1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
|
//===- lib/CodeGen/GlobalISel/GISelValueTracking.cpp --------------*- C++
//*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Provides analysis for querying information about KnownBits during GISel
/// passes.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/GISelValueTracking.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineFloatingPointPredicateUtils.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/LowLevelTypeUtils.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/FMF.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/KnownFPClass.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "gisel-known-bits"
using namespace llvm;
using namespace MIPatternMatch;
char llvm::GISelValueTrackingAnalysisLegacy::ID = 0;
INITIALIZE_PASS(GISelValueTrackingAnalysisLegacy, DEBUG_TYPE,
"Analysis for ComputingKnownBits", false, true)
GISelValueTracking::GISelValueTracking(MachineFunction &MF, unsigned MaxDepth)
: MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
DL(MF.getFunction().getDataLayout()), MaxDepth(MaxDepth) {}
Align GISelValueTracking::computeKnownAlignment(Register R, unsigned Depth) {
const MachineInstr *MI = MRI.getVRegDef(R);
switch (MI->getOpcode()) {
case TargetOpcode::COPY:
return computeKnownAlignment(MI->getOperand(1).getReg(), Depth);
case TargetOpcode::G_ASSERT_ALIGN: {
// TODO: Min with source
return Align(MI->getOperand(2).getImm());
}
case TargetOpcode::G_FRAME_INDEX: {
int FrameIdx = MI->getOperand(1).getIndex();
return MF.getFrameInfo().getObjectAlign(FrameIdx);
}
case TargetOpcode::G_INTRINSIC:
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
case TargetOpcode::G_INTRINSIC_CONVERGENT:
case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
default:
return TL.computeKnownAlignForTargetInstr(*this, R, MRI, Depth + 1);
}
}
KnownBits GISelValueTracking::getKnownBits(MachineInstr &MI) {
assert(MI.getNumExplicitDefs() == 1 &&
"expected single return generic instruction");
return getKnownBits(MI.getOperand(0).getReg());
}
KnownBits GISelValueTracking::getKnownBits(Register R) {
const LLT Ty = MRI.getType(R);
// Since the number of lanes in a scalable vector is unknown at compile time,
// we track one bit which is implicitly broadcast to all lanes. This means
// that all lanes in a scalable vector are considered demanded.
APInt DemandedElts =
Ty.isFixedVector() ? APInt::getAllOnes(Ty.getNumElements()) : APInt(1, 1);
return getKnownBits(R, DemandedElts);
}
KnownBits GISelValueTracking::getKnownBits(Register R,
const APInt &DemandedElts,
unsigned Depth) {
// For now, we only maintain the cache during one request.
assert(ComputeKnownBitsCache.empty() && "Cache should have been cleared");
KnownBits Known;
computeKnownBitsImpl(R, Known, DemandedElts, Depth);
ComputeKnownBitsCache.clear();
return Known;
}
bool GISelValueTracking::signBitIsZero(Register R) {
LLT Ty = MRI.getType(R);
unsigned BitWidth = Ty.getScalarSizeInBits();
return maskedValueIsZero(R, APInt::getSignMask(BitWidth));
}
APInt GISelValueTracking::getKnownZeroes(Register R) {
return getKnownBits(R).Zero;
}
APInt GISelValueTracking::getKnownOnes(Register R) {
return getKnownBits(R).One;
}
LLVM_ATTRIBUTE_UNUSED static void
dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth) {
dbgs() << "[" << Depth << "] Compute known bits: " << MI << "[" << Depth
<< "] Computed for: " << MI << "[" << Depth << "] Known: 0x"
<< toString(Known.Zero | Known.One, 16, false) << "\n"
<< "[" << Depth << "] Zero: 0x" << toString(Known.Zero, 16, false)
<< "\n"
<< "[" << Depth << "] One: 0x" << toString(Known.One, 16, false)
<< "\n";
}
/// Compute known bits for the intersection of \p Src0 and \p Src1
void GISelValueTracking::computeKnownBitsMin(Register Src0, Register Src1,
KnownBits &Known,
const APInt &DemandedElts,
unsigned Depth) {
// Test src1 first, since we canonicalize simpler expressions to the RHS.
computeKnownBitsImpl(Src1, Known, DemandedElts, Depth);
// If we don't know any bits, early out.
if (Known.isUnknown())
return;
KnownBits Known2;
computeKnownBitsImpl(Src0, Known2, DemandedElts, Depth);
// Only known if known in both the LHS and RHS.
Known = Known.intersectWith(Known2);
}
// Bitfield extract is computed as (Src >> Offset) & Mask, where Mask is
// created using Width. Use this function when the inputs are KnownBits
// objects. TODO: Move this KnownBits.h if this is usable in more cases.
static KnownBits extractBits(unsigned BitWidth, const KnownBits &SrcOpKnown,
const KnownBits &OffsetKnown,
const KnownBits &WidthKnown) {
KnownBits Mask(BitWidth);
Mask.Zero = APInt::getBitsSetFrom(
BitWidth, WidthKnown.getMaxValue().getLimitedValue(BitWidth));
Mask.One = APInt::getLowBitsSet(
BitWidth, WidthKnown.getMinValue().getLimitedValue(BitWidth));
return KnownBits::lshr(SrcOpKnown, OffsetKnown) & Mask;
}
void GISelValueTracking::computeKnownBitsImpl(Register R, KnownBits &Known,
const APInt &DemandedElts,
unsigned Depth) {
MachineInstr &MI = *MRI.getVRegDef(R);
unsigned Opcode = MI.getOpcode();
LLT DstTy = MRI.getType(R);
// Handle the case where this is called on a register that does not have a
// type constraint. For example, it may be post-ISel or this target might not
// preserve the type when early-selecting instructions.
if (!DstTy.isValid()) {
Known = KnownBits();
return;
}
#ifndef NDEBUG
if (DstTy.isFixedVector()) {
assert(
DstTy.getNumElements() == DemandedElts.getBitWidth() &&
"DemandedElt width should equal the fixed vector number of elements");
} else {
assert(DemandedElts.getBitWidth() == 1 && DemandedElts == APInt(1, 1) &&
"DemandedElt width should be 1 for scalars or scalable vectors");
}
#endif
unsigned BitWidth = DstTy.getScalarSizeInBits();
auto CacheEntry = ComputeKnownBitsCache.find(R);
if (CacheEntry != ComputeKnownBitsCache.end()) {
Known = CacheEntry->second;
LLVM_DEBUG(dbgs() << "Cache hit at ");
LLVM_DEBUG(dumpResult(MI, Known, Depth));
assert(Known.getBitWidth() == BitWidth && "Cache entry size doesn't match");
return;
}
Known = KnownBits(BitWidth); // Don't know anything
// Depth may get bigger than max depth if it gets passed to a different
// GISelValueTracking object.
// This may happen when say a generic part uses a GISelValueTracking object
// with some max depth, but then we hit TL.computeKnownBitsForTargetInstr
// which creates a new GISelValueTracking object with a different and smaller
// depth. If we just check for equality, we would never exit if the depth
// that is passed down to the target specific GISelValueTracking object is
// already bigger than its max depth.
if (Depth >= getMaxDepth())
return;
if (!DemandedElts)
return; // No demanded elts, better to assume we don't know anything.
KnownBits Known2;
switch (Opcode) {
default:
TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI,
Depth);
break;
case TargetOpcode::G_BUILD_VECTOR: {
// Collect the known bits that are shared by every demanded vector element.
Known.Zero.setAllBits();
Known.One.setAllBits();
for (const auto &[I, MO] : enumerate(drop_begin(MI.operands()))) {
if (!DemandedElts[I])
continue;
computeKnownBitsImpl(MO.getReg(), Known2, APInt(1, 1), Depth + 1);
// Known bits are the values that are shared by every demanded element.
Known = Known.intersectWith(Known2);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
}
break;
}
case TargetOpcode::G_SPLAT_VECTOR: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, APInt(1, 1),
Depth + 1);
// Implicitly truncate the bits to match the official semantics of
// G_SPLAT_VECTOR.
Known = Known.trunc(BitWidth);
break;
}
case TargetOpcode::COPY:
case TargetOpcode::G_PHI:
case TargetOpcode::PHI: {
Known.One = APInt::getAllOnes(BitWidth);
Known.Zero = APInt::getAllOnes(BitWidth);
// Destination registers should not have subregisters at this
// point of the pipeline, otherwise the main live-range will be
// defined more than once, which is against SSA.
assert(MI.getOperand(0).getSubReg() == 0 && "Is this code in SSA?");
// Record in the cache that we know nothing for MI.
// This will get updated later and in the meantime, if we reach that
// phi again, because of a loop, we will cut the search thanks to this
// cache entry.
// We could actually build up more information on the phi by not cutting
// the search, but that additional information is more a side effect
// than an intended choice.
// Therefore, for now, save on compile time until we derive a proper way
// to derive known bits for PHIs within loops.
ComputeKnownBitsCache[R] = KnownBits(BitWidth);
// PHI's operand are a mix of registers and basic blocks interleaved.
// We only care about the register ones.
for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
const MachineOperand &Src = MI.getOperand(Idx);
Register SrcReg = Src.getReg();
// Look through trivial copies and phis but don't look through trivial
// copies or phis of the form `%1:(s32) = OP %0:gpr32`, known-bits
// analysis is currently unable to determine the bit width of a
// register class.
