1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
|
//===------ WindowsHotPatch.cpp - Support for Windows hotpatching ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Provides support for the Windows "Secure Hot-Patching" feature.
//
// Windows contains technology, called "Secure Hot-Patching" (SHP), for securely
// applying hot-patches to a running system. Hot-patches may be applied to the
// kernel, kernel-mode components, device drivers, user-mode system services,
// etc.
//
// SHP relies on integration between many tools, including compiler, linker,
// hot-patch generation tools, and the Windows kernel. This file implements that
// part of the workflow needed in compilers / code generators.
//
// SHP is not intended for productivity scenarios such as Edit-and-Continue or
// interactive development. SHP is intended to minimize downtime during
// installation of Windows OS patches.
//
// In order to work with SHP, LLVM must do all of the following:
//
// * On some architectures (X86, AMD64), the function prolog must begin with
// hot-patchable instructions. This is handled by the MSVC `/hotpatch` option
// and the equivalent `-fms-hotpatch` function. This is necessary because we
// generally cannot anticipate which functions will need to be patched in the
// future. This option ensures that a function can be hot-patched in the
// future, but does not actually generate any hot-patch for it.
//
// * For a selected set of functions that are being hot-patched (which are
// identified using command-line options), LLVM must generate the
// `S_HOTPATCHFUNC` CodeView record (symbol). This record indicates that a
// function was compiled with hot-patching enabled.
//
// This implementation uses the `MarkedForWindowsHotPatching` attribute to
// annotate those functions that were marked for hot-patching by command-line
// parameters. The attribute may be specified by a language front-end by
// setting an attribute when a function is created in LLVM IR, or it may be
// set by passing LLVM arguments.
//
// * For those functions that are hot-patched, LLVM must rewrite references to
// global variables so that they are indirected through a `__ref_*` pointer
// variable. For each global variable, that is accessed by a hot-patched
// function, e.g. `FOO`, a `__ref_FOO` global pointer variable is created and
// all references to the original `FOO` are rewritten as dereferences of the
// `__ref_FOO` pointer.
//
// Some globals do not need `__ref_*` indirection. The pointer indirection
// behavior can be disabled for these globals by marking them with the
// `AllowDirectAccessInHotPatchFunction`.
//
// Rewriting references to global variables has some complexity.
//
// For ordinary instructions that reference GlobalVariables, we rewrite the
// operand of the instruction to a Load of the __ref_* variable.
//
// For constant expressions, we have to convert the constant expression (and
// transitively all constant expressions in its parent chain) to non-constant
// expressions, i.e. to a sequence of instructions.
//
// Pass 1:
// * Enumerate all instructions in all basic blocks.
//
// * If an instruction references a GlobalVariable (and it is not marked
// as being ignored), then we create (if necessary) the __ref_* variable
// for the GlobalVariable reference. However, we do not yet modify the
// Instruction.
//
// * If an instruction has an operand that is a ConstantExpr and the
// ConstantExpression tree contains a reference to a GlobalVariable, then
// we similarly create __ref_*. Similarly, we do not yet modify the
// Instruction or the ConstantExpr tree.
//
// After Pass 1 completes, we will know whether we found any references to
// globals in this pass. If the function does not use any globals (and most
// functions do not use any globals), then we return immediately.
//
// If a function does reference globals, then we iterate the list of globals
// used by this function and we generate Load instructions for each (unique)
// global.
//
// Next, we do another pass over all instructions:
//
// Pass 2:
// * Re-visit the instructions that were found in Pass 1.
//
// * If an instruction operand is a GlobalVariable, then look up the
// replacement
// __ref_* global variable and the Value that came from the Load instruction
// for it. Replace the operand of the GlobalVariable with the Load Value.
//
// * If an instruction operand is a ConstantExpr, then recursively examine the
// operands of all instructions in the ConstantExpr tree. If an operand is
// a GlobalVariable, then replace the operand with the result of the load
// *and* convert the ConstantExpr to a non-constant instruction. This
// instruction will need to be inserted into the BB of the instruction whose
// operand is being modified, ideally immediately before the instruction
// being modified.
//
// Limitations
//
// This feature is not intended to work in every situation. There are many
// legitimate code changes (patches) for which it is not possible to generate
// a hot-patch. Developers who are writing hot-patches are expected to
// understand the limitations.
//
// Tools which generate hot-patch metadata may also check that certain
// variables are upheld, and some of these invariants may be global (may require
// whole-program knowledge, not available in any single compiland). However,
// such tools are not required to be perfect; they are also best-effort.
