VectorStep,
},
Flags, IV->getDebugLoc(), Name);
ToSkip.insert(Add);
addRecipeForPart(IV, Add, Part);
Prev = Add;
}
IV->addOperand(VectorStep);
IV->addOperand(Prev);
}
void UnrollState::unrollHeaderPHIByUF(VPHeaderPHIRecipe *R,
VPBasicBlock::iterator InsertPtForPhi) {
// First-order recurrences pass a single vector or scalar through their header
// phis, irrespective of interleaving.
if (isa<VPFirstOrderRecurrencePHIRecipe>(R))
return;
// Generate step vectors for each unrolled part.
if (auto *IV = dyn_cast<VPWidenIntOrFpInductionRecipe>(R)) {
unrollWidenInductionByUF(IV, InsertPtForPhi);
return;
}
auto *RdxPhi = dyn_cast<VPReductionPHIRecipe>(R);
if (RdxPhi && RdxPhi->isOrdered())
return;
auto InsertPt = std::next(R->getIterator());
for (unsigned Part = 1; Part != UF; ++Part) {
VPRecipeBase *Copy = R->clone();
Copy->insertBefore(*R->getParent(), InsertPt);
addRecipeForPart(R, Copy, Part);
if (isa<VPWidenPointerInductionRecipe>(R)) {
Copy->addOperand(R);
Copy->addOperand(getConstantVPV(Part));
} else if (RdxPhi) {
// If the start value is a ReductionStartVector, use the identity value
// (second operand) for unrolled parts. If the scaling factor is > 1,
// create a new ReductionStartVector with the scale factor and both
// operands set to the identity value.
if (auto *VPI = dyn_cast<VPInstruction>(RdxPhi->getStartValue())) {
assert(VPI->getOpcode() == VPInstruction::ReductionStartVector &&
"unexpected start VPInstruction");
if (Part != 1)
continue;
VPValue *StartV;
if (match(VPI->getOperand(2), m_SpecificInt(1))) {
StartV = VPI->getOperand(1);
} else {
auto *C = VPI->clone();
C->setOperand(0, C->getOperand(1));
C->insertAfter(VPI);
StartV = C;
}
for (unsigned Part = 1; Part != UF; ++Part)
VPV2Parts[VPI][Part - 1] = StartV;
}
Copy->addOperand(getConstantVPV(Part));
} else {
assert(isa<VPActiveLaneMaskPHIRecipe>(R) &&
"unexpected header phi recipe not needing unrolled part");
}
}
}
/// Handle non-header-phi recipes.
void UnrollState::unrollRecipeByUF(VPRecipeBase &R) {
if (match(&R, m_BranchOnCond(m_VPValue())) ||
match(&R, m_BranchOnCount(m_VPValue(), m_VPValue())))
return;
if (auto *VPI = dyn_cast<VPInstruction>(&R)) {
if (vputils::onlyFirstPartUsed(VPI)) {
addUniformForAllParts(VPI);
return;
}
}
if (auto *RepR = dyn_cast<VPReplicateRecipe>(&R)) {
if (isa<StoreInst>(RepR->getUnderlyingValue()) &&
RepR->getOperand(1)->isDefinedOutsideLoopRegions()) {
// Stores to an invariant address only need to store the last part.
remapOperands(&R, UF - 1);
return;
}
if (auto *II = dyn_cast<IntrinsicInst>(RepR->getUnderlyingValue())) {
if (II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl) {
addUniformForAllParts(RepR);
return;
}
}
}
// Unroll non-uniform recipes.
auto InsertPt = std::next(R.getIterator());
VPBasicBlock &VPBB = *R.getParent();
for (unsigned Part = 1; Part != UF; ++Part) {
VPRecipeBase *Copy = R.clone();
Copy->insertBefore(VPBB, InsertPt);
addRecipeForPart(&R, Copy, Part);
VPValue *Op;
if (match(&R, m_VPInstruction<VPInstruction::FirstOrderRecurrenceSplice>(
m_VPValue(), m_VPValue(Op)))) {
Copy->setOperand(0, getValueForPart(Op, Part - 1));
Copy->setOperand(1, getValueForPart(Op, Part));
continue;
}
if (auto *Red = dyn_cast<VPReductionRecipe>(&R)) {
auto *Phi = dyn_cast<VPReductionPHIRecipe>(R.getOperand(0));
if (Phi && Phi->isOrdered()) {
auto &Parts = VPV2Parts[Phi];
if (Part == 1) {
Parts.clear();
Parts.push_back(Red);
}
Parts.push_back(Copy->getVPSingleValue());
Phi->setOperand(1, Copy->getVPSingleValue());
}
}
remapOperands(Copy, Part);
// Add operand indicating the part to generate code for, to recipes still
// requiring it.