//
// We can't use NoSubRegister by name as it's defined by each target but
// it's always defined to be 0 by tablegen.
if (SrcReg.isVirtual() && Src.getSubReg() == 0 /*NoSubRegister*/ &&
MRI.getType(SrcReg).isValid()) {
// For COPYs we don't do anything, don't increase the depth.
computeKnownBitsImpl(SrcReg, Known2, DemandedElts,
Depth + (Opcode != TargetOpcode::COPY));
Known2 = Known2.anyextOrTrunc(BitWidth);
Known = Known.intersectWith(Known2);
// If we reach a point where we don't know anything
// just stop looking through the operands.
if (Known.isUnknown())
break;
} else {
// We know nothing.
Known = KnownBits(BitWidth);
break;
}
}
break;
}
case TargetOpcode::G_CONSTANT: {
Known = KnownBits::makeConstant(MI.getOperand(1).getCImm()->getValue());
break;
}
case TargetOpcode::G_FRAME_INDEX: {
int FrameIdx = MI.getOperand(1).getIndex();
TL.computeKnownBitsForFrameIndex(FrameIdx, Known, MF);
break;
}
case TargetOpcode::G_SUB: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
Depth + 1);
Known = KnownBits::sub(Known, Known2);
break;
}
case TargetOpcode::G_XOR: {
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known ^= Known2;
break;
}
case TargetOpcode::G_PTR_ADD: {
if (DstTy.isVector())
break;
// G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets?
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
break;
[[fallthrough]];
}
case TargetOpcode::G_ADD: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
Depth + 1);
Known = KnownBits::add(Known, Known2);
break;
}
case TargetOpcode::G_AND: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known &= Known2;
break;
}
case TargetOpcode::G_OR: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known |= Known2;
break;
}
case TargetOpcode::G_MUL: {
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
Known = KnownBits::mul(Known, Known2);
break;
}
case TargetOpcode::G_SELECT: {
computeKnownBitsMin(MI.getOperand(2).getReg(), MI.getOperand(3).getReg(),
Known, DemandedElts, Depth + 1);
break;
}
case TargetOpcode::G_SMIN: {
// TODO: Handle clamp pattern with number of sign bits
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
Depth + 1);
Known = KnownBits::smin(Known, KnownRHS);
break;
}
case TargetOpcode::G_SMAX: {
// TODO: Handle clamp pattern with number of sign bits
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
Depth + 1);
Known = KnownBits::smax(Known, KnownRHS);
break;
}
case TargetOpcode::G_UMIN: {
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
Depth + 1);
Known = KnownBits::umin(Known, KnownRHS);
break;
}
case TargetOpcode::G_UMAX: {
KnownBits KnownRHS;
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), KnownRHS, DemandedElts,
Depth + 1);
Known = KnownBits::umax(Known, KnownRHS);
break;
}
case TargetOpcode::G_FCMP:
case TargetOpcode::G_ICMP: {
if (DstTy.isVector())
break;
if (TL.getBooleanContents(DstTy.isVector(),
Opcode == TargetOpcode::G_FCMP) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
break;
}
case TargetOpcode::G_SEXT: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
// If the sign bit is known to be zero or one, then sext will extend
// it to the top bits, else it will just zext.
Known = Known.sext(BitWidth);
break;
}
case TargetOpcode::G_ASSERT_SEXT:
case TargetOpcode::G_SEXT_INREG: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
Known = Known.sextInReg(MI.getOperand(2).getImm());
break;
}
case TargetOpcode::G_ANYEXT: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
Depth + 1);
Known = Known.anyext(BitWidth);
break;
}
case TargetOpcode::G_LOAD: {
const MachineMemOperand *MMO = *MI.memoperands_begin();
KnownBits KnownRange(MMO->getMemoryType().getScalarSizeInBits());
if (const MDNode *Ranges = MMO->getRanges())
computeKnownBitsFromRangeMetadata(*Ranges, KnownRange);
Known = KnownRange.anyext(Known.getBitWidth());
break;
}
case TargetOpcode::G_SEXTLOAD:
case TargetOpcode::G_ZEXTLOAD: {
if (DstTy.isVector())
break;
const MachineMemOperand *MMO = *MI.memoperands_begin();
KnownBits KnownRange(MMO->getMemoryType().getScalarSizeInBits());
if (const MDNode *Ranges = MMO->getRanges())
computeKnownBitsFromRangeMetadata(*Ranges, KnownRange);
Known = Opcode == TargetOpcode::G_SEXTLOAD
? KnownRange.sext(Known.getBitWidth())
: KnownRange.zext(Known.getBitWidth());
break;
}
case TargetOpcode::G_ASHR: {
KnownBits LHSKnown, RHSKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
Depth + 1);
Known = KnownBits::ashr(LHSKnown, RHSKnown);
break;
}
case TargetOpcode::G_LSHR: {
KnownBits LHSKnown, RHSKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
Depth + 1);
Known = KnownBits::lshr(LHSKnown, RHSKnown);
break;
}
case TargetOpcode::G_SHL: {
KnownBits LHSKnown, RHSKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), LHSKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
Depth + 1);
Known = KnownBits::shl(LHSKnown, RHSKnown);
break;
}
case TargetOpcode::G_INTTOPTR:
case TargetOpcode::G_PTRTOINT:
if (DstTy.isVector())
break;
// Fall through and handle them the same as zext/trunc.
[[fallthrough]];
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_TRUNC: {
Register SrcReg = MI.getOperand(1).getReg();
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
Known = Known.zextOrTrunc(BitWidth);
break;
}
case TargetOpcode::G_ASSERT_ZEXT: {
Register SrcReg = MI.getOperand(1).getReg();
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
unsigned SrcBitWidth = MI.getOperand(2).getImm();
assert(SrcBitWidth && "SrcBitWidth can't be zero");
APInt InMask = APInt::getLowBitsSet(BitWidth, SrcBitWidth);
Known.Zero |= (~InMask);
Known.One &= (~Known.Zero);
break;
}
case TargetOpcode::G_ASSERT_ALIGN: {
int64_t LogOfAlign = Log2_64(MI.getOperand(2).getImm());
// TODO: Should use maximum with source
// If a node is guaranteed to be aligned, set low zero bits accordingly as
// well as clearing one bits.
Known.Zero.setLowBits(LogOfAlign);
Known.One.clearLowBits(LogOfAlign);
break;
}
case TargetOpcode::G_MERGE_VALUES: {
unsigned NumOps = MI.getNumOperands();
unsigned OpSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
for (unsigned I = 0; I != NumOps - 1; ++I) {
KnownBits SrcOpKnown;
computeKnownBitsImpl(MI.getOperand(I + 1).getReg(), SrcOpKnown,
DemandedElts, Depth + 1);
Known.insertBits(SrcOpKnown, I * OpSize);
}
break;
}
case TargetOpcode::G_UNMERGE_VALUES: {
unsigned NumOps = MI.getNumOperands();
Register SrcReg = MI.getOperand(NumOps - 1).getReg();
LLT SrcTy = MRI.getType(SrcReg);
if (SrcTy.isVector() && SrcTy.getScalarType() != DstTy.getScalarType())
return; // TODO: Handle vector->subelement unmerges
// Figure out the result operand index
unsigned DstIdx = 0;
for (; DstIdx != NumOps - 1 && MI.getOperand(DstIdx).getReg() != R;
++DstIdx)
;
APInt SubDemandedElts = DemandedElts;
if (SrcTy.isVector()) {
unsigned DstLanes = DstTy.isVector() ? DstTy.getNumElements() : 1;
SubDemandedElts =
DemandedElts.zext(SrcTy.getNumElements()).shl(DstIdx * DstLanes);
}
KnownBits SrcOpKnown;
computeKnownBitsImpl(SrcReg, SrcOpKnown, SubDemandedElts, Depth + 1);
if (SrcTy.isVector())
Known = std::move(SrcOpKnown);
else
Known = SrcOpKnown.extractBits(BitWidth, BitWidth * DstIdx);
break;
}
case TargetOpcode::G_BSWAP: {
Register SrcReg = MI.getOperand(1).getReg();
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
Known = Known.byteSwap();
break;
}
case TargetOpcode::G_BITREVERSE: {
Register SrcReg = MI.getOperand(1).getReg();
computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
Known = Known.reverseBits();
break;
}
case TargetOpcode::G_CTPOP: {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
Depth + 1);
// We can bound the space the count needs. Also, bits known to be zero
// can't contribute to the population.
unsigned BitsPossiblySet = Known2.countMaxPopulation();
unsigned LowBits = llvm::bit_width(BitsPossiblySet);
Known.Zero.setBitsFrom(LowBits);
// TODO: we could bound Known.One using the lower bound on the number of
// bits which might be set provided by popcnt KnownOne2.
break;
}
case TargetOpcode::G_UBFX: {
KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), SrcOpKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), OffsetKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(3).getReg(), WidthKnown, DemandedElts,
Depth + 1);
Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown);
break;
}
case TargetOpcode::G_SBFX: {
KnownBits SrcOpKnown, OffsetKnown, WidthKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), SrcOpKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(2).getReg(), OffsetKnown, DemandedElts,
Depth + 1);
computeKnownBitsImpl(MI.getOperand(3).getReg(), WidthKnown, DemandedElts,
Depth + 1);
Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown);
// Sign extend the extracted value using shift left and arithmetic shift
// right.