//
// For these reasons, the hot-patching support implemented in this file is
// "best effort". It does not recognize every possible code pattern that could
// be patched, nor does it generate diagnostics for certain code patterns that
// could result in a binary that does not work with hot-patching. For example,
// const GlobalVariables that point to other non-const GlobalVariables are not
// compatible with hot-patching because they cannot use __ref_*-based
// redirection.
//
// References
//
// * "Hotpatching on Windows":
// https://techcommunity.microsoft.com/blog/windowsosplatform/hotpatching-on-windows/2959541
//
// * "Hotpatch for Windows client now available":
// https://techcommunity.microsoft.com/blog/windows-itpro-blog/hotpatch-for-windows-client-now-available/4399808
//
// * "Get hotpatching for Windows Server":
// https://www.microsoft.com/en-us/windows-server/blog/2025/04/24/tired-of-all-the-restarts-get-hotpatching-for-windows-server/
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/MemoryBuffer.h"
using namespace llvm;
#define DEBUG_TYPE "windows-secure-hot-patch"
// A file containing list of mangled function names to mark for hot patching.
static cl::opt<std::string> LLVMMSSecureHotPatchFunctionsFile(
"ms-secure-hotpatch-functions-file", cl::value_desc("filename"),
cl::desc("A file containing list of mangled function names to mark for "
"Windows Secure Hot-Patching"));
// A list of mangled function names to mark for hot patching.
static cl::list<std::string> LLVMMSSecureHotPatchFunctionsList(
"ms-secure-hotpatch-functions-list", cl::value_desc("list"),
cl::desc("A list of mangled function names to mark for Windows Secure "
"Hot-Patching"),
cl::CommaSeparated);
namespace {
struct GlobalVariableUse {
// GlobalVariable *GV;
Instruction *User;
unsigned Op;
};
class WindowsSecureHotPatching : public ModulePass {
public:
static char ID;
WindowsSecureHotPatching() : ModulePass(ID) {
initializeWindowsSecureHotPatchingPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
}
bool doInitialization(Module &) override;
bool runOnModule(Module &M) override { return false; }
private:
bool
runOnFunction(Function &F,
SmallDenseMap<GlobalVariable *, GlobalVariable *> &RefMapping);
};
} // end anonymous namespace
char WindowsSecureHotPatching::ID = 0;
INITIALIZE_PASS(WindowsSecureHotPatching, "windows-secure-hot-patch",
"Mark functions for Windows hot patch support", false, false)
ModulePass *llvm::createWindowsSecureHotPatchingPass() {
return new WindowsSecureHotPatching();
}
// Find functions marked with Attribute::MarkedForWindowsHotPatching and modify
// their code (if necessary) to account for accesses to global variables.
//
// This runs during doInitialization() instead of runOnModule() because it needs
// to run before CodeViewDebug::collectGlobalVariableInfo().
bool WindowsSecureHotPatching::doInitialization(Module &M) {
// The front end may have already marked functions for hot-patching. However,
// we also allow marking functions by passing -ms-hotpatch-functions-file or
// -ms-hotpatch-functions-list directly to LLVM. This allows hot-patching to
// work with languages that have not yet updated their front-ends.
if (!LLVMMSSecureHotPatchFunctionsFile.empty() ||
!LLVMMSSecureHotPatchFunctionsList.empty()) {
std::vector<std::string> HotPatchFunctionsList;
if (!LLVMMSSecureHotPatchFunctionsFile.empty()) {
auto BufOrErr = MemoryBuffer::getFile(LLVMMSSecureHotPatchFunctionsFile);
if (BufOrErr) {
const MemoryBuffer &FileBuffer = **BufOrErr;
for (line_iterator I(FileBuffer.getMemBufferRef(), true), E; I != E;
++I)
HotPatchFunctionsList.push_back(std::string{*I});
} else {
M.getContext().diagnose(DiagnosticInfoGeneric{
Twine("failed to open hotpatch functions file "
"(--ms-hotpatch-functions-file): ") +
LLVMMSSecureHotPatchFunctionsFile + Twine(" : ") +
BufOrErr.getError().message()});
}
}
if (!LLVMMSSecureHotPatchFunctionsList.empty())
for (const auto &FuncName : LLVMMSSecureHotPatchFunctionsList)
HotPatchFunctionsList.push_back(FuncName);
// Build a set for quick lookups. This points into HotPatchFunctionsList, so
// HotPatchFunctionsList must live longer than HotPatchFunctionsSet.
