1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// REQUIRES: has-unix-headers
// UNSUPPORTED: c++03, c++11, c++14, c++17
// UNSUPPORTED: libcpp-hardening-mode=none
// XFAIL: libcpp-hardening-mode=debug && availability-verbose_abort-missing
// <memory>
//
// unique_ptr<T[]>
//
// T& operator[](std::size_t);
// This test ensures that we catch an out-of-bounds access in std::unique_ptr<T[]>::operator[]
// when unique_ptr has the appropriate ABI configuration.
#include <memory>
#include <cstddef>
#include <string>
#include "check_assertion.h"
#include "type_algorithms.h"
#include "test_macros.h"
struct MyDeleter {
MyDeleter() = default;
// required to exercise converting move-constructor
template <class T>
MyDeleter(std::default_delete<T> const&) {}
// required to exercise converting move-assignment
template <class T>
MyDeleter& operator=(std::default_delete<T> const&) {
return *this;
}
template <class T>
void operator()(T* ptr) const {
delete[] ptr;
}
};
template <class WithCookie, class NoCookie>
void test() {
LIBCPP_STATIC_ASSERT(std::__has_array_cookie<WithCookie>::value);
LIBCPP_STATIC_ASSERT(!std::__has_array_cookie<NoCookie>::value);
// For types with an array cookie, we can always detect OOB accesses. Note that reliance on an array
// cookie is limited to the default deleter, since a unique_ptr with a custom deleter may not have
// been allocated with `new T[n]`.
{
{
std::unique_ptr<WithCookie[]> ptr(new WithCookie[5]);
assert(&ptr[1] == ptr.get() + 1); // ensure no assertion
TEST_LIBCPP_ASSERT_FAILURE(ptr[6], "unique_ptr<T[]>::operator[](index): index out of range");
}
{
std::unique_ptr<WithCookie[]> ptr = std::make_unique<WithCookie[]>(5);
assert(&ptr[1] == ptr.get() + 1); // ensure no assertion
TEST_LIBCPP_ASSERT_FAILURE(ptr[6], "unique_ptr<T[]>::operator[](index): index out of range");
}
#if TEST_STD_VER >= 20
{
std::unique_ptr<WithCookie[]> ptr = std::make_unique_for_overwrite<WithCookie[]>(5);
assert(&ptr[1] == ptr.get() + 1); // ensure no assertion
TEST_LIBCPP_ASSERT_FAILURE(ptr[6] = WithCookie(), "unique_ptr<T[]>::operator[](index): index out of range");
}
#endif
}
// For types that don't have an array cookie, things are a bit more complicated. We can detect OOB accesses
// only when the unique_ptr is created via an API where the size is passed down to the library so that we
// can store it inside the unique_ptr. That requires the appropriate ABI configuration to be enabled.
//
// Note that APIs that allow the size to be passed down to the library only support the default deleter
// as of writing this test.
#if defined(_LIBCPP_ABI_BOUNDED_UNIQUE_PTR)
{
{
std::unique_ptr<NoCookie[]> ptr = std::make_unique<NoCookie[]>(5);
assert(&ptr[1] == ptr.get() + 1); // ensure no assertion
TEST_LIBCPP_ASSERT_FAILURE(ptr[6], "unique_ptr<T[]>::operator[](index): index out of range");
}
# if TEST_STD_VER >= 20
{
std::unique_ptr<NoCookie[]> ptr = std::make_unique_for_overwrite<NoCookie[]>(5);
assert(&ptr[1] == ptr.get() + 1); // ensure no assertion
TEST_LIBCPP_ASSERT_FAILURE(ptr[6] = NoCookie(), "unique_ptr<T[]>::operator[](index): index out of range");
}
# endif
}
#endif
// Make sure that we carry the bounds information properly through conversions, assignments, etc.
// These tests are only relevant when the ABI setting is enabled (with a stateful bounds-checker).