KnownBits ExtKnown = KnownBits::makeConstant(APInt(BitWidth, BitWidth));
KnownBits ShiftKnown = KnownBits::sub(ExtKnown, WidthKnown);
Known = KnownBits::ashr(KnownBits::shl(Known, ShiftKnown), ShiftKnown);
break;
}
case TargetOpcode::G_UADDO:
case TargetOpcode::G_UADDE:
case TargetOpcode::G_SADDO:
case TargetOpcode::G_SADDE:
case TargetOpcode::G_USUBO:
case TargetOpcode::G_USUBE:
case TargetOpcode::G_SSUBO:
case TargetOpcode::G_SSUBE:
case TargetOpcode::G_UMULO:
case TargetOpcode::G_SMULO: {
if (MI.getOperand(1).getReg() == R) {
// If we know the result of a compare has the top bits zero, use this
// info.
if (TL.getBooleanContents(DstTy.isVector(), false) ==
TargetLowering::ZeroOrOneBooleanContent &&
BitWidth > 1)
Known.Zero.setBitsFrom(1);
}
break;
}
case TargetOpcode::G_CTLZ:
case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
KnownBits SrcOpKnown;
computeKnownBitsImpl(MI.getOperand(1).getReg(), SrcOpKnown, DemandedElts,
Depth + 1);
// If we have a known 1, its position is our upper bound.
unsigned PossibleLZ = SrcOpKnown.countMaxLeadingZeros();
unsigned LowBits = llvm::bit_width(PossibleLZ);
Known.Zero.setBitsFrom(LowBits);
break;
}
case TargetOpcode::G_SHUFFLE_VECTOR: {
APInt DemandedLHS, DemandedRHS;
// Collect the known bits that are shared by every vector element referenced
// by the shuffle.
unsigned NumElts = MRI.getType(MI.getOperand(1).getReg()).getNumElements();
if (!getShuffleDemandedElts(NumElts, MI.getOperand(3).getShuffleMask(),
DemandedElts, DemandedLHS, DemandedRHS))
break;
// Known bits are the values that are shared by every demanded element.
Known.Zero.setAllBits();
Known.One.setAllBits();
if (!!DemandedLHS) {
computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedLHS,
Depth + 1);
Known = Known.intersectWith(Known2);
}
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
if (!!DemandedRHS) {
computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedRHS,
Depth + 1);
Known = Known.intersectWith(Known2);
}
break;
}
case TargetOpcode::G_CONCAT_VECTORS: {
if (MRI.getType(MI.getOperand(0).getReg()).isScalableVector())
break;
// Split DemandedElts and test each of the demanded subvectors.
Known.Zero.setAllBits();
Known.One.setAllBits();
unsigned NumSubVectorElts =
MRI.getType(MI.getOperand(1).getReg()).getNumElements();
for (const auto &[I, MO] : enumerate(drop_begin(MI.operands()))) {
APInt DemandedSub =
DemandedElts.extractBits(NumSubVectorElts, I * NumSubVectorElts);
if (!!DemandedSub) {
computeKnownBitsImpl(MO.getReg(), Known2, DemandedSub, Depth + 1);
Known = Known.intersectWith(Known2);
}
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
}
break;
}
}
LLVM_DEBUG(dumpResult(MI, Known, Depth));
// Update the cache.
ComputeKnownBitsCache[R] = Known;
}
static bool outputDenormalIsIEEEOrPosZero(const MachineFunction &MF, LLT Ty) {
Ty = Ty.getScalarType();
DenormalMode Mode = MF.getDenormalMode(getFltSemanticForLLT(Ty));
return Mode.Output == DenormalMode::IEEE ||
Mode.Output == DenormalMode::PositiveZero;
}
void GISelValueTracking::computeKnownFPClass(Register R, KnownFPClass &Known,
FPClassTest InterestedClasses,
unsigned Depth) {
LLT Ty = MRI.getType(R);
APInt DemandedElts =
Ty.isFixedVector() ? APInt::getAllOnes(Ty.getNumElements()) : APInt(1, 1);
computeKnownFPClass(R, DemandedElts, InterestedClasses, Known, Depth);
}
void GISelValueTracking::computeKnownFPClassForFPTrunc(
const MachineInstr &MI, const APInt &DemandedElts,
FPClassTest InterestedClasses, KnownFPClass &Known, unsigned Depth) {
if ((InterestedClasses & (KnownFPClass::OrderedLessThanZeroMask | fcNan)) ==
fcNone)
return;
Register Val = MI.getOperand(1).getReg();
KnownFPClass KnownSrc;
computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
Depth + 1);
// Sign should be preserved
// TODO: Handle cannot be ordered greater than zero
if (KnownSrc.cannotBeOrderedLessThanZero())
Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
Known.propagateNaN(KnownSrc, true);
// Infinity needs a range check.
}
void GISelValueTracking::computeKnownFPClass(Register R,
const APInt &DemandedElts,
FPClassTest InterestedClasses,
KnownFPClass &Known,
unsigned Depth) {
assert(Known.isUnknown() && "should not be called with known information");
if (!DemandedElts) {
// No demanded elts, better to assume we don't know anything.
Known.resetAll();
return;
}
assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
MachineInstr &MI = *MRI.getVRegDef(R);
unsigned Opcode = MI.getOpcode();
LLT DstTy = MRI.getType(R);
if (!DstTy.isValid()) {
Known.resetAll();
return;
}
if (auto Cst = GFConstant::getConstant(R, MRI)) {
switch (Cst->getKind()) {
case GFConstant::GFConstantKind::Scalar: {
auto APF = Cst->getScalarValue();
Known.KnownFPClasses = APF.classify();
Known.SignBit = APF.isNegative();
break;
}
case GFConstant::GFConstantKind::FixedVector: {
Known.KnownFPClasses = fcNone;
bool SignBitAllZero = true;
bool SignBitAllOne = true;
for (auto C : *Cst) {
Known.KnownFPClasses |= C.classify();
if (C.isNegative())
SignBitAllZero = false;
else
SignBitAllOne = false;
}
if (SignBitAllOne != SignBitAllZero)
Known.SignBit = SignBitAllOne;
break;
}
case GFConstant::GFConstantKind::ScalableVector: {
Known.resetAll();
break;
}
}
return;
}
FPClassTest KnownNotFromFlags = fcNone;
if (MI.getFlag(MachineInstr::MIFlag::FmNoNans))
KnownNotFromFlags |= fcNan;
if (MI.getFlag(MachineInstr::MIFlag::FmNoInfs))
KnownNotFromFlags |= fcInf;
// We no longer need to find out about these bits from inputs if we can
// assume this from flags/attributes.
InterestedClasses &= ~KnownNotFromFlags;
auto ClearClassesFromFlags =
make_scope_exit([=, &Known] { Known.knownNot(KnownNotFromFlags); });
// All recursive calls that increase depth must come after this.
if (Depth == MaxAnalysisRecursionDepth)
return;
const MachineFunction *MF = MI.getMF();
switch (Opcode) {
default:
TL.computeKnownFPClassForTargetInstr(*this, R, Known, DemandedElts, MRI,
Depth);
break;
case TargetOpcode::G_FNEG: {
Register Val = MI.getOperand(1).getReg();
computeKnownFPClass(Val, DemandedElts, InterestedClasses, Known, Depth + 1);
Known.fneg();
break;
}
case TargetOpcode::G_SELECT: {
GSelect &SelMI = cast<GSelect>(MI);
Register Cond = SelMI.getCondReg();
Register LHS = SelMI.getTrueReg();
Register RHS = SelMI.getFalseReg();
FPClassTest FilterLHS = fcAllFlags;
FPClassTest FilterRHS = fcAllFlags;
Register TestedValue;
FPClassTest MaskIfTrue = fcAllFlags;
FPClassTest MaskIfFalse = fcAllFlags;
FPClassTest ClassVal = fcNone;
CmpInst::Predicate Pred;
Register CmpLHS, CmpRHS;
if (mi_match(Cond, MRI,
m_GFCmp(m_Pred(Pred), m_Reg(CmpLHS), m_Reg(CmpRHS)))) {
// If the select filters out a value based on the class, it no longer
// participates in the class of the result
// TODO: In some degenerate cases we can infer something if we try again
// without looking through sign operations.