SmallSet<StringRef, 16> HotPatchFunctionsSet;
for (const auto &FuncName : HotPatchFunctionsList)
HotPatchFunctionsSet.insert(StringRef{FuncName});
// Iterate through all of the functions and check whether they need to be
// marked for hotpatching using the list provided directly to LLVM.
for (auto &F : M.functions()) {
// Ignore declarations that are not definitions.
if (F.isDeclarationForLinker())
continue;
if (HotPatchFunctionsSet.contains(F.getName()))
F.addFnAttr("marked_for_windows_hot_patching");
}
}
SmallDenseMap<GlobalVariable *, GlobalVariable *> RefMapping;
bool MadeChanges = false;
for (auto &F : M.functions()) {
if (F.hasFnAttribute("marked_for_windows_hot_patching")) {
if (runOnFunction(F, RefMapping))
MadeChanges = true;
}
}
return MadeChanges;
}
static bool TypeContainsPointers(Type *ty) {
switch (ty->getTypeID()) {
case Type::PointerTyID:
return true;
case Type::ArrayTyID:
return TypeContainsPointers(ty->getArrayElementType());
case Type::StructTyID: {
unsigned NumElements = ty->getStructNumElements();
for (unsigned I = 0; I < NumElements; ++I) {
if (TypeContainsPointers(ty->getStructElementType(I))) {
return true;
}
}
return false;
}
default:
return false;
}
}
// Returns true if GV needs redirection through a __ref_* variable.
static bool globalVariableNeedsRedirect(GlobalVariable *GV) {
// If a global variable is explictly marked as allowing access in hot-patched
// functions, then do not redirect it.
if (GV->hasAttribute("allow_direct_access_in_hot_patch_function"))
return false;
// If the global variable is not a constant, then we want to redirect it.
if (!GV->isConstant()) {
if (GV->getName().starts_with("??_R")) {
// This is the name mangling prefix that MSVC uses for RTTI data.
// Clang is currently generating RTTI data that is marked non-constant.
// We override that and treat it like it is constant.
return false;
}
// In general, if a global variable is not a constant, then redirect it.
return true;
}
// If the type of GV cannot contain pointers, then it cannot point to
// other global variables. In this case, there is no need for redirects.
// For example, string literals do not contain pointers.
return TypeContainsPointers(GV->getValueType());
}
// Get or create a new global variable that points to the old one and whose
// name begins with `__ref_`.
//
// In hot-patched images, the __ref_* variables point to global variables in
// the original (unpatched) image. Hot-patched functions in the hot-patch
// image use these __ref_* variables to access global variables. This ensures
// that all code (both unpatched and patched) is using the same instances of
// global variables.
//
// The Windows hot-patch infrastructure handles modifying these __ref_*
// variables. By default, they are initialized with pointers to the equivalent
// global variables, so when a hot-patch module is loaded *as* a base image
// (such as after a system reboot), hot-patch functions will access the
// instances of global variables that are compiled into the hot-patch image.
// This is the desired outcome, since in this situation (normal boot) the
// hot-patch image *is* the base image.
//
// When we create the GlobalVariable for the __ref_* variable, we must create
// it as a *non-constant* global variable. The __ref_* pointers will not change
// during the runtime of the program, so it is tempting to think that they
// should be constant. However, they still need to be updateable by the
// hot-patching infrastructure. Also, if the GlobalVariable is created as a
// constant, then the LLVM optimizer will assume that it can dereference the
// definition of the __ref_* variable at compile time, which defeats the
// purpose of the indirection (pointer).
//
// The RefMapping table spans the entire module, not just a single function.
static GlobalVariable *getOrCreateRefVariable(
Function &F, SmallDenseMap<GlobalVariable *, GlobalVariable *> &RefMapping,
GlobalVariable *GV) {
GlobalVariable *&ReplaceWithRefGV = RefMapping.try_emplace(GV).first->second;
if (ReplaceWithRefGV != nullptr) {
// We have already created a __ref_* pointer for this GlobalVariable.
return ReplaceWithRefGV;
}
Module *M = F.getParent();
const DISubprogram *Subprogram = F.getSubprogram();
DICompileUnit *Unit = Subprogram != nullptr ? Subprogram->getUnit() : nullptr;
DIFile *File = Subprogram != nullptr ? Subprogram->getFile() : nullptr;
DIBuilder DebugInfo{*F.getParent(), true, Unit};
auto PtrTy = PointerType::get(M->getContext(), 0);
Constant *AddrOfOldGV =
ConstantExpr::getGetElementPtr(PtrTy, GV, ArrayRef<Value *>{});
GlobalVariable *RefGV =
new GlobalVariable(*M, PtrTy, false, GlobalValue::LinkOnceAnyLinkage,
AddrOfOldGV, Twine("__ref_").concat(GV->getName()),
nullptr, GlobalVariable::NotThreadLocal);
// Create debug info for the replacement global variable.
