1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
|
//===- CtxProfAnalysis.cpp - contextual profile analysis ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the contextual profile analysis, which maintains contextual
// profiling info through IPO passes.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CtxProfAnalysis.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/IR/Analysis.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/ProfileData/PGOCtxProfReader.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include <deque>
#include <memory>
#define DEBUG_TYPE "ctx_prof"
using namespace llvm;
cl::opt<std::string>
UseCtxProfile("use-ctx-profile", cl::init(""), cl::Hidden,
cl::desc("Use the specified contextual profile file"));
static cl::opt<CtxProfAnalysisPrinterPass::PrintMode> PrintLevel(
"ctx-profile-printer-level",
cl::init(CtxProfAnalysisPrinterPass::PrintMode::YAML), cl::Hidden,
cl::values(clEnumValN(CtxProfAnalysisPrinterPass::PrintMode::Everything,
"everything", "print everything - most verbose"),
clEnumValN(CtxProfAnalysisPrinterPass::PrintMode::YAML, "yaml",
"just the yaml representation of the profile")),
cl::desc("Verbosity level of the contextual profile printer pass."));
static cl::opt<bool> ForceIsInSpecializedModule(
"ctx-profile-force-is-specialized", cl::init(false),
cl::desc("Treat the given module as-if it were containing the "
"post-thinlink module containing the root"));
const char *AssignGUIDPass::GUIDMetadataName = "guid";
namespace llvm {
class ProfileAnnotatorImpl final {
friend class ProfileAnnotator;
class BBInfo;
struct EdgeInfo {
BBInfo *const Src;
BBInfo *const Dest;
std::optional<uint64_t> Count;
explicit EdgeInfo(BBInfo &Src, BBInfo &Dest) : Src(&Src), Dest(&Dest) {}
};
class BBInfo {
std::optional<uint64_t> Count;
// OutEdges is dimensioned to match the number of terminator operands.
// Entries in the vector match the index in the terminator operand list. In
// some cases - see `shouldExcludeEdge` and its implementation - an entry
// will be nullptr.
// InEdges doesn't have the above constraint.
SmallVector<EdgeInfo *> OutEdges;
SmallVector<EdgeInfo *> InEdges;
size_t UnknownCountOutEdges = 0;
size_t UnknownCountInEdges = 0;
// Pass AssumeAllKnown when we try to propagate counts from edges to BBs -
// because all the edge counters must be known.
// Return std::nullopt if there were no edges to sum. The user can decide
// how to interpret that.
std::optional<uint64_t> getEdgeSum(const SmallVector<EdgeInfo *> &Edges,
bool AssumeAllKnown) const {
std::optional<uint64_t> Sum;
for (const auto *E : Edges) {
// `Edges` may be `OutEdges`, case in which `E` could be nullptr.
if (E) {
if (!Sum.has_value())
Sum = 0;
*Sum += (AssumeAllKnown ? *E->Count : E->Count.value_or(0U));
}
}
return Sum;
}
bool computeCountFrom(const SmallVector<EdgeInfo *> &Edges) {
assert(!Count.has_value());
Count = getEdgeSum(Edges, true);
return Count.has_value();
}
void setSingleUnknownEdgeCount(SmallVector<EdgeInfo *> &Edges) {
uint64_t KnownSum = getEdgeSum(Edges, false).value_or(0U);
uint64_t EdgeVal = *Count > KnownSum ? *Count - KnownSum : 0U;
EdgeInfo *E = nullptr;
for (auto *I : Edges)
if (I && !I->Count.has_value()) {
E = I;
#ifdef NDEBUG
break;
#else
assert((!E || E == I) &&
"Expected exactly one edge to have an unknown count, "
"found a second one");
continue;
#endif
}
assert(E && "Expected exactly one edge to have an unknown count");
assert(!E->Count.has_value());
E->Count = EdgeVal;
assert(E->Src->UnknownCountOutEdges > 0);
assert(E->Dest->UnknownCountInEdges > 0);
--E->Src->UnknownCountOutEdges;
--E->Dest->UnknownCountInEdges;
}
public:
BBInfo(size_t NumInEdges, size_t NumOutEdges, std::optional<uint64_t> Count)
: Count(Count) {
// For in edges, we just want to pre-allocate enough space, since we know
// it at this stage. For out edges, we will insert edges at the indices
// corresponding to positions in this BB's terminator instruction, so we
// construct a default (nullptr values)-initialized vector. A nullptr edge
// corresponds to those that are excluded (see shouldExcludeEdge).