bool LookThroughFAbsFNeg = CmpLHS != LHS && CmpLHS != RHS;
std::tie(TestedValue, MaskIfTrue, MaskIfFalse) =
fcmpImpliesClass(Pred, *MF, CmpLHS, CmpRHS, LookThroughFAbsFNeg);
} else if (mi_match(
Cond, MRI,
m_GIsFPClass(m_Reg(TestedValue), m_FPClassTest(ClassVal)))) {
FPClassTest TestedMask = ClassVal;
MaskIfTrue = TestedMask;
MaskIfFalse = ~TestedMask;
}
if (TestedValue == LHS) {
// match !isnan(x) ? x : y
FilterLHS = MaskIfTrue;
} else if (TestedValue == RHS) { // && IsExactClass
// match !isnan(x) ? y : x
FilterRHS = MaskIfFalse;
}
KnownFPClass Known2;
computeKnownFPClass(LHS, DemandedElts, InterestedClasses & FilterLHS, Known,
Depth + 1);
Known.KnownFPClasses &= FilterLHS;
computeKnownFPClass(RHS, DemandedElts, InterestedClasses & FilterRHS,
Known2, Depth + 1);
Known2.KnownFPClasses &= FilterRHS;
Known |= Known2;
break;
}
case TargetOpcode::G_FCOPYSIGN: {
Register Magnitude = MI.getOperand(1).getReg();
Register Sign = MI.getOperand(2).getReg();
KnownFPClass KnownSign;
computeKnownFPClass(Magnitude, DemandedElts, InterestedClasses, Known,
Depth + 1);
computeKnownFPClass(Sign, DemandedElts, InterestedClasses, KnownSign,
Depth + 1);
Known.copysign(KnownSign);
break;
}
case TargetOpcode::G_FMA:
case TargetOpcode::G_STRICT_FMA:
case TargetOpcode::G_FMAD: {
if ((InterestedClasses & fcNegative) == fcNone)
break;
Register A = MI.getOperand(1).getReg();
Register B = MI.getOperand(2).getReg();
Register C = MI.getOperand(3).getReg();
if (A != B)
break;
// The multiply cannot be -0 and therefore the add can't be -0
Known.knownNot(fcNegZero);
// x * x + y is non-negative if y is non-negative.
KnownFPClass KnownAddend;
computeKnownFPClass(C, DemandedElts, InterestedClasses, KnownAddend,
Depth + 1);
if (KnownAddend.cannotBeOrderedLessThanZero())
Known.knownNot(fcNegative);
break;
}
case TargetOpcode::G_FSQRT:
case TargetOpcode::G_STRICT_FSQRT: {
KnownFPClass KnownSrc;
FPClassTest InterestedSrcs = InterestedClasses;
if (InterestedClasses & fcNan)
InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask;
Register Val = MI.getOperand(1).getReg();
computeKnownFPClass(Val, DemandedElts, InterestedSrcs, KnownSrc, Depth + 1);
if (KnownSrc.isKnownNeverPosInfinity())
Known.knownNot(fcPosInf);
if (KnownSrc.isKnownNever(fcSNan))
Known.knownNot(fcSNan);
// Any negative value besides -0 returns a nan.
if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero())
Known.knownNot(fcNan);
// The only negative value that can be returned is -0 for -0 inputs.
Known.knownNot(fcNegInf | fcNegSubnormal | fcNegNormal);
break;
}
case TargetOpcode::G_FABS: {
if ((InterestedClasses & (fcNan | fcPositive)) != fcNone) {
Register Val = MI.getOperand(1).getReg();
// If we only care about the sign bit we don't need to inspect the
// operand.
computeKnownFPClass(Val, DemandedElts, InterestedClasses, Known,
Depth + 1);
}
Known.fabs();
break;
}
case TargetOpcode::G_FSIN:
case TargetOpcode::G_FCOS:
case TargetOpcode::G_FSINCOS: {
// Return NaN on infinite inputs.
Register Val = MI.getOperand(1).getReg();
KnownFPClass KnownSrc;
computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
Depth + 1);
Known.knownNot(fcInf);
if (KnownSrc.isKnownNeverNaN() && KnownSrc.isKnownNeverInfinity())
Known.knownNot(fcNan);
break;
}
case TargetOpcode::G_FMAXNUM:
case TargetOpcode::G_FMINNUM:
case TargetOpcode::G_FMINNUM_IEEE:
case TargetOpcode::G_FMAXIMUM:
case TargetOpcode::G_FMINIMUM:
case TargetOpcode::G_FMAXNUM_IEEE:
case TargetOpcode::G_FMAXIMUMNUM:
case TargetOpcode::G_FMINIMUMNUM: {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
KnownFPClass KnownLHS, KnownRHS;
computeKnownFPClass(LHS, DemandedElts, InterestedClasses, KnownLHS,
Depth + 1);
computeKnownFPClass(RHS, DemandedElts, InterestedClasses, KnownRHS,
Depth + 1);
bool NeverNaN = KnownLHS.isKnownNeverNaN() || KnownRHS.isKnownNeverNaN();
Known = KnownLHS | KnownRHS;
// If either operand is not NaN, the result is not NaN.
if (NeverNaN && (Opcode == TargetOpcode::G_FMINNUM ||
Opcode == TargetOpcode::G_FMAXNUM ||
Opcode == TargetOpcode::G_FMINIMUMNUM ||
Opcode == TargetOpcode::G_FMAXIMUMNUM))
Known.knownNot(fcNan);
if (Opcode == TargetOpcode::G_FMAXNUM ||
Opcode == TargetOpcode::G_FMAXIMUMNUM ||
Opcode == TargetOpcode::G_FMAXNUM_IEEE) {
// If at least one operand is known to be positive, the result must be
// positive.
if ((KnownLHS.cannotBeOrderedLessThanZero() &&
KnownLHS.isKnownNeverNaN()) ||
(KnownRHS.cannotBeOrderedLessThanZero() &&
KnownRHS.isKnownNeverNaN()))
Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
} else if (Opcode == TargetOpcode::G_FMAXIMUM) {
// If at least one operand is known to be positive, the result must be
// positive.
if (KnownLHS.cannotBeOrderedLessThanZero() ||
KnownRHS.cannotBeOrderedLessThanZero())
Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
} else if (Opcode == TargetOpcode::G_FMINNUM ||
Opcode == TargetOpcode::G_FMINIMUMNUM ||
Opcode == TargetOpcode::G_FMINNUM_IEEE) {
// If at least one operand is known to be negative, the result must be
// negative.
if ((KnownLHS.cannotBeOrderedGreaterThanZero() &&
KnownLHS.isKnownNeverNaN()) ||
(KnownRHS.cannotBeOrderedGreaterThanZero() &&
KnownRHS.isKnownNeverNaN()))
Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
} else if (Opcode == TargetOpcode::G_FMINIMUM) {
// If at least one operand is known to be negative, the result must be
// negative.
if (KnownLHS.cannotBeOrderedGreaterThanZero() ||
KnownRHS.cannotBeOrderedGreaterThanZero())
Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
} else {
llvm_unreachable("unhandled intrinsic");
}
// Fixup zero handling if denormals could be returned as a zero.
//
// As there's no spec for denormal flushing, be conservative with the
// treatment of denormals that could be flushed to zero. For older
// subtargets on AMDGPU the min/max instructions would not flush the
// output and return the original value.
//
if ((Known.KnownFPClasses & fcZero) != fcNone &&
!Known.isKnownNeverSubnormal()) {
DenormalMode Mode =
MF->getDenormalMode(getFltSemanticForLLT(DstTy.getScalarType()));
if (Mode != DenormalMode::getIEEE())
Known.KnownFPClasses |= fcZero;
}
if (Known.isKnownNeverNaN()) {
if (KnownLHS.SignBit && KnownRHS.SignBit &&
*KnownLHS.SignBit == *KnownRHS.SignBit) {
if (*KnownLHS.SignBit)
Known.signBitMustBeOne();
else
Known.signBitMustBeZero();
} else if ((Opcode == TargetOpcode::G_FMAXIMUM ||
Opcode == TargetOpcode::G_FMINIMUM) ||
Opcode == TargetOpcode::G_FMAXIMUMNUM ||
Opcode == TargetOpcode::G_FMINIMUMNUM ||
Opcode == TargetOpcode::G_FMAXNUM_IEEE ||
Opcode == TargetOpcode::G_FMINNUM_IEEE ||
// FIXME: Should be using logical zero versions
((KnownLHS.isKnownNeverNegZero() ||
KnownRHS.isKnownNeverPosZero()) &&
(KnownLHS.isKnownNeverPosZero() ||
KnownRHS.isKnownNeverNegZero()))) {
if ((Opcode == TargetOpcode::G_FMAXIMUM ||
Opcode == TargetOpcode::G_FMAXNUM ||
Opcode == TargetOpcode::G_FMAXIMUMNUM ||
Opcode == TargetOpcode::G_FMAXNUM_IEEE) &&
(KnownLHS.SignBit == false || KnownRHS.SignBit == false))
Known.signBitMustBeZero();
else if ((Opcode == TargetOpcode::G_FMINIMUM ||
Opcode == TargetOpcode::G_FMINNUM ||
Opcode == TargetOpcode::G_FMINIMUMNUM ||
Opcode == TargetOpcode::G_FMINNUM_IEEE) &&
(KnownLHS.SignBit == true || KnownRHS.SignBit == true))
Known.signBitMustBeOne();
}
}
break;
}
case TargetOpcode::G_FCANONICALIZE: {
Register Val = MI.getOperand(1).getReg();
KnownFPClass KnownSrc;
computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
Depth + 1);
// This is essentially a stronger form of
// propagateCanonicalizingSrc. Other "canonicalizing" operations don't
// actually have an IR canonicalization guarantee.
// Canonicalize may flush denormals to zero, so we have to consider the
// denormal mode to preserve known-not-0 knowledge.