DataLayout Layout = M->getDataLayout();
DIType *DebugType = DebugInfo.createPointerType(
nullptr, Layout.getTypeSizeInBits(GV->getValueType()));
DIGlobalVariableExpression *GVE = DebugInfo.createGlobalVariableExpression(
Unit, RefGV->getName(), StringRef{}, File,
/*LineNo*/ 0, DebugType,
/*IsLocalToUnit*/ false);
RefGV->addDebugInfo(GVE);
// Store the __ref_* in RefMapping so that future calls use the same RefGV.
ReplaceWithRefGV = RefGV;
return RefGV;
}
// Given a ConstantExpr, this searches for GlobalVariable references within
// the expression tree. If found, it will generate instructions and will
// return a non-null Value* that points to the new root instruction.
//
// If C does not contain any GlobalVariable references, this returns nullptr.
//
// If this function creates new instructions, then it will insert them
// before InsertionPoint.
static Value *rewriteGlobalVariablesInConstant(
Constant *C, SmallDenseMap<GlobalVariable *, Value *> &GVLoadMap,
IRBuilder<> &IRBuilderAtEntry) {
if (C->getValueID() == Value::GlobalVariableVal) {
GlobalVariable *GV = cast<GlobalVariable>(C);
if (globalVariableNeedsRedirect(GV)) {
return GVLoadMap.at(GV);
} else {
return nullptr;
}
}
// Scan the operands of this expression.
SmallVector<Value *, 8> ReplacedValues;
bool ReplacedAnyOperands = false;
unsigned NumOperands = C->getNumOperands();
for (unsigned OpIndex = 0; OpIndex < NumOperands; ++OpIndex) {
Value *OldValue = C->getOperand(OpIndex);
Value *ReplacedValue = nullptr;
if (Constant *OldConstant = dyn_cast<Constant>(OldValue)) {
ReplacedValue = rewriteGlobalVariablesInConstant(OldConstant, GVLoadMap,
IRBuilderAtEntry);
}
// Do not use short-circuiting, here. We need to traverse the whole tree.
ReplacedAnyOperands |= ReplacedValue != nullptr;
ReplacedValues.push_back(ReplacedValue);
}
// If none of our operands were replaced, then don't rewrite this expression.
if (!ReplacedAnyOperands) {
return nullptr;
}
// We need to rewrite this expression. Convert this constant expression
// to an instruction, then replace any operands as needed.
Instruction *NewInst = cast<ConstantExpr>(C)->getAsInstruction();
for (unsigned OpIndex = 0; OpIndex < NumOperands; ++OpIndex) {
Value *ReplacedValue = ReplacedValues[OpIndex];
if (ReplacedValue != nullptr) {
NewInst->setOperand(OpIndex, ReplacedValue);
}
}
// Insert the new instruction before the reference instruction.
IRBuilderAtEntry.Insert(NewInst);
return NewInst;
}
static bool searchConstantExprForGlobalVariables(
Value *V, SmallDenseMap<GlobalVariable *, Value *> &GVLoadMap,
SmallVector<GlobalVariableUse> &GVUses) {
SmallVector<Value *, 8> ReplacedOperands;
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
if (globalVariableNeedsRedirect(GV)) {
GVLoadMap[GV] = nullptr;
return true;
} else {
return false;
}
}
if (User *U = dyn_cast<User>(V)) {
unsigned NumOperands = U->getNumOperands();
bool FoundAny = false;
for (unsigned OpIndex = 0; OpIndex < NumOperands; ++OpIndex) {
Value *Op = U->getOperand(OpIndex);
// Do not use short-circuiting, here. We need to traverse the whole tree.
FoundAny |= searchConstantExprForGlobalVariables(Op, GVLoadMap, GVUses);
}
return FoundAny;
} else {
return false;
}
}
// Processes a function that is marked for hot-patching.
//
// If a function is marked for hot-patching, we generate an S_HOTPATCHFUNC
// CodeView debug symbol. Tools that generate hot-patches look for
// S_HOTPATCHFUNC in final PDBs so that they can find functions that have been
// hot-patched and so that they can distinguish hot-patched functions from
// non-hot-patched functions.
//
// Also, in functions that are hot-patched, we must indirect all access to
// (mutable) global variables through a pointer. This pointer may point into the
// unpatched ("base") binary or may point into the patched image, depending on
// whether a hot-patch was loaded as a patch or as a base image. These
// indirections go through a new global variable, named `__ref_<Foo>` where
// `<Foo>` is the original symbol name of the global variable.