InEdges.reserve(NumInEdges);
OutEdges.resize(NumOutEdges);
}
bool tryTakeCountFromKnownOutEdges(const BasicBlock &BB) {
if (!UnknownCountOutEdges) {
return computeCountFrom(OutEdges);
}
return false;
}
bool tryTakeCountFromKnownInEdges(const BasicBlock &BB) {
if (!UnknownCountInEdges) {
return computeCountFrom(InEdges);
}
return false;
}
void addInEdge(EdgeInfo &Info) {
InEdges.push_back(&Info);
++UnknownCountInEdges;
}
// For the out edges, we care about the position we place them in, which is
// the position in terminator instruction's list (at construction). Later,
// we build branch_weights metadata with edge frequency values matching
// these positions.
void addOutEdge(size_t Index, EdgeInfo &Info) {
OutEdges[Index] = &Info;
++UnknownCountOutEdges;
}
bool hasCount() const { return Count.has_value(); }
uint64_t getCount() const { return *Count; }
bool trySetSingleUnknownInEdgeCount() {
if (UnknownCountInEdges == 1) {
setSingleUnknownEdgeCount(InEdges);
return true;
}
return false;
}
bool trySetSingleUnknownOutEdgeCount() {
if (UnknownCountOutEdges == 1) {
setSingleUnknownEdgeCount(OutEdges);
return true;
}
return false;
}
size_t getNumOutEdges() const { return OutEdges.size(); }
uint64_t getEdgeCount(size_t Index) const {
if (auto *E = OutEdges[Index])
return *E->Count;
return 0U;
}
};
const Function &F;
ArrayRef<uint64_t> Counters;
// To be accessed through getBBInfo() after construction.
std::map<const BasicBlock *, BBInfo> BBInfos;
std::vector<EdgeInfo> EdgeInfos;
// The only criteria for exclusion is faux suspend -> exit edges in presplit
// coroutines. The API serves for readability, currently.
bool shouldExcludeEdge(const BasicBlock &Src, const BasicBlock &Dest) const {
return llvm::isPresplitCoroSuspendExitEdge(Src, Dest);
}
BBInfo &getBBInfo(const BasicBlock &BB) { return BBInfos.find(&BB)->second; }
const BBInfo &getBBInfo(const BasicBlock &BB) const {
return BBInfos.find(&BB)->second;
}
// validation function after we propagate the counters: all BBs and edges'
// counters must have a value.
bool allCountersAreAssigned() const {
for (const auto &BBInfo : BBInfos)
if (!BBInfo.second.hasCount())
return false;
for (const auto &EdgeInfo : EdgeInfos)
if (!EdgeInfo.Count.has_value())
return false;
return true;
}
/// Check that all paths from the entry basic block that use edges with
/// non-zero counts arrive at a basic block with no successors (i.e. "exit")
bool allTakenPathsExit() const {
std::deque<const BasicBlock *> Worklist;
DenseSet<const BasicBlock *> Visited;
Worklist.push_back(&F.getEntryBlock());
bool HitExit = false;
while (!Worklist.empty()) {
const auto *BB = Worklist.front();
Worklist.pop_front();
if (!Visited.insert(BB).second)
continue;
if (succ_size(BB) == 0) {
if (isa<UnreachableInst>(BB->getTerminator()))
return false;
HitExit = true;
continue;
}
if (succ_size(BB) == 1) {
Worklist.push_back(BB->getUniqueSuccessor());
continue;
}
const auto &BBInfo = getBBInfo(*BB);
bool HasAWayOut = false;
for (auto I = 0U; I < BB->getTerminator()->getNumSuccessors(); ++I) {
const auto *Succ = BB->getTerminator()->getSuccessor(I);
if (!shouldExcludeEdge(*BB, *Succ)) {
if (BBInfo.getEdgeCount(I) > 0) {
HasAWayOut = true;
Worklist.push_back(Succ);
}
}
}
if (!HasAWayOut)
return false;
}
return HitExit;
}
bool allNonColdSelectsHaveProfile() const {
for (const auto &BB : F) {
if (getBBInfo(BB).getCount() > 0) {
for (const auto &I : BB) {
if (const auto *SI = dyn_cast<SelectInst>(&I)) {
if (const auto *Inst = CtxProfAnalysis::getSelectInstrumentation(
*const_cast<SelectInst *>(SI))) {
auto Index = Inst->getIndex()->getZExtValue();
assert(Index < Counters.size());
if (Counters[Index] == 0)
return false;
}
}
}
}
}
return true;
}
// This is an adaptation of PGOUseFunc::populateCounters.