Known.KnownFPClasses = KnownSrc.KnownFPClasses | fcZero | fcQNan;
// Stronger version of propagateNaN
// Canonicalize is guaranteed to quiet signaling nans.
if (KnownSrc.isKnownNeverNaN())
Known.knownNot(fcNan);
else
Known.knownNot(fcSNan);
// If the parent function flushes denormals, the canonical output cannot
// be a denormal.
LLT Ty = MRI.getType(Val).getScalarType();
const fltSemantics &FPType = getFltSemanticForLLT(Ty);
DenormalMode DenormMode = MF->getDenormalMode(FPType);
if (DenormMode == DenormalMode::getIEEE()) {
if (KnownSrc.isKnownNever(fcPosZero))
Known.knownNot(fcPosZero);
if (KnownSrc.isKnownNever(fcNegZero))
Known.knownNot(fcNegZero);
break;
}
if (DenormMode.inputsAreZero() || DenormMode.outputsAreZero())
Known.knownNot(fcSubnormal);
if (DenormMode.Input == DenormalMode::PositiveZero ||
(DenormMode.Output == DenormalMode::PositiveZero &&
DenormMode.Input == DenormalMode::IEEE))
Known.knownNot(fcNegZero);
break;
}
case TargetOpcode::G_VECREDUCE_FMAX:
case TargetOpcode::G_VECREDUCE_FMIN:
case TargetOpcode::G_VECREDUCE_FMAXIMUM:
case TargetOpcode::G_VECREDUCE_FMINIMUM: {
Register Val = MI.getOperand(1).getReg();
// reduce min/max will choose an element from one of the vector elements,
// so we can infer and class information that is common to all elements.
Known =
computeKnownFPClass(Val, MI.getFlags(), InterestedClasses, Depth + 1);
// Can only propagate sign if output is never NaN.
if (!Known.isKnownNeverNaN())
Known.SignBit.reset();
break;
}
case TargetOpcode::G_TRUNC:
case TargetOpcode::G_FFLOOR:
case TargetOpcode::G_FCEIL:
case TargetOpcode::G_FRINT:
case TargetOpcode::G_FNEARBYINT:
case TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND:
case TargetOpcode::G_INTRINSIC_ROUND: {
Register Val = MI.getOperand(1).getReg();
KnownFPClass KnownSrc;
FPClassTest InterestedSrcs = InterestedClasses;
if (InterestedSrcs & fcPosFinite)
InterestedSrcs |= fcPosFinite;
if (InterestedSrcs & fcNegFinite)
InterestedSrcs |= fcNegFinite;
computeKnownFPClass(Val, DemandedElts, InterestedSrcs, KnownSrc, Depth + 1);
// Integer results cannot be subnormal.
Known.knownNot(fcSubnormal);
Known.propagateNaN(KnownSrc, true);
// TODO: handle multi unit FPTypes once LLT FPInfo lands
// Negative round ups to 0 produce -0
if (KnownSrc.isKnownNever(fcPosFinite))
Known.knownNot(fcPosFinite);
if (KnownSrc.isKnownNever(fcNegFinite))
Known.knownNot(fcNegFinite);
break;
}
case TargetOpcode::G_FEXP:
case TargetOpcode::G_FEXP2:
case TargetOpcode::G_FEXP10: {
Known.knownNot(fcNegative);
if ((InterestedClasses & fcNan) == fcNone)
break;
Register Val = MI.getOperand(1).getReg();
KnownFPClass KnownSrc;
computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
Depth + 1);
if (KnownSrc.isKnownNeverNaN()) {
Known.knownNot(fcNan);
Known.signBitMustBeZero();
}
break;
}
case TargetOpcode::G_FLOG:
case TargetOpcode::G_FLOG2:
case TargetOpcode::G_FLOG10: {
// log(+inf) -> +inf
// log([+-]0.0) -> -inf
// log(-inf) -> nan
// log(-x) -> nan
if ((InterestedClasses & (fcNan | fcInf)) == fcNone)
break;
FPClassTest InterestedSrcs = InterestedClasses;
if ((InterestedClasses & fcNegInf) != fcNone)
InterestedSrcs |= fcZero | fcSubnormal;
if ((InterestedClasses & fcNan) != fcNone)
InterestedSrcs |= fcNan | (fcNegative & ~fcNan);
Register Val = MI.getOperand(1).getReg();
KnownFPClass KnownSrc;
computeKnownFPClass(Val, DemandedElts, InterestedSrcs, KnownSrc, Depth + 1);
if (KnownSrc.isKnownNeverPosInfinity())
Known.knownNot(fcPosInf);
if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero())
Known.knownNot(fcNan);
LLT Ty = MRI.getType(Val).getScalarType();
const fltSemantics &FltSem = getFltSemanticForLLT(Ty);
DenormalMode Mode = MF->getDenormalMode(FltSem);
if (KnownSrc.isKnownNeverLogicalZero(Mode))
Known.knownNot(fcNegInf);
break;
}
case TargetOpcode::G_FPOWI: {
if ((InterestedClasses & fcNegative) == fcNone)
break;
Register Exp = MI.getOperand(2).getReg();
LLT ExpTy = MRI.getType(Exp);
KnownBits ExponentKnownBits = getKnownBits(
Exp, ExpTy.isVector() ? DemandedElts : APInt(1, 1), Depth + 1);
if (ExponentKnownBits.Zero[0]) { // Is even
Known.knownNot(fcNegative);
break;
}
// Given that exp is an integer, here are the
// ways that pow can return a negative value:
//
// pow(-x, exp) --> negative if exp is odd and x is negative.
// pow(-0, exp) --> -inf if exp is negative odd.
// pow(-0, exp) --> -0 if exp is positive odd.
// pow(-inf, exp) --> -0 if exp is negative odd.
// pow(-inf, exp) --> -inf if exp is positive odd.
Register Val = MI.getOperand(1).getReg();
KnownFPClass KnownSrc;
computeKnownFPClass(Val, DemandedElts, fcNegative, KnownSrc, Depth + 1);
if (KnownSrc.isKnownNever(fcNegative))
Known.knownNot(fcNegative);
break;
}
case TargetOpcode::G_FLDEXP:
case TargetOpcode::G_STRICT_FLDEXP: {
Register Val = MI.getOperand(1).getReg();
KnownFPClass KnownSrc;
computeKnownFPClass(Val, DemandedElts, InterestedClasses, KnownSrc,
Depth + 1);
Known.propagateNaN(KnownSrc, /*PropagateSign=*/true);
// Sign is preserved, but underflows may produce zeroes.
if (KnownSrc.isKnownNever(fcNegative))
Known.knownNot(fcNegative);
else if (KnownSrc.cannotBeOrderedLessThanZero())
Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
if (KnownSrc.isKnownNever(fcPositive))
Known.knownNot(fcPositive);
else if (KnownSrc.cannotBeOrderedGreaterThanZero())
Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
// Can refine inf/zero handling based on the exponent operand.
const FPClassTest ExpInfoMask = fcZero | fcSubnormal | fcInf;
if ((InterestedClasses & ExpInfoMask) == fcNone)
break;
if ((KnownSrc.KnownFPClasses & ExpInfoMask) == fcNone)
break;
// TODO: Handle constant range of Exp
break;
}
case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
computeKnownFPClassForFPTrunc(MI, DemandedElts, InterestedClasses, Known,
Depth);
break;
}
case TargetOpcode::G_FADD:
case TargetOpcode::G_STRICT_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_STRICT_FSUB: {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
KnownFPClass KnownLHS, KnownRHS;
bool WantNegative =
(Opcode == TargetOpcode::G_FADD ||
Opcode == TargetOpcode::G_STRICT_FADD) &&
(InterestedClasses & KnownFPClass::OrderedLessThanZeroMask) != fcNone;
bool WantNaN = (InterestedClasses & fcNan) != fcNone;
bool WantNegZero = (InterestedClasses & fcNegZero) != fcNone;
if (!WantNaN && !WantNegative && !WantNegZero)
break;
FPClassTest InterestedSrcs = InterestedClasses;
if (WantNegative)
InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask;
if (InterestedClasses & fcNan)
InterestedSrcs |= fcInf;
computeKnownFPClass(RHS, DemandedElts, InterestedSrcs, KnownRHS, Depth + 1);
if ((WantNaN && KnownRHS.isKnownNeverNaN()) ||
(WantNegative && KnownRHS.cannotBeOrderedLessThanZero()) ||
WantNegZero ||
(Opcode == TargetOpcode::G_FSUB ||
Opcode == TargetOpcode::G_STRICT_FSUB)) {
// RHS is canonically cheaper to compute. Skip inspecting the LHS if
// there's no point.
computeKnownFPClass(LHS, DemandedElts, InterestedSrcs, KnownLHS,
Depth + 1);
// Adding positive and negative infinity produces NaN.
