1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Try to reduce a function by inserting new return instructions. Try to insert
// an early return for each instruction value at that point. This requires
// mutating the return type, or finding instructions with a compatible type.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "llvm-reduce"
#include "ReduceValuesToReturn.h"
#include "Delta.h"
#include "Utils.h"
#include "llvm/IR/AttributeMask.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
/// Return true if it is legal to emit a copy of the function with a non-void
/// return type.
static bool canUseNonVoidReturnType(const Function &F) {
// Functions with sret arguments must return void.
return !F.hasStructRetAttr() &&
CallingConv::supportsNonVoidReturnType(F.getCallingConv());
}
/// Return true if it's legal to replace a function return type to use \p Ty.
static bool isReallyValidReturnType(Type *Ty) {
return FunctionType::isValidReturnType(Ty) && !Ty->isTokenTy() &&
Ty->isFirstClassType();
}
/// Insert a ret inst after \p NewRetValue, which returns the value it produces.
static void rewriteFuncWithReturnType(Function &OldF, Value *NewRetValue) {
Type *NewRetTy = NewRetValue->getType();
FunctionType *OldFuncTy = OldF.getFunctionType();
FunctionType *NewFuncTy =
FunctionType::get(NewRetTy, OldFuncTy->params(), OldFuncTy->isVarArg());
LLVMContext &Ctx = OldF.getContext();
BasicBlock &EntryBB = OldF.getEntryBlock();
Instruction *NewRetI = dyn_cast<Instruction>(NewRetValue);
BasicBlock *NewRetBlock = NewRetI ? NewRetI->getParent() : &EntryBB;
BasicBlock::iterator NewValIt =
NewRetI ? std::next(NewRetI->getIterator()) : EntryBB.begin();
Type *OldRetTy = OldFuncTy->getReturnType();
// Hack up any return values in other blocks, we can't leave them as returning OldRetTy.
if (OldRetTy != NewRetTy) {
for (BasicBlock &OtherRetBB : OldF) {
if (&OtherRetBB != NewRetBlock) {
auto *OrigRI = dyn_cast<ReturnInst>(OtherRetBB.getTerminator());
if (!OrigRI)
continue;
OrigRI->eraseFromParent();
ReturnInst::Create(Ctx, getDefaultValue(NewRetTy), &OtherRetBB);
}
}
}
// If we're returning an instruction, split the basic block so we can let
// simpleSimplifyCFG cleanup the successors.
BasicBlock *TailBB = NewRetBlock->splitBasicBlock(NewValIt);
// Replace the unconditional branch splitBasicBlock created
NewRetBlock->getTerminator()->eraseFromParent();
ReturnInst::Create(Ctx, NewRetValue, NewRetBlock);
// Now prune any CFG edges we have to deal with.
simpleSimplifyCFG(OldF, {TailBB}, /*FoldBlockIntoPredecessor=*/false);
// Drop the incompatible attributes before we copy over to the new function.
if (OldRetTy != NewRetTy) {
AttributeList AL = OldF.getAttributes();
AttributeMask IncompatibleAttrs =
AttributeFuncs::typeIncompatible(NewRetTy, AL.getRetAttrs());
OldF.removeRetAttrs(IncompatibleAttrs);
}
// Now we need to remove any returned attributes from parameters.
for (Argument &A : OldF.args())
OldF.removeParamAttr(A.getArgNo(), Attribute::Returned);
Function *NewF =
Function::Create(NewFuncTy, OldF.getLinkage(), OldF.getAddressSpace(), "",
OldF.getParent());
NewF->removeFromParent();
OldF.getParent()->getFunctionList().insertAfter(OldF.getIterator(), NewF);
NewF->takeName(&OldF);
NewF->copyAttributesFrom(&OldF);
// Adjust the callsite uses to the new return type. We pre-filtered cases
// where the original call type was incorrectly non-void.
for (User *U : make_early_inc_range(OldF.users())) {
if (auto *CB = dyn_cast<CallBase>(U);
CB && CB->getCalledOperand() == &OldF) {
if (CB->getType()->isVoidTy()) {
FunctionType *CallType = CB->getFunctionType();
// The callsite may not match the new function type, in an undefined
// behavior way. Only mutate the local return type.