// FIXME(mtrofin): look into factoring the code to share one implementation.
void propagateCounterValues() {
bool KeepGoing = true;
while (KeepGoing) {
KeepGoing = false;
for (const auto &BB : F) {
auto &Info = getBBInfo(BB);
if (!Info.hasCount())
KeepGoing |= Info.tryTakeCountFromKnownOutEdges(BB) ||
Info.tryTakeCountFromKnownInEdges(BB);
if (Info.hasCount()) {
KeepGoing |= Info.trySetSingleUnknownOutEdgeCount();
KeepGoing |= Info.trySetSingleUnknownInEdgeCount();
}
}
}
assert(allCountersAreAssigned() &&
"[ctx-prof] Expected all counters have been assigned.");
assert(allTakenPathsExit() &&
"[ctx-prof] Encountered a BB with more than one successor, where "
"all outgoing edges have a 0 count. This occurs in non-exiting "
"functions (message pumps, usually) which are not supported in the "
"contextual profiling case");
assert(allNonColdSelectsHaveProfile() &&
"[ctx-prof] All non-cold select instructions were expected to have "
"a profile.");
}
public:
ProfileAnnotatorImpl(const Function &F, ArrayRef<uint64_t> Counters)
: F(F), Counters(Counters) {
assert(!F.isDeclaration());
assert(!Counters.empty());
size_t NrEdges = 0;
for (const auto &BB : F) {
std::optional<uint64_t> Count;
if (auto *Ins = CtxProfAnalysis::getBBInstrumentation(
const_cast<BasicBlock &>(BB))) {
auto Index = Ins->getIndex()->getZExtValue();
assert(Index < Counters.size() &&
"The index must be inside the counters vector by construction - "
"tripping this assertion indicates a bug in how the contextual "
"profile is managed by IPO transforms");
(void)Index;
Count = Counters[Ins->getIndex()->getZExtValue()];
} else if (isa<UnreachableInst>(BB.getTerminator())) {
// The program presumably didn't crash.
Count = 0;
}
auto [It, Ins] =
BBInfos.insert({&BB, {pred_size(&BB), succ_size(&BB), Count}});
(void)Ins;
assert(Ins && "We iterate through the function's BBs, no reason to "
"insert one more than once");
NrEdges += llvm::count_if(successors(&BB), [&](const auto *Succ) {
return !shouldExcludeEdge(BB, *Succ);
});
}
// Pre-allocate the vector, we want references to its contents to be stable.