// TODO: Check sign of infinities.
if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
(KnownLHS.isKnownNeverInfinity() || KnownRHS.isKnownNeverInfinity()))
Known.knownNot(fcNan);
if (Opcode == Instruction::FAdd) {
if (KnownLHS.cannotBeOrderedLessThanZero() &&
KnownRHS.cannotBeOrderedLessThanZero())
Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
// (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
if ((KnownLHS.isKnownNeverLogicalNegZero(MF->getDenormalMode(
getFltSemanticForLLT(DstTy.getScalarType()))) ||
KnownRHS.isKnownNeverLogicalNegZero(MF->getDenormalMode(
getFltSemanticForLLT(DstTy.getScalarType())))) &&
// Make sure output negative denormal can't flush to -0
outputDenormalIsIEEEOrPosZero(*MF, DstTy))
Known.knownNot(fcNegZero);
} else {
// Only fsub -0, +0 can return -0
if ((KnownLHS.isKnownNeverLogicalNegZero(MF->getDenormalMode(
getFltSemanticForLLT(DstTy.getScalarType()))) ||
KnownRHS.isKnownNeverLogicalPosZero(MF->getDenormalMode(
getFltSemanticForLLT(DstTy.getScalarType())))) &&
// Make sure output negative denormal can't flush to -0
outputDenormalIsIEEEOrPosZero(*MF, DstTy))
Known.knownNot(fcNegZero);
}
}
break;
}
case TargetOpcode::G_FMUL:
case TargetOpcode::G_STRICT_FMUL: {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
// X * X is always non-negative or a NaN.
if (LHS == RHS)
Known.knownNot(fcNegative);
if ((InterestedClasses & fcNan) != fcNan)
break;
// fcSubnormal is only needed in case of DAZ.
const FPClassTest NeedForNan = fcNan | fcInf | fcZero | fcSubnormal;
KnownFPClass KnownLHS, KnownRHS;
computeKnownFPClass(RHS, DemandedElts, NeedForNan, KnownRHS, Depth + 1);
if (!KnownRHS.isKnownNeverNaN())
break;
computeKnownFPClass(LHS, DemandedElts, NeedForNan, KnownLHS, Depth + 1);
if (!KnownLHS.isKnownNeverNaN())
break;
if (KnownLHS.SignBit && KnownRHS.SignBit) {
if (*KnownLHS.SignBit == *KnownRHS.SignBit)
Known.signBitMustBeZero();
else
Known.signBitMustBeOne();
}
// If 0 * +/-inf produces NaN.
if (KnownLHS.isKnownNeverInfinity() && KnownRHS.isKnownNeverInfinity()) {
Known.knownNot(fcNan);
break;
}
if ((KnownRHS.isKnownNeverInfinity() ||
KnownLHS.isKnownNeverLogicalZero(MF->getDenormalMode(
getFltSemanticForLLT(DstTy.getScalarType())))) &&
(KnownLHS.isKnownNeverInfinity() ||
KnownRHS.isKnownNeverLogicalZero(
MF->getDenormalMode(getFltSemanticForLLT(DstTy.getScalarType())))))
Known.knownNot(fcNan);
break;
}
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FREM: {
Register LHS = MI.getOperand(1).getReg();
Register RHS = MI.getOperand(2).getReg();
if (LHS == RHS) {
// TODO: Could filter out snan if we inspect the operand
if (Opcode == TargetOpcode::G_FDIV) {
// X / X is always exactly 1.0 or a NaN.
Known.KnownFPClasses = fcNan | fcPosNormal;
} else {
// X % X is always exactly [+-]0.0 or a NaN.
Known.KnownFPClasses = fcNan | fcZero;
}
break;
}
const bool WantNan = (InterestedClasses & fcNan) != fcNone;
const bool WantNegative = (InterestedClasses & fcNegative) != fcNone;
const bool WantPositive = Opcode == TargetOpcode::G_FREM &&
(InterestedClasses & fcPositive) != fcNone;
if (!WantNan && !WantNegative && !WantPositive)
break;
KnownFPClass KnownLHS, KnownRHS;
computeKnownFPClass(RHS, DemandedElts, fcNan | fcInf | fcZero | fcNegative,
KnownRHS, Depth + 1);
bool KnowSomethingUseful =
KnownRHS.isKnownNeverNaN() || KnownRHS.isKnownNever(fcNegative);
if (KnowSomethingUseful || WantPositive) {
const FPClassTest InterestedLHS =
WantPositive ? fcAllFlags
: fcNan | fcInf | fcZero | fcSubnormal | fcNegative;
computeKnownFPClass(LHS, DemandedElts, InterestedClasses & InterestedLHS,
KnownLHS, Depth + 1);
}
if (Opcode == Instruction::FDiv) {
// Only 0/0, Inf/Inf produce NaN.
if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
(KnownLHS.isKnownNeverInfinity() ||
KnownRHS.isKnownNeverInfinity()) &&
((KnownLHS.isKnownNeverLogicalZero(MF->getDenormalMode(
getFltSemanticForLLT(DstTy.getScalarType())))) ||
(KnownRHS.isKnownNeverLogicalZero(MF->getDenormalMode(
getFltSemanticForLLT(DstTy.getScalarType())))))) {
Known.knownNot(fcNan);
}
// X / -0.0 is -Inf (or NaN).
// +X / +X is +X
if (KnownLHS.isKnownNever(fcNegative) &&
KnownRHS.isKnownNever(fcNegative))
Known.knownNot(fcNegative);
} else {
// Inf REM x and x REM 0 produce NaN.
if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() &&
KnownLHS.isKnownNeverInfinity() &&
KnownRHS.isKnownNeverLogicalZero(MF->getDenormalMode(
getFltSemanticForLLT(DstTy.getScalarType())))) {
Known.knownNot(fcNan);
}
// The sign for frem is the same as the first operand.
if (KnownLHS.cannotBeOrderedLessThanZero())
Known.knownNot(KnownFPClass::OrderedLessThanZeroMask);
if (KnownLHS.cannotBeOrderedGreaterThanZero())
Known.knownNot(KnownFPClass::OrderedGreaterThanZeroMask);
// See if we can be more aggressive about the sign of 0.
if (KnownLHS.isKnownNever(fcNegative))
Known.knownNot(fcNegative);
if (KnownLHS.isKnownNever(fcPositive))
Known.knownNot(fcPositive);
}
break;
}
case TargetOpcode::G_FPEXT: {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
// Infinity, nan and zero propagate from source.
computeKnownFPClass(R, DemandedElts, InterestedClasses, Known, Depth + 1);
LLT DstTy = MRI.getType(Dst).getScalarType();
const fltSemantics &DstSem = getFltSemanticForLLT(DstTy);
LLT SrcTy = MRI.getType(Src).getScalarType();
const fltSemantics &SrcSem = getFltSemanticForLLT(SrcTy);
// All subnormal inputs should be in the normal range in the result type.
if (APFloat::isRepresentableAsNormalIn(SrcSem, DstSem)) {
if (Known.KnownFPClasses & fcPosSubnormal)
Known.KnownFPClasses |= fcPosNormal;
if (Known.KnownFPClasses & fcNegSubnormal)
Known.KnownFPClasses |= fcNegNormal;
Known.knownNot(fcSubnormal);
}
// Sign bit of a nan isn't guaranteed.
if (!Known.isKnownNeverNaN())
Known.SignBit = std::nullopt;
break;
}
case TargetOpcode::G_FPTRUNC: {
computeKnownFPClassForFPTrunc(MI, DemandedElts, InterestedClasses, Known,
Depth);
break;
}
case TargetOpcode::G_SITOFP:
case TargetOpcode::G_UITOFP: {
// Cannot produce nan
Known.knownNot(fcNan);
// Integers cannot be subnormal
Known.knownNot(fcSubnormal);
// sitofp and uitofp turn into +0.0 for zero.
Known.knownNot(fcNegZero);
if (Opcode == TargetOpcode::G_UITOFP)
Known.signBitMustBeZero();
Register Val = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(Val);
if (InterestedClasses & fcInf) {
// Get width of largest magnitude integer (remove a bit if signed).
// This still works for a signed minimum value because the largest FP
// value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).;
int IntSize = Ty.getScalarSizeInBits();
if (Opcode == TargetOpcode::G_SITOFP)
--IntSize;
// If the exponent of the largest finite FP value can hold the largest
// integer, the result of the cast must be finite.
LLT FPTy = DstTy.getScalarType();
const fltSemantics &FltSem = getFltSemanticForLLT(FPTy);
if (ilogb(APFloat::getLargest(FltSem)) >= IntSize)
Known.knownNot(fcInf);
}
break;
}
// case TargetOpcode::G_MERGE_VALUES:
case TargetOpcode::G_BUILD_VECTOR:
case TargetOpcode::G_CONCAT_VECTORS: {
GMergeLikeInstr &Merge = cast<GMergeLikeInstr>(MI);
if (!DstTy.isFixedVector())
break;
bool First = true;
for (unsigned Idx = 0; Idx < Merge.getNumSources(); ++Idx) {
// We know the index we are inserting to, so clear it from Vec check.
bool NeedsElt = DemandedElts[Idx];
// Do we demand the inserted element?
if (NeedsElt) {
Register Src = Merge.getSourceReg(Idx);
if (First) {
computeKnownFPClass(Src, Known, InterestedClasses, Depth + 1);
First = false;
} else {
KnownFPClass Known2;
computeKnownFPClass(Src, Known2, InterestedClasses, Depth + 1);
Known |= Known2;
}
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
}
}
break;
}
case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
// Look through extract element. If the index is non-constant or
// out-of-range demand all elements, otherwise just the extracted
// element.
