1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ReduceOperands.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace PatternMatch;
static void
extractOperandsFromModule(Oracle &O, ReducerWorkItem &WorkItem,
function_ref<Value *(Use &)> ReduceValue) {
Module &Program = WorkItem.getModule();
for (auto &F : Program.functions()) {
for (auto &I : instructions(&F)) {
if (PHINode *Phi = dyn_cast<PHINode>(&I)) {
for (auto &Op : Phi->incoming_values()) {
if (Value *Reduced = ReduceValue(Op)) {
if (!O.shouldKeep())
Phi->setIncomingValueForBlock(Phi->getIncomingBlock(Op), Reduced);
}
}
continue;
}
for (auto &Op : I.operands()) {
if (Value *Reduced = ReduceValue(Op)) {
if (!O.shouldKeep())
Op.set(Reduced);
}
}
}
}
}
static bool isOne(Use &Op) {
auto *C = dyn_cast<Constant>(Op);
return C && C->isOneValue();
}
static bool isZero(Use &Op) {
auto *C = dyn_cast<Constant>(Op);
return C && C->isNullValue();
}
static bool isZeroOrOneFP(Value *Op) {
const APFloat *C;
return match(Op, m_APFloat(C)) &&
((C->isZero() && !C->isNegative()) || C->isExactlyValue(1.0));
}
static bool shouldReduceOperand(Use &Op) {
Type *Ty = Op->getType();
if (Ty->isLabelTy() || Ty->isMetadataTy())
return false;
// TODO: be more precise about which GEP operands we can reduce (e.g. array
// indexes)
if (isa<GEPOperator>(Op.getUser()))
return false;
if (auto *CB = dyn_cast<CallBase>(Op.getUser())) {
if (&CB->getCalledOperandUse() == &Op)
return false;
}
return true;
}
static bool switchCaseExists(Use &Op, ConstantInt *CI) {
SwitchInst *SI = dyn_cast<SwitchInst>(Op.getUser());
if (!SI)
return false;
return SI->findCaseValue(CI) != SI->case_default();
}
void llvm::reduceOperandsOneDeltaPass(Oracle &O, ReducerWorkItem &WorkItem) {
auto ReduceValue = [](Use &Op) -> Value * {
if (!shouldReduceOperand(Op))
return nullptr;
Type *Ty = Op->getType();
if (auto *IntTy = dyn_cast<IntegerType>(Ty)) {
// Don't duplicate an existing switch case.
if (switchCaseExists(Op, ConstantInt::get(IntTy, 1)))
return nullptr;
// Don't replace existing ones and zeroes.
return (isOne(Op) || isZero(Op)) ? nullptr : ConstantInt::get(IntTy, 1);
}
if (Ty->isFloatingPointTy())
return isZeroOrOneFP(Op) ? nullptr : ConstantFP::get(Ty, 1.0);
if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
if (isOne(Op) || isZero(Op) || isZeroOrOneFP(Op))
return nullptr;
Type *ElementType = VT->getElementType();
Constant *C;
if (ElementType->isFloatingPointTy()) {
C = ConstantFP::get(ElementType, 1.0);
} else if (IntegerType *IntTy = dyn_cast<IntegerType>(ElementType)) {
C = ConstantInt::get(IntTy, 1);
} else {
return nullptr;
}
return ConstantVector::getSplat(VT->getElementCount(), C);
}
return nullptr;
};
extractOperandsFromModule(O, WorkItem, ReduceValue);
}
void llvm::reduceOperandsZeroDeltaPass(Oracle &O, ReducerWorkItem &WorkItem) {
auto ReduceValue = [](Use &Op) -> Value * {
if (!shouldReduceOperand(Op))
return nullptr;
// Avoid introducing 0-sized allocations.
if (isa<AllocaInst>(Op.getUser()))
return nullptr;
// Don't duplicate an existing switch case.
if (auto *IntTy = dyn_cast<IntegerType>(Op->getType()))
if (switchCaseExists(Op, ConstantInt::get(IntTy, 0)))
return nullptr;
if (auto *TET = dyn_cast<TargetExtType>(Op->getType())) {
if (isa<ConstantTargetNone, PoisonValue>(Op))
return nullptr;
if (TET->hasProperty(TargetExtType::HasZeroInit))
return ConstantTargetNone::get(TET);
return nullptr;
}
// Don't replace existing zeroes.
return isZero(Op) ? nullptr : Constant::getNullValue(Op->getType());
};
extractOperandsFromModule(O, WorkItem, ReduceValue);
}
void llvm::reduceOperandsNaNDeltaPass(Oracle &O, ReducerWorkItem &WorkItem) {
auto ReduceValue = [](Use &Op) -> Value * {
Type *Ty = Op->getType();
if (!Ty->isFPOrFPVectorTy())
return nullptr;
// Prefer 0.0 or 1.0 over NaN.
//
// TODO: Preferring NaN may make more sense because FP operations are more
// universally foldable.
if (match(Op.get(), m_NaN()) || isZeroOrOneFP(Op.get()))
return nullptr;
if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
return ConstantVector::getSplat(VT->getElementCount(),
ConstantFP::getQNaN(VT->getElementType()));
}
return ConstantFP::getQNaN(Ty);
};
extractOperandsFromModule(O, WorkItem, ReduceValue);
}
void llvm::reduceOperandsPoisonDeltaPass(Oracle &O, ReducerWorkItem &WorkItem) {
auto ReduceValue = [](Use &Op) -> Value * {
Type *Ty = Op->getType();
if (auto *TET = dyn_cast<TargetExtType>(Ty)) {
if (isa<ConstantTargetNone, PoisonValue>(Op))
return nullptr;
return PoisonValue::get(TET);
}
return nullptr;
};
extractOperandsFromModule(O, WorkItem, ReduceValue);
}
|