1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
|
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; RUN: opt -passes='print<scalar-evolution>' -disable-output %s 2>&1 | FileCheck %s
define void @test_multiple_const_guards_order1(ptr nocapture %a, i64 %i) {
; CHECK-LABEL: 'test_multiple_const_guards_order1'
; CHECK-NEXT: Classifying expressions for: @test_multiple_const_guards_order1
; CHECK-NEXT: %iv = phi i64 [ %iv.next, %loop ], [ 0, %guardbb ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%loop> U: [0,10) S: [0,10) Exits: %i LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %idx = getelementptr inbounds i32, ptr %a, i64 %iv
; CHECK-NEXT: --> {%a,+,4}<nuw><%loop> U: full-set S: full-set Exits: ((4 * %i) + %a) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %iv.next = add nuw nsw i64 %iv, 1
; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%loop> U: [1,11) S: [1,11) Exits: (1 + %i) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @test_multiple_const_guards_order1
; CHECK-NEXT: Loop %loop: backedge-taken count is %i
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 9
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is %i
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
%c.1 = icmp ult i64 %i, 16
br i1 %c.1, label %guardbb, label %exit
guardbb:
%c.2 = icmp ult i64 %i, 10
br i1 %c.2, label %loop, label %exit
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %guardbb ]
%idx = getelementptr inbounds i32, ptr %a, i64 %iv
store i32 1, ptr %idx, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv, %i
br i1 %exitcond, label %exit, label %loop
exit:
ret void
}
define void @test_multiple_const_guards_order2(ptr nocapture %a, i64 %i) {
; CHECK-LABEL: 'test_multiple_const_guards_order2'
; CHECK-NEXT: Classifying expressions for: @test_multiple_const_guards_order2
; CHECK-NEXT: %iv = phi i64 [ %iv.next, %loop ], [ 0, %guardbb ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%loop> U: [0,10) S: [0,10) Exits: %i LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %idx = getelementptr inbounds i32, ptr %a, i64 %iv
; CHECK-NEXT: --> {%a,+,4}<nuw><%loop> U: full-set S: full-set Exits: ((4 * %i) + %a) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %iv.next = add nuw nsw i64 %iv, 1
; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%loop> U: [1,11) S: [1,11) Exits: (1 + %i) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @test_multiple_const_guards_order2
; CHECK-NEXT: Loop %loop: backedge-taken count is %i
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 9
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is %i
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
%c.1 = icmp ult i64 %i, 10
br i1 %c.1, label %guardbb, label %exit
guardbb:
%c.2 = icmp ult i64 %i, 16
br i1 %c.2, label %loop, label %exit
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %guardbb ]
%idx = getelementptr inbounds i32, ptr %a, i64 %iv
store i32 1, ptr %idx, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv, %i
br i1 %exitcond, label %exit, label %loop
exit:
ret void
}
define void @test_multiple_var_guards_order1(ptr nocapture %a, i64 %i, i64 %N) {
; CHECK-LABEL: 'test_multiple_var_guards_order1'
; CHECK-NEXT: Classifying expressions for: @test_multiple_var_guards_order1
; CHECK-NEXT: %iv = phi i64 [ %iv.next, %loop ], [ 0, %guardbb ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%loop> U: [0,11) S: [0,11) Exits: %i LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %idx = getelementptr inbounds i32, ptr %a, i64 %iv
; CHECK-NEXT: --> {%a,+,4}<nuw><%loop> U: full-set S: full-set Exits: ((4 * %i) + %a) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %iv.next = add nuw nsw i64 %iv, 1
; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%loop> U: [1,12) S: [1,12) Exits: (1 + %i) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @test_multiple_var_guards_order1
; CHECK-NEXT: Loop %loop: backedge-taken count is %i
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 10
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is %i
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
%c.1 = icmp ult i64 %N, 12
br i1 %c.1, label %guardbb, label %exit
guardbb:
%c.2 = icmp ult i64 %i, %N
br i1 %c.2, label %loop, label %exit
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %guardbb ]
%idx = getelementptr inbounds i32, ptr %a, i64 %iv
store i32 1, ptr %idx, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv, %i
br i1 %exitcond, label %exit, label %loop
exit:
ret void
}
define void @test_multiple_var_guards_order2(ptr nocapture %a, i64 %i, i64 %N) {
; CHECK-LABEL: 'test_multiple_var_guards_order2'
; CHECK-NEXT: Classifying expressions for: @test_multiple_var_guards_order2
; CHECK-NEXT: %iv = phi i64 [ %iv.next, %loop ], [ 0, %guardbb ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%loop> U: [0,11) S: [0,11) Exits: %i LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %idx = getelementptr inbounds i32, ptr %a, i64 %iv
; CHECK-NEXT: --> {%a,+,4}<nuw><%loop> U: full-set S: full-set Exits: ((4 * %i) + %a) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %iv.next = add nuw nsw i64 %iv, 1
; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%loop> U: [1,12) S: [1,12) Exits: (1 + %i) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @test_multiple_var_guards_order2
; CHECK-NEXT: Loop %loop: backedge-taken count is %i
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 10
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is %i
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
%c.1 = icmp ult i64 %i, %N
br i1 %c.1, label %guardbb, label %exit
guardbb:
%c.2 = icmp ult i64 %N, 12
br i1 %c.2, label %loop, label %exit
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %guardbb ]
%idx = getelementptr inbounds i32, ptr %a, i64 %iv
store i32 1, ptr %idx, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv, %i
br i1 %exitcond, label %exit, label %loop
exit:
ret void
}
define i32 @sle_sgt_ult_umax_to_smax(i32 %num) {
; CHECK-LABEL: 'sle_sgt_ult_umax_to_smax'
; CHECK-NEXT: Classifying expressions for: @sle_sgt_ult_umax_to_smax
; CHECK-NEXT: %iv = phi i32 [ 0, %guard.3 ], [ %iv.next, %loop ]
; CHECK-NEXT: --> {0,+,4}<nuw><nsw><%loop> U: [0,25) S: [0,25) Exits: (4 * ((-4 + %num) /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %iv.next = add nuw i32 %iv, 4
; CHECK-NEXT: --> {4,+,4}<nuw><nsw><%loop> U: [4,29) S: [4,29) Exits: (4 + (4 * ((-4 + %num) /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @sle_sgt_ult_umax_to_smax
; CHECK-NEXT: Loop %loop: backedge-taken count is ((-4 + %num) /u 4)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 6
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-4 + %num) /u 4)
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
guard.1:
%cmp.1 = icmp sle i32 %num, 0
br i1 %cmp.1, label %exit, label %guard.2
guard.2:
%cmp.2 = icmp sgt i32 %num, 28
br i1 %cmp.2, label %exit, label %guard.3
guard.3:
%cmp.3 = icmp ult i32 %num, 4
br i1 %cmp.3, label %exit, label %loop
loop:
%iv = phi i32 [ 0, %guard.3 ], [ %iv.next, %loop ]
%iv.next = add nuw i32 %iv, 4
%ec = icmp eq i32 %iv.next, %num
br i1 %ec, label %exit, label %loop
exit:
ret i32 0
}
; Similar to @sle_sgt_ult_umax_to_smax but with different predicate order.