EdgeInfos.reserve(NrEdges);
for (const auto &BB : F) {
auto &Info = getBBInfo(BB);
for (auto I = 0U; I < BB.getTerminator()->getNumSuccessors(); ++I) {
const auto *Succ = BB.getTerminator()->getSuccessor(I);
if (!shouldExcludeEdge(BB, *Succ)) {
auto &EI = EdgeInfos.emplace_back(getBBInfo(BB), getBBInfo(*Succ));
Info.addOutEdge(I, EI);
getBBInfo(*Succ).addInEdge(EI);
}
}
}
assert(EdgeInfos.capacity() == NrEdges &&
"The capacity of EdgeInfos should have stayed unchanged it was "
"populated, because we need pointers to its contents to be stable");
propagateCounterValues();
}
uint64_t getBBCount(const BasicBlock &BB) { return getBBInfo(BB).getCount(); }
};
} // namespace llvm
ProfileAnnotator::ProfileAnnotator(const Function &F,
ArrayRef<uint64_t> RawCounters)
: PImpl(std::make_unique<ProfileAnnotatorImpl>(F, RawCounters)) {}
ProfileAnnotator::~ProfileAnnotator() = default;
uint64_t ProfileAnnotator::getBBCount(const BasicBlock &BB) const {
return PImpl->getBBCount(BB);
}
bool ProfileAnnotator::getSelectInstrProfile(SelectInst &SI,
uint64_t &TrueCount,
uint64_t &FalseCount) const {
const auto &BBInfo = PImpl->getBBInfo(*SI.getParent());
TrueCount = FalseCount = 0;
if (BBInfo.getCount() == 0)
return false;
auto *Step = CtxProfAnalysis::getSelectInstrumentation(SI);
if (!Step)
return false;
auto Index = Step->getIndex()->getZExtValue();
assert(Index < PImpl->Counters.size() &&
"The index of the step instruction must be inside the "
"counters vector by "
"construction - tripping this assertion indicates a bug in "
"how the contextual profile is managed by IPO transforms");
auto TotalCount = BBInfo.getCount();
TrueCount = PImpl->Counters[Index];
FalseCount = (TotalCount > TrueCount ? TotalCount - TrueCount : 0U);
return true;
}
bool ProfileAnnotator::getOutgoingBranchWeights(
BasicBlock &BB, SmallVectorImpl<uint64_t> &Profile,
uint64_t &MaxCount) const {
Profile.clear();
if (succ_size(&BB) < 2)
return false;
auto *Term = BB.getTerminator();
Profile.resize(Term->getNumSuccessors());
const auto &BBInfo = PImpl->getBBInfo(BB);
MaxCount = 0;
for (unsigned SuccIdx = 0, Size = BBInfo.getNumOutEdges(); SuccIdx < Size;
++SuccIdx) {
uint64_t EdgeCount = BBInfo.getEdgeCount(SuccIdx);
if (EdgeCount > MaxCount)
MaxCount = EdgeCount;
Profile[SuccIdx] = EdgeCount;
}
return MaxCount > 0;
}
PreservedAnalyses AssignGUIDPass::run(Module &M, ModuleAnalysisManager &MAM) {
for (auto &F : M.functions()) {
if (F.isDeclaration())
continue;
if (F.getMetadata(GUIDMetadataName))
continue;
const GlobalValue::GUID GUID = F.getGUID();
F.setMetadata(GUIDMetadataName,
MDNode::get(M.getContext(),
{ConstantAsMetadata::get(ConstantInt::get(
Type::getInt64Ty(M.getContext()), GUID))}));
}
return PreservedAnalyses::none();
}
GlobalValue::GUID AssignGUIDPass::getGUID(const Function &F) {
if (F.isDeclaration()) {
assert(GlobalValue::isExternalLinkage(F.getLinkage()));
return F.getGUID();
}
auto *MD = F.getMetadata(GUIDMetadataName);
assert(MD && "guid not found for defined function");
return cast<ConstantInt>(cast<ConstantAsMetadata>(MD->getOperand(0))
->getValue()
->stripPointerCasts())
->getZExtValue();
}
AnalysisKey CtxProfAnalysis::Key;
CtxProfAnalysis::CtxProfAnalysis(std::optional<StringRef> Profile)
: Profile([&]() -> std::optional<StringRef> {
if (Profile)
return *Profile;
if (UseCtxProfile.getNumOccurrences())
return UseCtxProfile;
return std::nullopt;
}()) {}
PGOContextualProfile CtxProfAnalysis::run(Module &M,
ModuleAnalysisManager &MAM) {
if (!Profile)
return {};
ErrorOr<std::unique_ptr<MemoryBuffer>> MB = MemoryBuffer::getFile(*Profile);
if (auto EC = MB.getError()) {
M.getContext().emitError("could not open contextual profile file: " +
EC.message());
return {};
}
PGOCtxProfileReader Reader(MB.get()->getBuffer());
auto MaybeProfiles = Reader.loadProfiles();
if (!MaybeProfiles) {
M.getContext().emitError("contextual profile file is invalid: " +
toString(MaybeProfiles.takeError()));
return {};
}
// FIXME: We should drive this from ThinLTO, but for the time being, use the
// module name as indicator.