//
// This function handles rewriting accesses to global variables, but the
// generation of S_HOTPATCHFUNC occurs in
// CodeViewDebug::emitHotPatchInformation().
//
// Returns true if any global variable references were found and rewritten.
bool WindowsSecureHotPatching::runOnFunction(
Function &F,
SmallDenseMap<GlobalVariable *, GlobalVariable *> &RefMapping) {
// Scan the function for references to global variables. If we find such a
// reference, create (if necessary) the __ref_* variable, then add an entry
// to the GVUses table.
//
// We ignore references to global variables if the variable is marked with
// AllowDirectAccessInHotPatchFunction.
SmallDenseMap<GlobalVariable *, Value *> GVLoadMap;
SmallVector<GlobalVariableUse> GVUses;
for (auto &I : instructions(F)) {
unsigned NumOperands = I.getNumOperands();
for (unsigned OpIndex = 0; OpIndex < NumOperands; ++OpIndex) {
Value *V = I.getOperand(OpIndex);
bool FoundAnyGVUses = false;
switch (V->getValueID()) {
case Value::GlobalVariableVal: {
// Discover all uses of GlobalVariable, these will need to be replaced.
GlobalVariable *GV = cast<GlobalVariable>(V);
if (globalVariableNeedsRedirect(GV)) {
GVLoadMap.insert(std::make_pair(GV, nullptr));
FoundAnyGVUses = true;
}
break;
}
case Value::ConstantExprVal: {
ConstantExpr *CE = cast<ConstantExpr>(V);
if (searchConstantExprForGlobalVariables(CE, GVLoadMap, GVUses)) {
FoundAnyGVUses = true;
}
break;
}
default:
break;
}
if (FoundAnyGVUses) {
GVUses.push_back(GlobalVariableUse{&I, OpIndex});
}
}
}
// If this function did not reference any global variables then we have no
// work to do. Most functions do not access global variables.
if (GVUses.empty()) {
return false;
}
// We know that there is at least one instruction that needs to be rewritten.
// Generate a Load instruction for each unique GlobalVariable used by this
// function. The Load instructions are inserted at the beginning of the
// entry block. Since entry blocks cannot contain PHI instructions, there is
// no need to skip PHI instructions.
// We use a single IRBuilder for inserting Load instructions as well as the
// constants that we convert to instructions. Because constants do not
// depend on any dynamic values (they're constant, after all!), it is safe
// to move them to the start of entry BB.
auto &EntryBlock = F.getEntryBlock();
IRBuilder<> IRBuilderAtEntry(&EntryBlock, EntryBlock.begin());
for (auto &[GV, LoadValue] : GVLoadMap) {
assert(LoadValue == nullptr);
GlobalVariable *RefGV = getOrCreateRefVariable(F, RefMapping, GV);
LoadValue = IRBuilderAtEntry.CreateLoad(RefGV->getValueType(), RefGV);
}
const DISubprogram *Subprogram = F.getSubprogram();
DICompileUnit *Unit = Subprogram != nullptr ? Subprogram->getUnit() : nullptr;
DIBuilder DebugInfo{*F.getParent(), true, Unit};
// Go back to the instructions and rewrite their uses of GlobalVariable.
// Because a ConstantExpr can be a tree, it may reference more than one
// GlobalVariable.
for (auto &GVUse : GVUses) {
Value *OldOperandValue = GVUse.User->getOperand(GVUse.Op);
Value *NewOperandValue;
switch (OldOperandValue->getValueID()) {
case Value::GlobalVariableVal: {
// This is easy. Look up the replacement value and store the operand.
Value *OperandValue = GVUse.User->getOperand(GVUse.Op);
GlobalVariable *GV = cast<GlobalVariable>(OperandValue);
NewOperandValue = GVLoadMap.at(GV);
break;
}
case Value::ConstantExprVal: {
// Walk the recursive tree of the ConstantExpr. If we find a
// GlobalVariable then replace it with the loaded value and rewrite
// the ConstantExpr to an Instruction and insert it before the
// current instruction.
Value *OperandValue = GVUse.User->getOperand(GVUse.Op);
ConstantExpr *CE = cast<ConstantExpr>(OperandValue);
NewOperandValue =
rewriteGlobalVariablesInConstant(CE, GVLoadMap, IRBuilderAtEntry);
assert(NewOperandValue != nullptr);
break;
}
default:
// We should only ever get here because a GVUse was created in the first
// pass, and this only happens for GlobalVariableVal and ConstantExprVal.
llvm_unreachable_internal(
"unexpected Value in second pass of hot-patching");
break;
}
GVUse.User->setOperand(GVUse.Op, NewOperandValue);
}
return true;
}
|