1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
//===- VPlanUtils.cpp - VPlan-related utilities ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "VPlanUtils.h"
#include "VPlanCFG.h"
#include "VPlanPatternMatch.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
using namespace llvm;
bool vputils::onlyFirstLaneUsed(const VPValue *Def) {
return all_of(Def->users(),
[Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); });
}
bool vputils::onlyFirstPartUsed(const VPValue *Def) {
return all_of(Def->users(),
[Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); });
}
VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
ScalarEvolution &SE) {
if (auto *Expanded = Plan.getSCEVExpansion(Expr))
return Expanded;
VPValue *Expanded = nullptr;
if (auto *E = dyn_cast<SCEVConstant>(Expr))
Expanded = Plan.getOrAddLiveIn(E->getValue());
else {
auto *U = dyn_cast<SCEVUnknown>(Expr);
// Skip SCEV expansion if Expr is a SCEVUnknown wrapping a non-instruction
// value. Otherwise the value may be defined in a loop and using it directly
// will break LCSSA form. The SCEV expansion takes care of preserving LCSSA
// form.
if (U && !isa<Instruction>(U->getValue())) {
Expanded = Plan.getOrAddLiveIn(U->getValue());
} else {
Expanded = new VPExpandSCEVRecipe(Expr, SE);
Plan.getEntry()->appendRecipe(Expanded->getDefiningRecipe());
}
}
Plan.addSCEVExpansion(Expr, Expanded);
return Expanded;
}
bool vputils::isHeaderMask(const VPValue *V, VPlan &Plan) {
if (isa<VPActiveLaneMaskPHIRecipe>(V))
return true;
auto IsWideCanonicalIV = [](VPValue *A) {
return isa<VPWidenCanonicalIVRecipe>(A) ||
(isa<VPWidenIntOrFpInductionRecipe>(A) &&
cast<VPWidenIntOrFpInductionRecipe>(A)->isCanonical());
};
VPValue *A, *B;
using namespace VPlanPatternMatch;
if (match(V, m_ActiveLaneMask(m_VPValue(A), m_VPValue(B))))
return B == Plan.getTripCount() &&
(match(A, m_ScalarIVSteps(m_Specific(Plan.getCanonicalIV()),
m_SpecificInt(1),
m_Specific(&Plan.getVF()))) ||
IsWideCanonicalIV(A));
return match(V, m_Binary<Instruction::ICmp>(m_VPValue(A), m_VPValue(B))) &&
IsWideCanonicalIV(A) && B == Plan.getOrCreateBackedgeTakenCount();
}
const SCEV *vputils::getSCEVExprForVPValue(VPValue *V, ScalarEvolution &SE) {
if (V->isLiveIn())
return SE.getSCEV(V->getLiveInIRValue());
// TODO: Support constructing SCEVs for more recipes as needed.
return TypeSwitch<const VPRecipeBase *, const SCEV *>(V->getDefiningRecipe())
.Case<VPExpandSCEVRecipe>(
[](const VPExpandSCEVRecipe *R) { return R->getSCEV(); })
.Default([&SE](const VPRecipeBase *) { return SE.getCouldNotCompute(); });
}
bool vputils::isUniformAcrossVFsAndUFs(VPValue *V) {
using namespace VPlanPatternMatch;
// Live-ins are uniform.
if (V->isLiveIn())
return true;
VPRecipeBase *R = V->getDefiningRecipe();
if (R && V->isDefinedOutsideLoopRegions()) {
if (match(V->getDefiningRecipe(),
m_VPInstruction<VPInstruction::CanonicalIVIncrementForPart>(
m_VPValue())))
return false;
return all_of(R->operands(), isUniformAcrossVFsAndUFs);
}
auto *CanonicalIV = R->getParent()->getPlan()->getCanonicalIV();
// Canonical IV chain is uniform.
if (V == CanonicalIV || V == CanonicalIV->getBackedgeValue())
return true;
return TypeSwitch<const VPRecipeBase *, bool>(R)
.Case<VPDerivedIVRecipe>([](const auto *R) { return true; })
.Case<VPReplicateRecipe>([](const auto *R) {
// Loads and stores that are uniform across VF lanes are handled by
// VPReplicateRecipe.IsUniform. They are also uniform across UF parts if
// all their operands are invariant.
// TODO: Further relax the restrictions.
return R->isSingleScalar() &&
(isa<LoadInst, StoreInst>(R->getUnderlyingValue())) &&
all_of(R->operands(), isUniformAcrossVFsAndUFs);
})
.Case<VPInstruction>([](const auto *VPI) {
return VPI->isScalarCast() &&
isUniformAcrossVFsAndUFs(VPI->getOperand(0));
})
.Case<VPWidenCastRecipe>([](const auto *R) {
// A cast is uniform according to its operand.
return isUniformAcrossVFsAndUFs(R->getOperand(0));
})
.Default([](const VPRecipeBase *) { // A value is considered non-uniform
// unless proven otherwise.
return false;
});
}
VPBasicBlock *vputils::getFirstLoopHeader(VPlan &Plan, VPDominatorTree &VPDT) {
auto DepthFirst = vp_depth_first_shallow(Plan.getEntry());
auto I = find_if(DepthFirst, [&VPDT](VPBlockBase *VPB) {
return VPBlockUtils::isHeader(VPB, VPDT);
});
return I == DepthFirst.end() ? nullptr : cast<VPBasicBlock>(*I);
}
|