// We want to *only* keep the contextual profiles in modules that capture
// context trees. That allows us to compute specific PSIs, for example.
auto DetermineRootsInModule = [&M]() -> const DenseSet<GlobalValue::GUID> {
DenseSet<GlobalValue::GUID> ProfileRootsInModule;
auto ModName = M.getName();
auto Filename = sys::path::filename(ModName);
// Drop the file extension.
Filename = Filename.substr(0, Filename.find_last_of('.'));
// See if it parses
APInt Guid;
// getAsInteger returns true if there are more chars to read other than the
// integer. So the "false" test is what we want.
if (!Filename.getAsInteger(0, Guid))
ProfileRootsInModule.insert(Guid.getZExtValue());
return ProfileRootsInModule;
};
const auto ProfileRootsInModule = DetermineRootsInModule();
PGOContextualProfile Result;
// the logic from here on allows for modules that contain - by design - more
// than one root. We currently don't support that, because the determination
// happens based on the module name matching the root guid, but the logic can
// avoid assuming that.
if (!ProfileRootsInModule.empty()) {
Result.IsInSpecializedModule = true;
// Trim first the roots that aren't in this module.
for (auto &[RootGuid, _] :
llvm::make_early_inc_range(MaybeProfiles->Contexts))
if (!ProfileRootsInModule.contains(RootGuid))
MaybeProfiles->Contexts.erase(RootGuid);
// we can also drop the flat profiles
MaybeProfiles->FlatProfiles.clear();
}
for (const auto &F : M) {
if (F.isDeclaration())
continue;
auto GUID = AssignGUIDPass::getGUID(F);
assert(GUID && "guid not found for defined function");
const auto &Entry = F.begin();
uint32_t MaxCounters = 0; // we expect at least a counter.
for (const auto &I : *Entry)
if (auto *C = dyn_cast<InstrProfIncrementInst>(&I)) {
MaxCounters =
static_cast<uint32_t>(C->getNumCounters()->getZExtValue());
break;
}
if (!MaxCounters)
continue;
uint32_t MaxCallsites = 0;
for (const auto &BB : F)
for (const auto &I : BB)
if (auto *C = dyn_cast<InstrProfCallsite>(&I)) {
MaxCallsites =
static_cast<uint32_t>(C->getNumCounters()->getZExtValue());
break;
}
auto [It, Ins] = Result.FuncInfo.insert(
{GUID, PGOContextualProfile::FunctionInfo(F.getName())});
(void)Ins;
assert(Ins);
It->second.NextCallsiteIndex = MaxCallsites;
It->second.NextCounterIndex = MaxCounters;
}
// If we made it this far, the Result is valid - which we mark by setting
// .Profiles.