if (isa<VPScalarIVStepsRecipe, VPWidenCanonicalIVRecipe,
VPVectorPointerRecipe, VPVectorEndPointerRecipe>(Copy) ||
match(Copy, m_VPInstruction<VPInstruction::CanonicalIVIncrementForPart>(
m_VPValue())))
Copy->addOperand(getConstantVPV(Part));
if (isa<VPVectorPointerRecipe, VPVectorEndPointerRecipe>(R))
Copy->setOperand(0, R.getOperand(0));
}
}
void UnrollState::unrollBlock(VPBlockBase *VPB) {
auto *VPR = dyn_cast<VPRegionBlock>(VPB);
if (VPR) {
if (VPR->isReplicator())
return unrollReplicateRegionByUF(VPR);
// Traverse blocks in region in RPO to ensure defs are visited before uses
// across blocks.
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
RPOT(VPR->getEntry());
for (VPBlockBase *VPB : RPOT)
unrollBlock(VPB);
return;
}
// VPB is a VPBasicBlock; unroll it, i.e., unroll its recipes.
auto *VPBB = cast<VPBasicBlock>(VPB);
auto InsertPtForPhi = VPBB->getFirstNonPhi();
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
if (ToSkip.contains(&R) || isa<VPIRInstruction>(&R))
continue;
// Add all VPValues for all parts to AnyOf, FirstActiveLaneMask and
// Compute*Result which combine all parts to compute the final value.
VPValue *Op1;
if (match(&R, m_VPInstruction<VPInstruction::AnyOf>(m_VPValue(Op1))) ||
match(&R, m_VPInstruction<VPInstruction::FirstActiveLane>(
m_VPValue(Op1))) ||
match(&R, m_VPInstruction<VPInstruction::ComputeAnyOfResult>(
m_VPValue(), m_VPValue(), m_VPValue(Op1))) ||
match(&R, m_VPInstruction<VPInstruction::ComputeReductionResult>(
m_VPValue(), m_VPValue(Op1))) ||
match(&R, m_VPInstruction<VPInstruction::ComputeFindIVResult>(
m_VPValue(), m_VPValue(), m_VPValue(), m_VPValue(Op1)))) {
addUniformForAllParts(cast<VPInstruction>(&R));
for (unsigned Part = 1; Part != UF; ++Part)
R.addOperand(getValueForPart(Op1, Part));
continue;
}
VPValue *Op0;
if (match(&R, m_VPInstruction<VPInstruction::ExtractLastElement>(
m_VPValue(Op0))) ||
match(&R, m_VPInstruction<VPInstruction::ExtractPenultimateElement>(
m_VPValue(Op0)))) {
addUniformForAllParts(cast<VPSingleDefRecipe>(&R));
if (Plan.hasScalarVFOnly()) {
auto *I = cast<VPInstruction>(&R);
// Extracting from end with VF = 1 implies retrieving the last or
// penultimate scalar part (UF-1 or UF-2).
unsigned Offset =
I->getOpcode() == VPInstruction::ExtractLastElement ? 1 : 2;
I->replaceAllUsesWith(getValueForPart(Op0, UF - Offset));
R.eraseFromParent();
} else {
// Otherwise we extract from the last part.
remapOperands(&R, UF - 1);
}
continue;
}
auto *SingleDef = dyn_cast<VPSingleDefRecipe>(&R);
if (SingleDef && vputils::isUniformAcrossVFsAndUFs(SingleDef)) {
addUniformForAllParts(SingleDef);
continue;
}
if (auto *H = dyn_cast<VPHeaderPHIRecipe>(&R)) {
unrollHeaderPHIByUF(H, InsertPtForPhi);
continue;
}
unrollRecipeByUF(R);
}
}
void VPlanTransforms::unrollByUF(VPlan &Plan, unsigned UF, LLVMContext &Ctx) {
assert(UF > 0 && "Unroll factor must be positive");
Plan.setUF(UF);
auto Cleanup = make_scope_exit([&Plan]() {
auto Iter = vp_depth_first_deep(Plan.getEntry());
// Remove recipes that are redundant after unrolling.
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
auto *VPI = dyn_cast<VPInstruction>(&R);
if (VPI &&
VPI->getOpcode() == VPInstruction::CanonicalIVIncrementForPart &&
VPI->getNumOperands() == 1) {
VPI->replaceAllUsesWith(VPI->getOperand(0));
VPI->eraseFromParent();
}
}
}
});
if (UF == 1) {
return;
}
UnrollState Unroller(Plan, UF, Ctx);
// Iterate over all blocks in the plan starting from Entry, and unroll
// recipes inside them. This includes the vector preheader and middle blocks,
// which may set up or post-process per-part values.
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
Plan.getEntry());
for (VPBlockBase *VPB : RPOT)
Unroller.unrollBlock(VPB);
unsigned Part = 1;
// Remap operands of cloned header phis to update backedge values. The header
// phis cloned during unrolling are just after the header phi for part 0.