GExtractVectorElement &Extract = cast<GExtractVectorElement>(MI);
Register Vec = Extract.getVectorReg();
Register Idx = Extract.getIndexReg();
auto CIdx = getIConstantVRegVal(Idx, MRI);
LLT VecTy = MRI.getType(Vec);
if (VecTy.isFixedVector()) {
unsigned NumElts = VecTy.getNumElements();
APInt DemandedVecElts = APInt::getAllOnes(NumElts);
if (CIdx && CIdx->ult(NumElts))
DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
return computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known,
Depth + 1);
}
break;
}
case TargetOpcode::G_INSERT_VECTOR_ELT: {
GInsertVectorElement &Insert = cast<GInsertVectorElement>(MI);
Register Vec = Insert.getVectorReg();
Register Elt = Insert.getElementReg();
Register Idx = Insert.getIndexReg();
LLT VecTy = MRI.getType(Vec);
if (VecTy.isScalableVector())
return;
auto CIdx = getIConstantVRegVal(Idx, MRI);
unsigned NumElts = DemandedElts.getBitWidth();
APInt DemandedVecElts = DemandedElts;
bool NeedsElt = true;
// If we know the index we are inserting to, clear it from Vec check.
if (CIdx && CIdx->ult(NumElts)) {
DemandedVecElts.clearBit(CIdx->getZExtValue());
NeedsElt = DemandedElts[CIdx->getZExtValue()];
}
// Do we demand the inserted element?
if (NeedsElt) {
computeKnownFPClass(Elt, Known, InterestedClasses, Depth + 1);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
} else {
Known.KnownFPClasses = fcNone;
}
// Do we need anymore elements from Vec?
if (!DemandedVecElts.isZero()) {
KnownFPClass Known2;
computeKnownFPClass(Vec, DemandedVecElts, InterestedClasses, Known2,
Depth + 1);
Known |= Known2;
}
break;
}
case TargetOpcode::G_SHUFFLE_VECTOR: {
// For undef elements, we don't know anything about the common state of
// the shuffle result.
GShuffleVector &Shuf = cast<GShuffleVector>(MI);
APInt DemandedLHS, DemandedRHS;
if (DstTy.isScalableVector()) {
assert(DemandedElts == APInt(1, 1));
DemandedLHS = DemandedRHS = DemandedElts;
} else {
if (!llvm::getShuffleDemandedElts(DstTy.getNumElements(), Shuf.getMask(),
DemandedElts, DemandedLHS,
DemandedRHS)) {
Known.resetAll();
return;
}
}
if (!!DemandedLHS) {
Register LHS = Shuf.getSrc1Reg();
computeKnownFPClass(LHS, DemandedLHS, InterestedClasses, Known,
Depth + 1);
// If we don't know any bits, early out.
if (Known.isUnknown())
break;
} else {
Known.KnownFPClasses = fcNone;
}
if (!!DemandedRHS) {
KnownFPClass Known2;
Register RHS = Shuf.getSrc2Reg();
computeKnownFPClass(RHS, DemandedRHS, InterestedClasses, Known2,
Depth + 1);
Known |= Known2;
}
break;
}
case TargetOpcode::COPY: {
Register Src = MI.getOperand(1).getReg();
if (!Src.isVirtual())
return;
computeKnownFPClass(Src, DemandedElts, InterestedClasses, Known, Depth + 1);
break;
}
}
}
KnownFPClass
GISelValueTracking::computeKnownFPClass(Register R, const APInt &DemandedElts,
FPClassTest InterestedClasses,
unsigned Depth) {
KnownFPClass KnownClasses;
computeKnownFPClass(R, DemandedElts, InterestedClasses, KnownClasses, Depth);
return KnownClasses;
}
KnownFPClass GISelValueTracking::computeKnownFPClass(
Register R, FPClassTest InterestedClasses, unsigned Depth) {
KnownFPClass Known;
computeKnownFPClass(R, Known, InterestedClasses, Depth);
return Known;
}
KnownFPClass GISelValueTracking::computeKnownFPClass(
Register R, const APInt &DemandedElts, uint32_t Flags,
FPClassTest InterestedClasses, unsigned Depth) {
if (Flags & MachineInstr::MIFlag::FmNoNans)
InterestedClasses &= ~fcNan;
if (Flags & MachineInstr::MIFlag::FmNoInfs)
InterestedClasses &= ~fcInf;
KnownFPClass Result =
computeKnownFPClass(R, DemandedElts, InterestedClasses, Depth);
if (Flags & MachineInstr::MIFlag::FmNoNans)
Result.KnownFPClasses &= ~fcNan;
if (Flags & MachineInstr::MIFlag::FmNoInfs)
Result.KnownFPClasses &= ~fcInf;
return Result;
}
KnownFPClass GISelValueTracking::computeKnownFPClass(
Register R, uint32_t Flags, FPClassTest InterestedClasses, unsigned Depth) {
LLT Ty = MRI.getType(R);
APInt DemandedElts =
Ty.isFixedVector() ? APInt::getAllOnes(Ty.getNumElements()) : APInt(1, 1);
return computeKnownFPClass(R, DemandedElts, Flags, InterestedClasses, Depth);
}
/// Compute number of sign bits for the intersection of \p Src0 and \p Src1
unsigned GISelValueTracking::computeNumSignBitsMin(Register Src0, Register Src1,
const APInt &DemandedElts,
unsigned Depth) {
// Test src1 first, since we canonicalize simpler expressions to the RHS.
unsigned Src1SignBits = computeNumSignBits(Src1, DemandedElts, Depth);
if (Src1SignBits == 1)
return 1;
return std::min(computeNumSignBits(Src0, DemandedElts, Depth), Src1SignBits);
}
/// Compute the known number of sign bits with attached range metadata in the
/// memory operand. If this is an extending load, accounts for the behavior of
/// the high bits.
static unsigned computeNumSignBitsFromRangeMetadata(const GAnyLoad *Ld,
unsigned TyBits) {
const MDNode *Ranges = Ld->getRanges();
if (!Ranges)
return 1;
ConstantRange CR = getConstantRangeFromMetadata(*Ranges);
if (TyBits > CR.getBitWidth()) {
switch (Ld->getOpcode()) {
case TargetOpcode::G_SEXTLOAD:
CR = CR.signExtend(TyBits);
break;
case TargetOpcode::G_ZEXTLOAD:
CR = CR.zeroExtend(TyBits);
break;
default:
break;
}
}
return std::min(CR.getSignedMin().getNumSignBits(),
CR.getSignedMax().getNumSignBits());
}
unsigned GISelValueTracking::computeNumSignBits(Register R,
const APInt &DemandedElts,
unsigned Depth) {
MachineInstr &MI = *MRI.getVRegDef(R);
unsigned Opcode = MI.getOpcode();
if (Opcode == TargetOpcode::G_CONSTANT)
return MI.getOperand(1).getCImm()->getValue().getNumSignBits();
if (Depth == getMaxDepth())
return 1;
if (!DemandedElts)
return 1; // No demanded elts, better to assume we don't know anything.
LLT DstTy = MRI.getType(R);
const unsigned TyBits = DstTy.getScalarSizeInBits();
// Handle the case where this is called on a register that does not have a
// type constraint. This is unlikely to occur except by looking through copies
// but it is possible for the initial register being queried to be in this
// state.
if (!DstTy.isValid())
return 1;
unsigned FirstAnswer = 1;
switch (Opcode) {
case TargetOpcode::COPY: {
MachineOperand &Src = MI.getOperand(1);
if (Src.getReg().isVirtual() && Src.getSubReg() == 0 &&
MRI.getType(Src.getReg()).isValid()) {
// Don't increment Depth for this one since we didn't do any work.
return computeNumSignBits(Src.getReg(), DemandedElts, Depth);
}
return 1;
}
case TargetOpcode::G_SEXT: {
Register Src = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(Src);
unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits();
return computeNumSignBits(Src, DemandedElts, Depth + 1) + Tmp;
}
case TargetOpcode::G_ASSERT_SEXT:
case TargetOpcode::G_SEXT_INREG: {
// Max of the input and what this extends.