#if defined(_LIBCPP_ABI_BOUNDED_UNIQUE_PTR)
types::for_each(types::type_list<NoCookie, WithCookie>(), []<class T> {
// Bounds carried through move construction
{
std::unique_ptr<T[]> ptr = std::make_unique<T[]>(5);
std::unique_ptr<T[]> other(std::move(ptr));
assert(&other[1] == other.get() + 1); // ensure no assertion
TEST_LIBCPP_ASSERT_FAILURE(other[6], "unique_ptr<T[]>::operator[](index): index out of range");
}
// Bounds carried through move assignment
{
std::unique_ptr<T[]> ptr = std::make_unique<T[]>(5);
std::unique_ptr<T[]> other;
other = std::move(ptr);
assert(&other[1] == other.get() + 1); // ensure no assertion
TEST_LIBCPP_ASSERT_FAILURE(other[6], "unique_ptr<T[]>::operator[](index): index out of range");
}
// Bounds carried through converting move-constructor
{
std::unique_ptr<T[]> ptr = std::make_unique<T[]>(5);
std::unique_ptr<T[], MyDeleter> other(std::move(ptr));
assert(&other[1] == other.get() + 1); // ensure no assertion
TEST_LIBCPP_ASSERT_FAILURE(other[6], "unique_ptr<T[]>::operator[](index): index out of range");
}
// Bounds carried through converting move-assignment
{
std::unique_ptr<T[]> ptr = std::make_unique<T[]>(5);
std::unique_ptr<T[], MyDeleter> other;
other = std::move(ptr);
assert(&other[1] == other.get() + 1); // ensure no assertion
TEST_LIBCPP_ASSERT_FAILURE(other[6], "unique_ptr<T[]>::operator[](index): index out of range");
}
});
#endif
}
template <std::size_t Size>
struct NoCookie {
char padding[Size];
};
template <std::size_t Size>
struct WithCookie {
WithCookie() = default;
WithCookie(WithCookie const&) {}
WithCookie& operator=(WithCookie const&) { return *this; }
~WithCookie() {}
char padding[Size];
};
template <std::size_t Size>
struct alignas(128) OveralignedNoCookie {
char padding[Size];
};
template <std::size_t Size>
struct alignas(128) OveralignedWithCookie {
OveralignedWithCookie() = default;
OveralignedWithCookie(OveralignedWithCookie const&) {}
OveralignedWithCookie& operator=(OveralignedWithCookie const&) { return *this; }
~OveralignedWithCookie() {}
char padding[Size];
};
// These types have a different ABI alignment (alignof) and preferred alignment (__alignof) on some platforms.
// Make sure things work with these types because array cookies can be sensitive to preferred alignment on some
// platforms.
struct WithCookiePreferredAlignment {
WithCookiePreferredAlignment() = default;
WithCookiePreferredAlignment(WithCookiePreferredAlignment const&) {}
WithCookiePreferredAlignment& operator=(WithCookiePreferredAlignment const&) { return *this; }
~WithCookiePreferredAlignment() {}
long double data;
};
struct NoCookiePreferredAlignment {
long double data;
};
int main(int, char**) {
test<WithCookie<1>, NoCookie<1>>();
test<WithCookie<2>, NoCookie<2>>();
test<WithCookie<3>, NoCookie<3>>();
test<WithCookie<4>, NoCookie<4>>();
test<WithCookie<8>, NoCookie<8>>();
test<WithCookie<16>, NoCookie<16>>();
test<WithCookie<32>, NoCookie<32>>();
test<WithCookie<256>, NoCookie<256>>();
test<OveralignedWithCookie<1>, OveralignedNoCookie<1>>();
test<OveralignedWithCookie<2>, OveralignedNoCookie<2>>();
test<OveralignedWithCookie<3>, OveralignedNoCookie<3>>();
test<OveralignedWithCookie<4>, OveralignedNoCookie<4>>();
test<OveralignedWithCookie<8>, OveralignedNoCookie<8>>();
test<OveralignedWithCookie<16>, OveralignedNoCookie<16>>();
test<OveralignedWithCookie<32>, OveralignedNoCookie<32>>();
test<OveralignedWithCookie<256>, OveralignedNoCookie<256>>();
test<std::string, int>();
test<WithCookiePreferredAlignment, NoCookiePreferredAlignment>();
return 0;
}
|