// Reset Part to 1 when reaching the first (part 0) recipe of a block.
for (VPRecipeBase &H :
Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis()) {
// The second operand of Fixed Order Recurrence phi's, feeding the spliced
// value across the backedge, needs to remap to the last part of the spliced
// value.
if (isa<VPFirstOrderRecurrencePHIRecipe>(&H)) {
Unroller.remapOperand(&H, 1, UF - 1);
continue;
}
if (Unroller.contains(H.getVPSingleValue()) ||
isa<VPWidenPointerInductionRecipe>(&H)) {
Part = 1;
continue;
}
Unroller.remapOperands(&H, Part);
Part++;
}
VPlanTransforms::removeDeadRecipes(Plan);
}
/// Create a single-scalar clone of \p RepR for lane \p Lane.
static VPReplicateRecipe *cloneForLane(VPlan &Plan, VPBuilder &Builder,
Type *IdxTy, VPReplicateRecipe *RepR,
VPLane Lane) {
// Collect the operands at Lane, creating extracts as needed.
SmallVector<VPValue *> NewOps;
for (VPValue *Op : RepR->operands()) {
if (vputils::isSingleScalar(Op)) {
NewOps.push_back(Op);
continue;
}
if (Lane.getKind() == VPLane::Kind::ScalableLast) {
NewOps.push_back(
Builder.createNaryOp(VPInstruction::ExtractLastElement, {Op}));
continue;
}
// Look through buildvector to avoid unnecessary extracts.
if (match(Op, m_BuildVector())) {
NewOps.push_back(
cast<VPInstruction>(Op)->getOperand(Lane.getKnownLane()));
continue;
}
VPValue *Idx =
Plan.getOrAddLiveIn(ConstantInt::get(IdxTy, Lane.getKnownLane()));
VPValue *Ext = Builder.createNaryOp(Instruction::ExtractElement, {Op, Idx});
NewOps.push_back(Ext);
}
auto *New =
new VPReplicateRecipe(RepR->getUnderlyingInstr(), NewOps,
/*IsSingleScalar=*/true, /*Mask=*/nullptr, *RepR);
New->transferFlags(*RepR);
New->insertBefore(RepR);
return New;
}
void VPlanTransforms::replicateByVF(VPlan &Plan, ElementCount VF) {
Type *IdxTy = IntegerType::get(
Plan.getScalarHeader()->getIRBasicBlock()->getContext(), 32);
// Visit all VPBBs outside the loop region and directly inside the top-level
// loop region.
auto VPBBsOutsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_shallow(Plan.getEntry()));
auto VPBBsInsideLoopRegion = VPBlockUtils::blocksOnly<VPBasicBlock>(
vp_depth_first_shallow(Plan.getVectorLoopRegion()->getEntry()));
auto VPBBsToUnroll =
concat<VPBasicBlock *>(VPBBsOutsideLoopRegion, VPBBsInsideLoopRegion);
for (VPBasicBlock *VPBB : VPBBsToUnroll) {
for (VPRecipeBase &R : make_early_inc_range(*VPBB)) {
auto *RepR = dyn_cast<VPReplicateRecipe>(&R);
if (!RepR || RepR->isSingleScalar())
continue;
VPBuilder Builder(RepR);
if (RepR->getNumUsers() == 0) {
if (isa<StoreInst>(RepR->getUnderlyingInstr()) &&
vputils::isSingleScalar(RepR->getOperand(1))) {
// Stores to invariant addresses need to store the last lane only.
cloneForLane(Plan, Builder, IdxTy, RepR,
VPLane::getLastLaneForVF(VF));
} else {
// Create single-scalar version of RepR for all lanes.
for (unsigned I = 0; I != VF.getKnownMinValue(); ++I)
cloneForLane(Plan, Builder, IdxTy, RepR, VPLane(I));
}
RepR->eraseFromParent();
continue;
}
/// Create single-scalar version of RepR for all lanes.
SmallVector<VPValue *> LaneDefs;
for (unsigned I = 0; I != VF.getKnownMinValue(); ++I)
LaneDefs.push_back(cloneForLane(Plan, Builder, IdxTy, RepR, VPLane(I)));
/// Users that only demand the first lane can use the definition for lane
/// 0.
RepR->replaceUsesWithIf(LaneDefs[0], [RepR](VPUser &U, unsigned) {
return U.onlyFirstLaneUsed(RepR);
});
// If needed, create a Build(Struct)Vector recipe to insert the scalar
// lane values into a vector.
Type *ResTy = RepR->getUnderlyingInstr()->getType();
VPValue *VecRes = Builder.createNaryOp(
ResTy->isStructTy() ? VPInstruction::BuildStructVector
: VPInstruction::BuildVector,
LaneDefs);
RepR->replaceAllUsesWith(VecRes);
RepR->eraseFromParent();
}
}
}
|