Result.Profiles = std::move(*MaybeProfiles);
Result.initIndex();
return Result;
}
GlobalValue::GUID
PGOContextualProfile::getDefinedFunctionGUID(const Function &F) const {
if (auto It = FuncInfo.find(AssignGUIDPass::getGUID(F)); It != FuncInfo.end())
return It->first;
return 0;
}
CtxProfAnalysisPrinterPass::CtxProfAnalysisPrinterPass(raw_ostream &OS)
: OS(OS), Mode(PrintLevel) {}
PreservedAnalyses CtxProfAnalysisPrinterPass::run(Module &M,
ModuleAnalysisManager &MAM) {
CtxProfAnalysis::Result &C = MAM.getResult<CtxProfAnalysis>(M);
if (C.contexts().empty()) {
OS << "No contextual profile was provided.\n";
return PreservedAnalyses::all();
}
if (Mode == PrintMode::Everything) {
OS << "Function Info:\n";
for (const auto &[Guid, FuncInfo] : C.FuncInfo)
OS << Guid << " : " << FuncInfo.Name
<< ". MaxCounterID: " << FuncInfo.NextCounterIndex
<< ". MaxCallsiteID: " << FuncInfo.NextCallsiteIndex << "\n";
}
if (Mode == PrintMode::Everything)
OS << "\nCurrent Profile:\n";
convertCtxProfToYaml(OS, C.profiles());
OS << "\n";
if (Mode == PrintMode::YAML)
return PreservedAnalyses::all();
OS << "\nFlat Profile:\n";
auto Flat = C.flatten();
for (const auto &[Guid, Counters] : Flat) {
OS << Guid << " : ";
for (auto V : Counters)
OS << V << " ";
OS << "\n";
}
return PreservedAnalyses::all();
}
InstrProfCallsite *CtxProfAnalysis::getCallsiteInstrumentation(CallBase &CB) {
if (!InstrProfCallsite::canInstrumentCallsite(CB))
return nullptr;
for (auto *Prev = CB.getPrevNode(); Prev; Prev = Prev->getPrevNode()) {
if (auto *IPC = dyn_cast<InstrProfCallsite>(Prev))
return IPC;
assert(!isa<CallBase>(Prev) &&
"didn't expect to find another call, that's not the callsite "
"instrumentation, before an instrumentable callsite");
}
return nullptr;
}
InstrProfIncrementInst *CtxProfAnalysis::getBBInstrumentation(BasicBlock &BB) {
for (auto &I : BB)
if (auto *Incr = dyn_cast<InstrProfIncrementInst>(&I))
if (!isa<InstrProfIncrementInstStep>(&I))
return Incr;
return nullptr;
}
InstrProfIncrementInstStep *
CtxProfAnalysis::getSelectInstrumentation(SelectInst &SI) {
Instruction *Prev = &SI;
while ((Prev = Prev->getPrevNode()))
if (auto *Step = dyn_cast<InstrProfIncrementInstStep>(Prev))
return Step;
return nullptr;
}
template <class ProfTy>
static void preorderVisitOneRoot(ProfTy &Profile,
function_ref<void(ProfTy &)> Visitor) {
std::function<void(ProfTy &)> Traverser = [&](auto &Ctx) {
Visitor(Ctx);
for (auto &[_, SubCtxSet] : Ctx.callsites())
for (auto &[__, Subctx] : SubCtxSet)
Traverser(Subctx);
};
Traverser(Profile);
}
template <class ProfilesTy, class ProfTy>
static void preorderVisit(ProfilesTy &Profiles,
function_ref<void(ProfTy &)> Visitor) {
for (auto &[_, P] : Profiles)
preorderVisitOneRoot<ProfTy>(P, Visitor);
}
void PGOContextualProfile::initIndex() {
// Initialize the head of the index list for each function. We don't need it
// after this point.
DenseMap<GlobalValue::GUID, PGOCtxProfContext *> InsertionPoints;
for (auto &[Guid, FI] : FuncInfo)
InsertionPoints[Guid] = &FI.Index;
preorderVisit<PGOCtxProfContext::CallTargetMapTy, PGOCtxProfContext>(
Profiles.Contexts, [&](PGOCtxProfContext &Ctx) {
auto InsertIt = InsertionPoints.find(Ctx.guid());
if (InsertIt == InsertionPoints.end())
return;
// Insert at the end of the list. Since we traverse in preorder, it
// means that when we iterate the list from the beginning, we'd
// encounter the contexts in the order we would have, should we have
// performed a full preorder traversal.