Register Src = MI.getOperand(1).getReg();
unsigned SrcBits = MI.getOperand(2).getImm();
unsigned InRegBits = TyBits - SrcBits + 1;
return std::max(computeNumSignBits(Src, DemandedElts, Depth + 1),
InRegBits);
}
case TargetOpcode::G_LOAD: {
GLoad *Ld = cast<GLoad>(&MI);
if (DemandedElts != 1 || !getDataLayout().isLittleEndian())
break;
return computeNumSignBitsFromRangeMetadata(Ld, TyBits);
}
case TargetOpcode::G_SEXTLOAD: {
GSExtLoad *Ld = cast<GSExtLoad>(&MI);
// FIXME: We need an in-memory type representation.
if (DstTy.isVector())
return 1;
unsigned NumBits = computeNumSignBitsFromRangeMetadata(Ld, TyBits);
if (NumBits != 1)
return NumBits;
// e.g. i16->i32 = '17' bits known.
const MachineMemOperand *MMO = *MI.memoperands_begin();
return TyBits - MMO->getSizeInBits().getValue() + 1;
}
case TargetOpcode::G_ZEXTLOAD: {
GZExtLoad *Ld = cast<GZExtLoad>(&MI);
// FIXME: We need an in-memory type representation.
if (DstTy.isVector())
return 1;
unsigned NumBits = computeNumSignBitsFromRangeMetadata(Ld, TyBits);
if (NumBits != 1)
return NumBits;
// e.g. i16->i32 = '16' bits known.
const MachineMemOperand *MMO = *MI.memoperands_begin();
return TyBits - MMO->getSizeInBits().getValue();
}
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR: {
Register Src1 = MI.getOperand(1).getReg();
unsigned Src1NumSignBits =
computeNumSignBits(Src1, DemandedElts, Depth + 1);
if (Src1NumSignBits != 1) {
Register Src2 = MI.getOperand(2).getReg();
unsigned Src2NumSignBits =
computeNumSignBits(Src2, DemandedElts, Depth + 1);
FirstAnswer = std::min(Src1NumSignBits, Src2NumSignBits);
}
break;
}
case TargetOpcode::G_TRUNC: {
Register Src = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(Src);
// Check if the sign bits of source go down as far as the truncated value.
unsigned DstTyBits = DstTy.getScalarSizeInBits();
unsigned NumSrcBits = SrcTy.getScalarSizeInBits();
unsigned NumSrcSignBits = computeNumSignBits(Src, DemandedElts, Depth + 1);
if (NumSrcSignBits > (NumSrcBits - DstTyBits))
return NumSrcSignBits - (NumSrcBits - DstTyBits);
break;
}
case TargetOpcode::G_SELECT: {
return computeNumSignBitsMin(MI.getOperand(2).getReg(),
MI.getOperand(3).getReg(), DemandedElts,
Depth + 1);
}
case TargetOpcode::G_SMIN:
case TargetOpcode::G_SMAX:
case TargetOpcode::G_UMIN:
case TargetOpcode::G_UMAX:
// TODO: Handle clamp pattern with number of sign bits for SMIN/SMAX.
return computeNumSignBitsMin(MI.getOperand(1).getReg(),
MI.getOperand(2).getReg(), DemandedElts,
Depth + 1);
case TargetOpcode::G_SADDO:
case TargetOpcode::G_SADDE:
case TargetOpcode::G_UADDO:
case TargetOpcode::G_UADDE:
case TargetOpcode::G_SSUBO:
case TargetOpcode::G_SSUBE:
case TargetOpcode::G_USUBO:
case TargetOpcode::G_USUBE:
case TargetOpcode::G_SMULO:
case TargetOpcode::G_UMULO: {
// If compares returns 0/-1, all bits are sign bits.
// We know that we have an integer-based boolean since these operations
// are only available for integer.
if (MI.getOperand(1).getReg() == R) {
if (TL.getBooleanContents(DstTy.isVector(), false) ==
TargetLowering::ZeroOrNegativeOneBooleanContent)
return TyBits;
}
break;
}
case TargetOpcode::G_FCMP:
case TargetOpcode::G_ICMP: {
bool IsFP = Opcode == TargetOpcode::G_FCMP;
if (TyBits == 1)
break;
auto BC = TL.getBooleanContents(DstTy.isVector(), IsFP);
if (BC == TargetLoweringBase::ZeroOrNegativeOneBooleanContent)
return TyBits; // All bits are sign bits.
if (BC == TargetLowering::ZeroOrOneBooleanContent)
return TyBits - 1; // Every always-zero bit is a sign bit.
break;
}
case TargetOpcode::G_BUILD_VECTOR: {
// Collect the known bits that are shared by every demanded vector element.
FirstAnswer = TyBits;
APInt SingleDemandedElt(1, 1);
for (const auto &[I, MO] : enumerate(drop_begin(MI.operands()))) {
if (!DemandedElts[I])
continue;
unsigned Tmp2 =
computeNumSignBits(MO.getReg(), SingleDemandedElt, Depth + 1);
FirstAnswer = std::min(FirstAnswer, Tmp2);
// If we don't know any bits, early out.
if (FirstAnswer == 1)
break;
}
break;
}
case TargetOpcode::G_CONCAT_VECTORS: {
if (MRI.getType(MI.getOperand(0).getReg()).isScalableVector())
break;
FirstAnswer = TyBits;
// Determine the minimum number of sign bits across all demanded
// elts of the input vectors. Early out if the result is already 1.
unsigned NumSubVectorElts =
MRI.getType(MI.getOperand(1).getReg()).getNumElements();
for (const auto &[I, MO] : enumerate(drop_begin(MI.operands()))) {
APInt DemandedSub =
DemandedElts.extractBits(NumSubVectorElts, I * NumSubVectorElts);
if (!DemandedSub)
continue;
unsigned Tmp2 = computeNumSignBits(MO.getReg(), DemandedSub, Depth + 1);
FirstAnswer = std::min(FirstAnswer, Tmp2);
// If we don't know any bits, early out.
if (FirstAnswer == 1)
break;
}
break;
}
case TargetOpcode::G_SHUFFLE_VECTOR: {
// Collect the minimum number of sign bits that are shared by every vector
// element referenced by the shuffle.
APInt DemandedLHS, DemandedRHS;
Register Src1 = MI.getOperand(1).getReg();
unsigned NumElts = MRI.getType(Src1).getNumElements();
if (!getShuffleDemandedElts(NumElts, MI.getOperand(3).getShuffleMask(),
DemandedElts, DemandedLHS, DemandedRHS))
return 1;
if (!!DemandedLHS)
FirstAnswer = computeNumSignBits(Src1, DemandedLHS, Depth + 1);
// If we don't know anything, early out and try computeKnownBits fall-back.
if (FirstAnswer == 1)
break;
if (!!DemandedRHS) {
unsigned Tmp2 =
computeNumSignBits(MI.getOperand(2).getReg(), DemandedRHS, Depth + 1);
FirstAnswer = std::min(FirstAnswer, Tmp2);
}
break;
}
case TargetOpcode::G_SPLAT_VECTOR: {
// Check if the sign bits of source go down as far as the truncated value.
Register Src = MI.getOperand(1).getReg();
unsigned NumSrcSignBits = computeNumSignBits(Src, APInt(1, 1), Depth + 1);
unsigned NumSrcBits = MRI.getType(Src).getSizeInBits();
if (NumSrcSignBits > (NumSrcBits - TyBits))
return NumSrcSignBits - (NumSrcBits - TyBits);
break;
}
case TargetOpcode::G_INTRINSIC:
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
case TargetOpcode::G_INTRINSIC_CONVERGENT:
case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS:
default: {
unsigned NumBits =
TL.computeNumSignBitsForTargetInstr(*this, R, DemandedElts, MRI, Depth);
if (NumBits > 1)
FirstAnswer = std::max(FirstAnswer, NumBits);
break;
}
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
KnownBits Known = getKnownBits(R, DemandedElts, Depth);
APInt Mask;
if (Known.isNonNegative()) { // sign bit is 0
Mask = Known.Zero;
} else if (Known.isNegative()) { // sign bit is 1;
Mask = Known.One;
} else {
// Nothing known.
return FirstAnswer;
}
// Okay, we know that the sign bit in Mask is set. Use CLO to determine
// the number of identical bits in the top of the input value.
Mask <<= Mask.getBitWidth() - TyBits;
return std::max(FirstAnswer, Mask.countl_one());
}
unsigned GISelValueTracking::computeNumSignBits(Register R, unsigned Depth) {
LLT Ty = MRI.getType(R);
APInt DemandedElts =
Ty.isFixedVector() ? APInt::getAllOnes(Ty.getNumElements()) : APInt(1, 1);
return computeNumSignBits(R, DemandedElts, Depth);
}
void GISelValueTrackingAnalysisLegacy::getAnalysisUsage(
AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool GISelValueTrackingAnalysisLegacy::runOnMachineFunction(
MachineFunction &MF) {
return false;
}
GISelValueTracking &GISelValueTrackingAnalysisLegacy::get(MachineFunction &MF) {
if (!Info) {
unsigned MaxDepth =
MF.getTarget().getOptLevel() == CodeGenOptLevel::None ? 2 : 6;
Info = std::make_unique<GISelValueTracking>(MF, MaxDepth);
}
return *Info;
}
AnalysisKey GISelValueTrackingAnalysis::Key;
GISelValueTracking
GISelValueTrackingAnalysis::run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
return Result(MF);
}
PreservedAnalyses
GISelValueTrackingPrinterPass::run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
auto &VTA = MFAM.getResult<GISelValueTrackingAnalysis>(MF);
const auto &MRI = MF.getRegInfo();
OS << "name: ";
MF.getFunction().printAsOperand(OS, /*PrintType=*/false);
OS << '\n';
for (MachineBasicBlock &BB : MF) {
for (MachineInstr &MI : BB) {
for (MachineOperand &MO : MI.defs()) {
if (!MO.isReg() || MO.getReg().isPhysical())
continue;
Register Reg = MO.getReg();
if (!MRI.getType(Reg).isValid())
continue;
KnownBits Known = VTA.getKnownBits(Reg);
unsigned SignedBits = VTA.computeNumSignBits(Reg);
OS << " " << MO << " KnownBits:" << Known << " SignBits:" << SignedBits
<< '\n';
};
}
}
return PreservedAnalyses::all();
}
|