1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -S -passes=early-cse -earlycse-debug-hash < %s | FileCheck %s --check-prefixes=CHECK,NO-MSSA
; RUN: opt -S -passes='early-cse<memssa>' < %s | FileCheck %s --check-prefixes=CHECK,MSSA
@var = global i32 undef
declare void @foo() nounwind
define void @test() {
; CHECK-LABEL: @test(
; CHECK-NEXT: call void @foo() #[[ATTR1:[0-9]+]]
; CHECK-NEXT: store i32 2, ptr @var, align 4
; CHECK-NEXT: ret void
;
store i32 1, ptr @var
call void @foo() writeonly
store i32 2, ptr @var
ret void
}
declare void @writeonly_void() memory(write)
; Can CSE writeonly calls, including non-nounwind/willreturn.
define void @writeonly_cse() {
; CHECK-LABEL: @writeonly_cse(
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: ret void
;
call void @writeonly_void()
call void @writeonly_void()
ret void
}
; Can CSE, loads do not matter.
define i32 @writeonly_cse_intervening_load(ptr %p) {
; CHECK-LABEL: @writeonly_cse_intervening_load(
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: [[V:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: ret i32 [[V]]
;
call void @writeonly_void()
%v = load i32, ptr %p
call void @writeonly_void()
ret i32 %v
}
; Cannot CSE, the store may be to the same memory.
define void @writeonly_cse_intervening_store(ptr %p) {
; CHECK-LABEL: @writeonly_cse_intervening_store(
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: store i32 0, ptr [[P:%.*]], align 4
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: ret void
;
call void @writeonly_void()
store i32 0, ptr %p
call void @writeonly_void()
ret void
}
; Can CSE, the store does not alias the writeonly call.
define void @writeonly_cse_intervening_noalias_store(ptr noalias %p) {
; NO-MSSA-LABEL: @writeonly_cse_intervening_noalias_store(
; NO-MSSA-NEXT: call void @writeonly_void()
; NO-MSSA-NEXT: store i32 0, ptr [[P:%.*]], align 4
; NO-MSSA-NEXT: call void @writeonly_void()
; NO-MSSA-NEXT: ret void
;
; MSSA-LABEL: @writeonly_cse_intervening_noalias_store(
; MSSA-NEXT: call void @writeonly_void()
; MSSA-NEXT: store i32 0, ptr [[P:%.*]], align 4
; MSSA-NEXT: ret void
;
call void @writeonly_void()
store i32 0, ptr %p
call void @writeonly_void()
ret void
}
; Cannot CSE loads across writeonly call.
define i32 @load_cse_across_writeonly(ptr %p) {
; CHECK-LABEL: @load_cse_across_writeonly(
; CHECK-NEXT: [[V1:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: [[V2:%.*]] = load i32, ptr [[P]], align 4
; CHECK-NEXT: [[RES:%.*]] = sub i32 [[V1]], [[V2]]
; CHECK-NEXT: ret i32 [[RES]]
;
%v1 = load i32, ptr %p
call void @writeonly_void()
%v2 = load i32, ptr %p
%res = sub i32 %v1, %v2
ret i32 %res
}
; Can CSE loads across eliminated writeonly call.
define i32 @load_cse_across_csed_writeonly(ptr %p) {
; CHECK-LABEL: @load_cse_across_csed_writeonly(
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: [[V2:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: ret i32 0
;
call void @writeonly_void()
%v1 = load i32, ptr %p
call void @writeonly_void()
%v2 = load i32, ptr %p
%res = sub i32 %v1, %v2
ret i32 %res
}
declare i32 @writeonly(ptr %p) memory(write)
; Can CSE writeonly calls with arg and return.
define i32 @writeonly_ret_cse(ptr %p) {
; CHECK-LABEL: @writeonly_ret_cse(
; CHECK-NEXT: [[V2:%.*]] = call i32 @writeonly(ptr [[P:%.*]])
; CHECK-NEXT: ret i32 0
;
%v1 = call i32 @writeonly(ptr %p)
%v2 = call i32 @writeonly(ptr %p)
%res = sub i32 %v1, %v2
ret i32 %res
}
; Cannot CSE writeonly calls with different arguments.
define i32 @writeonly_different_args(ptr %p1, ptr %p2) {
; CHECK-LABEL: @writeonly_different_args(
; CHECK-NEXT: [[V1:%.*]] = call i32 @writeonly(ptr [[P1:%.*]])
; CHECK-NEXT: [[V2:%.*]] = call i32 @writeonly(ptr [[P2:%.*]])
; CHECK-NEXT: [[RES:%.*]] = sub i32 [[V1]], [[V2]]
; CHECK-NEXT: ret i32 [[RES]]
;
%v1 = call i32 @writeonly(ptr %p1)
%v2 = call i32 @writeonly(ptr %p2)
%res = sub i32 %v1, %v2
ret i32 %res
}
declare void @callee()
; These are weird cases where the same call is both readonly and writeonly
; based on call-site attributes. I believe this implies that both calls are
; actually readnone and safe to CSE, but leave them alone to be conservative.
define void @readonly_and_writeonly() {
; CHECK-LABEL: @readonly_and_writeonly(
; CHECK-NEXT: call void @callee() #[[ATTR2:[0-9]+]]
; CHECK-NEXT: call void @callee() #[[ATTR1]]
; CHECK-NEXT: ret void
;
call void @callee() memory(read)
call void @callee() memory(write)
ret void
}
define void @writeonly_and_readonly() {
; CHECK-LABEL: @writeonly_and_readonly(
; CHECK-NEXT: call void @callee() #[[ATTR1]]
; CHECK-NEXT: call void @callee() #[[ATTR2]]
; CHECK-NEXT: ret void
;
call void @callee() memory(write)
call void @callee() memory(read)
ret void
}
|