InsertIt->second->Next = &Ctx;
Ctx.Previous = InsertIt->second;
InsertIt->second = &Ctx;
});
}
bool PGOContextualProfile::isInSpecializedModule() const {
return ForceIsInSpecializedModule.getNumOccurrences() > 0
? ForceIsInSpecializedModule
: IsInSpecializedModule;
}
void PGOContextualProfile::update(Visitor V, const Function &F) {
assert(isFunctionKnown(F));
GlobalValue::GUID G = getDefinedFunctionGUID(F);
for (auto *Node = FuncInfo.find(G)->second.Index.Next; Node;
Node = Node->Next)
V(*reinterpret_cast<PGOCtxProfContext *>(Node));
}
void PGOContextualProfile::visit(ConstVisitor V, const Function *F) const {
if (!F)
return preorderVisit<const PGOCtxProfContext::CallTargetMapTy,
const PGOCtxProfContext>(Profiles.Contexts, V);
assert(isFunctionKnown(*F));
GlobalValue::GUID G = getDefinedFunctionGUID(*F);
for (const auto *Node = FuncInfo.find(G)->second.Index.Next; Node;
Node = Node->Next)
V(*reinterpret_cast<const PGOCtxProfContext *>(Node));
}
const CtxProfFlatProfile PGOContextualProfile::flatten() const {
CtxProfFlatProfile Flat;
auto Accummulate = [](SmallVectorImpl<uint64_t> &Into,
const SmallVectorImpl<uint64_t> &From,
uint64_t SamplingRate) {
if (Into.empty())
Into.resize(From.size());
assert(Into.size() == From.size() &&
"All contexts corresponding to a function should have the exact "
"same number of counters.");
for (size_t I = 0, E = Into.size(); I < E; ++I)
Into[I] += From[I] * SamplingRate;
};
for (const auto &[_, CtxRoot] : Profiles.Contexts) {
const uint64_t SamplingFactor = CtxRoot.getTotalRootEntryCount();
preorderVisitOneRoot<const PGOCtxProfContext>(
CtxRoot, [&](const PGOCtxProfContext &Ctx) {
Accummulate(Flat[Ctx.guid()], Ctx.counters(), SamplingFactor);
});
for (const auto &[G, Unh] : CtxRoot.getUnhandled())
Accummulate(Flat[G], Unh, SamplingFactor);
}
// We don't sample "Flat" currently, so sampling rate is 1.
for (const auto &[G, FC] : Profiles.FlatProfiles)
Accummulate(Flat[G], FC, /*SamplingRate=*/1);
return Flat;
}
const CtxProfFlatIndirectCallProfile
PGOContextualProfile::flattenVirtCalls() const {
CtxProfFlatIndirectCallProfile Ret;
for (const auto &[_, CtxRoot] : Profiles.Contexts) {
const uint64_t TotalRootEntryCount = CtxRoot.getTotalRootEntryCount();
preorderVisitOneRoot<const PGOCtxProfContext>(
CtxRoot, [&](const PGOCtxProfContext &Ctx) {
auto &Targets = Ret[Ctx.guid()];
for (const auto &[ID, SubctxSet] : Ctx.callsites())
for (const auto &Subctx : SubctxSet)
Targets[ID][Subctx.first] +=
Subctx.second.getEntrycount() * TotalRootEntryCount;
});
}
return Ret;
}
void CtxProfAnalysis::collectIndirectCallPromotionList(
CallBase &IC, Result &Profile,
SetVector<std::pair<CallBase *, Function *>> &Candidates) {
const auto *Instr = CtxProfAnalysis::getCallsiteInstrumentation(IC);
if (!Instr)
return;
Module &M = *IC.getParent()->getModule();
const uint32_t CallID = Instr->getIndex()->getZExtValue();
Profile.visit(
[&](const PGOCtxProfContext &Ctx) {
const auto &Targets = Ctx.callsites().find(CallID);
if (Targets == Ctx.callsites().end())
return;
for (const auto &[Guid, _] : Targets->second)
if (auto Name = Profile.getFunctionName(Guid); !Name.empty())
if (auto *Target = M.getFunction(Name))
if (Target->hasFnAttribute(Attribute::AlwaysInline))
Candidates.insert({&IC, Target});
},
IC.getCaller());
}
|