FunctionType *NewCallType = FunctionType::get(
NewRetTy, CallType->params(), CallType->isVarArg());
CB->mutateType(NewRetTy);
CB->setCalledFunction(NewCallType, NewF);
} else {
assert(CB->getType() == NewRetTy &&
"only handle exact return type match with non-void returns");
}
}
}
NewF->splice(NewF->begin(), &OldF);
OldF.replaceAllUsesWith(NewF);
// Preserve the parameters of OldF.
for (auto Z : zip_first(OldF.args(), NewF->args())) {
Argument &OldArg = std::get<0>(Z);
Argument &NewArg = std::get<1>(Z);
OldArg.replaceAllUsesWith(&NewArg);
NewArg.takeName(&OldArg);
}
OldF.eraseFromParent();
}
// Check if all the callsites of the void function are void, or happen to
// incorrectly use the new return type.
//
// TODO: We could make better effort to handle call type mismatches.
static bool canReplaceFuncUsers(const Function &F, Type *NewRetTy) {
for (const Use &U : F.uses()) {
const CallBase *CB = dyn_cast<CallBase>(U.getUser());
if (!CB)
continue;
// Normal pointer uses are trivially replacable.
if (!CB->isCallee(&U))
continue;
// We can trivially replace the correct void call sites.
if (CB->getType()->isVoidTy())
continue;
// We can trivially replace the call if the return type happened to match
// the new return type.
if (CB->getType() == NewRetTy)
continue;
// TODO: If all callsites have no uses, we could mutate the type of all the
// callsites. This will complicate the visit and rewrite ordering though.
LLVM_DEBUG(dbgs() << "Cannot replace used callsite with wrong type: " << *CB
<< '\n');
return false;
}
return true;
}
/// Return true if it's worthwhile replacing the non-void return value of \p BB
/// with \p Replacement
static bool shouldReplaceNonVoidReturnValue(const BasicBlock &BB,
const Value *Replacement) {
if (const auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
return RI->getReturnValue() != Replacement;
return true;
}
static bool shouldForwardValueToReturn(const BasicBlock &BB, const Value *V,
Type *RetTy) {
if (!isReallyValidReturnType(V->getType()))
return false;
return (RetTy->isVoidTy() || shouldReplaceNonVoidReturnValue(BB, V)) &&
canReplaceFuncUsers(*BB.getParent(), V->getType());
}
static bool tryForwardingInstructionsToReturn(
Function &F, Oracle &O,
std::vector<std::pair<Function *, Value *>> &FuncsToReplace) {
// TODO: Should we try to expand returns to aggregate for function that
// already have a return value?
Type *RetTy = F.getReturnType();
for (BasicBlock &BB : F) {
// Skip the terminator, we can't insert a second terminator to return its
// value.
for (Instruction &I : make_range(BB.begin(), std::prev(BB.end()))) {
if (shouldForwardValueToReturn(BB, &I, RetTy) && !O.shouldKeep()) {
FuncsToReplace.emplace_back(&F, &I);
return true;
}
}
}
return false;
}
static bool tryForwardingArgumentsToReturn(
Function &F, Oracle &O,
std::vector<std::pair<Function *, Value *>> &FuncsToReplace) {
Type *RetTy = F.getReturnType();
BasicBlock &EntryBB = F.getEntryBlock();
for (Argument &A : F.args()) {
if (shouldForwardValueToReturn(EntryBB, &A, RetTy) && !O.shouldKeep()) {
FuncsToReplace.emplace_back(&F, &A);
return true;
}
}
return false;
}
void llvm::reduceArgumentsToReturnDeltaPass(Oracle &O,
ReducerWorkItem &WorkItem) {
Module &Program = WorkItem.getModule();
// We're going to chaotically hack on the other users of the function in other
// functions, so we need to collect a worklist of returns to replace.
std::vector<std::pair<Function *, Value *>> FuncsToReplace;
for (Function &F : Program.functions()) {
if (!F.isDeclaration() && canUseNonVoidReturnType(F))
tryForwardingArgumentsToReturn(F, O, FuncsToReplace);
}
for (auto [F, NewRetVal] : FuncsToReplace)
rewriteFuncWithReturnType(*F, NewRetVal);
}
void llvm::reduceInstructionsToReturnDeltaPass(Oracle &O,
ReducerWorkItem &WorkItem) {
Module &Program = WorkItem.getModule();
// We're going to chaotically hack on the other users of the function in other
// functions, so we need to collect a worklist of returns to replace.
std::vector<std::pair<Function *, Value *>> FuncsToReplace;
for (Function &F : Program.functions()) {
if (!F.isDeclaration() && canUseNonVoidReturnType(F))
tryForwardingInstructionsToReturn(F, O, FuncsToReplace);
}
for (auto [F, NewRetVal] : FuncsToReplace)
rewriteFuncWithReturnType(*F, NewRetVal);
}
|