define i32 @ult_sle_sgt_umax_to_smax(i32 %num) {
; CHECK-LABEL: 'ult_sle_sgt_umax_to_smax'
; CHECK-NEXT: Classifying expressions for: @ult_sle_sgt_umax_to_smax
; CHECK-NEXT: %iv = phi i32 [ 0, %guard.3 ], [ %iv.next, %loop ]
; CHECK-NEXT: --> {0,+,4}<nuw><%loop> U: [0,-3) S: [-2147483648,2147483645) Exits: (4 * ((-4 + %num) /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %iv.next = add nuw i32 %iv, 4
; CHECK-NEXT: --> {4,+,4}<nuw><%loop> U: [4,-3) S: [-2147483648,2147483645) Exits: (4 + (4 * ((-4 + %num) /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @ult_sle_sgt_umax_to_smax
; CHECK-NEXT: Loop %loop: backedge-taken count is ((-4 + %num) /u 4)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 1073741823
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-4 + %num) /u 4)
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
guard.1:
%cmp.1 = icmp ult i32 %num, 4
br i1 %cmp.1, label %exit, label %guard.2
guard.2:
%cmp.2 = icmp sgt i32 %num, 28
br i1 %cmp.2, label %exit, label %guard.3
guard.3:
%cmp.3 = icmp sle i32 %num, 0
br i1 %cmp.3, label %exit, label %loop
loop:
%iv = phi i32 [ 0, %guard.3 ], [ %iv.next, %loop ]
%iv.next = add nuw i32 %iv, 4
%ec = icmp eq i32 %iv.next, %num
br i1 %ec, label %exit, label %loop
exit:
ret i32 0
}
define void @const_max_btc_32_or_order_1(i64 %n) {
; CHECK-LABEL: 'const_max_btc_32_or_order_1'
; CHECK-NEXT: Classifying expressions for: @const_max_btc_32_or_order_1
; CHECK-NEXT: %and.pre = and i1 %pre.1, %pre.0
; CHECK-NEXT: --> (%pre.1 umin %pre.0) U: full-set S: full-set
; CHECK-NEXT: %iv = phi i64 [ %iv.next, %loop ], [ 0, %ph ]
; CHECK-NEXT: --> {0,+,1}<nuw><%loop> U: [0,-9223372036854775808) S: [0,-9223372036854775808) Exits: %n LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %iv.next = add i64 %iv, 1
; CHECK-NEXT: --> {1,+,1}<nuw><%loop> U: [1,-9223372036854775807) S: [1,-9223372036854775807) Exits: (1 + %n) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @const_max_btc_32_or_order_1
; CHECK-NEXT: Loop %loop: backedge-taken count is %n
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 9223372036854775807
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is %n
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
%pre.0 = icmp slt i64 %n, 33
%pre.1 = icmp ne i64 %n, 0
%and.pre = and i1 %pre.1, %pre.0
br i1 %and.pre, label %ph, label %exit
ph:
%pre.2 = icmp sgt i64 %n, 0
br i1 %pre.2, label %loop, label %exit
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %ph ]
call void @foo()
%iv.next = add i64 %iv, 1
%ec = icmp eq i64 %iv, %n
br i1 %ec, label %exit, label %loop
exit:
ret void
}
; Same as @const_max_btc_32_or_order_1, but with operands in the OR swapped.
define void @const_max_btc_32_or_order_2(i64 %n) {
; CHECK-LABEL: 'const_max_btc_32_or_order_2'
; CHECK-NEXT: Classifying expressions for: @const_max_btc_32_or_order_2
; CHECK-NEXT: %and.pre = and i1 %pre.0, %pre.1
; CHECK-NEXT: --> (%pre.0 umin %pre.1) U: full-set S: full-set
; CHECK-NEXT: %iv = phi i64 [ %iv.next, %loop ], [ 0, %ph ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%loop> U: [0,33) S: [0,33) Exits: %n LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %iv.next = add i64 %iv, 1
; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%loop> U: [1,34) S: [1,34) Exits: (1 + %n) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @const_max_btc_32_or_order_2
; CHECK-NEXT: Loop %loop: backedge-taken count is %n
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 32
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is %n
; CHECK-NEXT: Loop %loop: Trip multiple is 1
;
entry:
%pre.0 = icmp slt i64 %n, 33
%pre.1 = icmp ne i64 %n, 0
%and.pre = and i1 %pre.0, %pre.1
br i1 %and.pre, label %ph, label %exit
ph:
%pre.2 = icmp sgt i64 %n, 0
br i1 %pre.2, label %loop, label %exit
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %ph ]
call void @foo()
%iv.next = add i64 %iv, 1
%ec = icmp eq i64 %iv, %n
br i1 %ec, label %exit, label %loop
exit:
ret void
}
declare void @foo()
|