1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
//===- MachineCycleAnalysis.cpp - Compute CycleInfo for Machine IR --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineCycleAnalysis.h"
#include "llvm/ADT/GenericCycleImpl.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSSAContext.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
template class llvm::GenericCycleInfo<llvm::MachineSSAContext>;
template class llvm::GenericCycle<llvm::MachineSSAContext>;
char MachineCycleInfoWrapperPass::ID = 0;
MachineCycleInfoWrapperPass::MachineCycleInfoWrapperPass()
: MachineFunctionPass(ID) {
initializeMachineCycleInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(MachineCycleInfoWrapperPass, "machine-cycles",
"Machine Cycle Info Analysis", true, true)
INITIALIZE_PASS_END(MachineCycleInfoWrapperPass, "machine-cycles",
"Machine Cycle Info Analysis", true, true)
void MachineCycleInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool MachineCycleInfoWrapperPass::runOnMachineFunction(MachineFunction &Func) {
CI.clear();
F = &Func;
CI.compute(Func);
return false;
}
void MachineCycleInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
OS << "MachineCycleInfo for function: " << F->getName() << "\n";
CI.print(OS);
}
void MachineCycleInfoWrapperPass::releaseMemory() {
CI.clear();
F = nullptr;
}
AnalysisKey MachineCycleAnalysis::Key;
MachineCycleInfo
MachineCycleAnalysis::run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
MachineCycleInfo MCI;
MCI.compute(MF);
return MCI;
}
namespace {
class MachineCycleInfoPrinterLegacy : public MachineFunctionPass {
public:
static char ID;
MachineCycleInfoPrinterLegacy();
bool runOnMachineFunction(MachineFunction &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
} // namespace
char MachineCycleInfoPrinterLegacy::ID = 0;
MachineCycleInfoPrinterLegacy::MachineCycleInfoPrinterLegacy()
: MachineFunctionPass(ID) {
initializeMachineCycleInfoPrinterLegacyPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(MachineCycleInfoPrinterLegacy, "print-machine-cycles",
"Print Machine Cycle Info Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass)
INITIALIZE_PASS_END(MachineCycleInfoPrinterLegacy, "print-machine-cycles",
"Print Machine Cycle Info Analysis", true, true)
void MachineCycleInfoPrinterLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineCycleInfoWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool MachineCycleInfoPrinterLegacy::runOnMachineFunction(MachineFunction &F) {
auto &CI = getAnalysis<MachineCycleInfoWrapperPass>();
CI.print(errs());
return false;
}
PreservedAnalyses
MachineCycleInfoPrinterPass::run(MachineFunction &MF,
MachineFunctionAnalysisManager &MFAM) {
auto &MCI = MFAM.getResult<MachineCycleAnalysis>(MF);
MCI.print(OS);
return PreservedAnalyses::all();
}
bool llvm::isCycleInvariant(const MachineCycle *Cycle, MachineInstr &I) {
MachineFunction *MF = I.getParent()->getParent();
MachineRegisterInfo *MRI = &MF->getRegInfo();
const TargetSubtargetInfo &ST = MF->getSubtarget();
const TargetRegisterInfo *TRI = ST.getRegisterInfo();
const TargetInstrInfo *TII = ST.getInstrInfo();
// The instruction is cycle invariant if all of its operands are.
for (const MachineOperand &MO : I.operands()) {
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (Reg == 0)
continue;
// An instruction that uses or defines a physical register can't e.g. be
// hoisted, so mark this as not invariant.
if (Reg.isPhysical()) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
// However, if the physreg is known to always be caller saved/restored
// then this use is safe to hoist.
if (!MRI->isConstantPhysReg(Reg) &&
!(TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *I.getMF())) &&
!TII->isIgnorableUse(MO))
return false;
// Otherwise it's safe to move.
continue;
} else if (!MO.isDead()) {
// A def that isn't dead can't be moved.
return false;
} else if (any_of(Cycle->getEntries(),
[&](const MachineBasicBlock *Block) {
return Block->isLiveIn(Reg);
})) {
// If the reg is live into any header of the cycle we can't hoist an
// instruction which would clobber it.
return false;
}
}
if (!MO.isUse())
continue;
assert(MRI->getVRegDef(Reg) && "Machine instr not mapped for this vreg?!");
// If the cycle contains the definition of an operand, then the instruction
// isn't cycle invariant.
if (Cycle->contains(MRI->getVRegDef(Reg)->getParent()))
return false;
}
// If we got this far, the instruction is cycle invariant!
return true;
}
|