1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
//===- MC/MCRegisterInfo.cpp - Target Register Description ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements MCRegisterInfo functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
using namespace llvm;
namespace {
/// MCRegAliasIterator enumerates all registers aliasing Reg. This iterator
/// does not guarantee any ordering or that entries are unique.
class MCRegAliasIteratorImpl {
private:
MCRegister Reg;
const MCRegisterInfo *MCRI;
MCRegUnitIterator RI;
MCRegUnitRootIterator RRI;
MCSuperRegIterator SI;
public:
MCRegAliasIteratorImpl(MCRegister Reg, const MCRegisterInfo *MCRI)
: Reg(Reg), MCRI(MCRI) {
// Initialize the iterators.
for (RI = MCRegUnitIterator(Reg, MCRI); RI.isValid(); ++RI) {
for (RRI = MCRegUnitRootIterator(*RI, MCRI); RRI.isValid(); ++RRI) {
for (SI = MCSuperRegIterator(*RRI, MCRI, true); SI.isValid(); ++SI) {
if (Reg != *SI)
return;
}
}
}
}
bool isValid() const { return RI.isValid(); }
MCRegister operator*() const {
assert(SI.isValid() && "Cannot dereference an invalid iterator.");
return *SI;
}
void advance() {
// Assuming SI is valid.
++SI;
if (SI.isValid())
return;
++RRI;
if (RRI.isValid()) {
SI = MCSuperRegIterator(*RRI, MCRI, true);
return;
}
++RI;
if (RI.isValid()) {
RRI = MCRegUnitRootIterator(*RI, MCRI);
SI = MCSuperRegIterator(*RRI, MCRI, true);
}
}
MCRegAliasIteratorImpl &operator++() {
assert(isValid() && "Cannot move off the end of the list.");
do
advance();
while (isValid() && *SI == Reg);
return *this;
}
};
} // namespace
ArrayRef<MCPhysReg> MCRegisterInfo::getCachedAliasesOf(MCRegister R) const {
auto &Aliases = RegAliasesCache[R.id()];
if (!Aliases.empty())
return Aliases;
for (MCRegAliasIteratorImpl It(R, this); It.isValid(); ++It)
Aliases.push_back(*It);
sort(Aliases);
Aliases.erase(unique(Aliases), Aliases.end());
assert(!llvm::is_contained(Aliases, R) &&
"MCRegAliasIteratorImpl includes Self!");
// Always put "self" at the end, so the iterator can choose to ignore it.
// For registers without aliases, it also serves as a sentinel value that
// tells us to not recompute the alias set.
Aliases.push_back(R.id());
Aliases.shrink_to_fit();
return Aliases;
}
MCRegister
MCRegisterInfo::getMatchingSuperReg(MCRegister Reg, unsigned SubIdx,
const MCRegisterClass *RC) const {
for (MCPhysReg Super : superregs(Reg))
if (RC->contains(Super) && Reg == getSubReg(Super, SubIdx))
return Super;
return 0;
}
MCRegister MCRegisterInfo::getSubReg(MCRegister Reg, unsigned Idx) const {
assert(Idx && Idx < getNumSubRegIndices() &&
"This is not a subregister index");
// Get a pointer to the corresponding SubRegIndices list. This list has the
// name of each sub-register in the same order as MCSubRegIterator.
const uint16_t *SRI = SubRegIndices + get(Reg).SubRegIndices;
for (MCPhysReg Sub : subregs(Reg)) {
if (*SRI == Idx)
return Sub;
++SRI;
}
return 0;
}
unsigned MCRegisterInfo::getSubRegIndex(MCRegister Reg,
MCRegister SubReg) const {
assert(SubReg && SubReg < getNumRegs() && "This is not a register");
// Get a pointer to the corresponding SubRegIndices list. This list has the
// name of each sub-register in the same order as MCSubRegIterator.
const uint16_t *SRI = SubRegIndices + get(Reg).SubRegIndices;
for (MCPhysReg Sub : subregs(Reg)) {
if (Sub == SubReg)
return *SRI;
++SRI;
}
return 0;
}
int64_t MCRegisterInfo::getDwarfRegNum(MCRegister RegNum, bool isEH) const {
const DwarfLLVMRegPair *M = isEH ? EHL2DwarfRegs : L2DwarfRegs;
unsigned Size = isEH ? EHL2DwarfRegsSize : L2DwarfRegsSize;
if (!M)
return -1;
DwarfLLVMRegPair Key = { RegNum, 0 };
const DwarfLLVMRegPair *I = std::lower_bound(M, M+Size, Key);
if (I == M+Size || I->FromReg != RegNum)
return -1;
// Consumers need to be able to detect -1 and -2, but at various points
// the numbers move between unsigned and signed representations, as well as
// between 32- and 64-bit representations. We need to convert first to int
// before int64_t for proper sign handling.
return int64_t(int(I->ToReg));
}
std::optional<MCRegister> MCRegisterInfo::getLLVMRegNum(uint64_t RegNum,
bool isEH) const {
const DwarfLLVMRegPair *M = isEH ? EHDwarf2LRegs : Dwarf2LRegs;
unsigned Size = isEH ? EHDwarf2LRegsSize : Dwarf2LRegsSize;
if (!M)
return std::nullopt;
DwarfLLVMRegPair Key = {unsigned(RegNum), 0};
const DwarfLLVMRegPair *I = std::lower_bound(M, M+Size, Key);
if (I != M + Size && I->FromReg == RegNum)
return MCRegister::from(I->ToReg);
return std::nullopt;
}
int64_t MCRegisterInfo::getDwarfRegNumFromDwarfEHRegNum(uint64_t RegNum) const {
// On ELF platforms, DWARF EH register numbers are the same as DWARF
// other register numbers. On Darwin x86, they differ and so need to be
// mapped. The .cfi_* directives accept integer literals as well as
// register names and should generate exactly what the assembly code
// asked for, so there might be DWARF/EH register numbers that don't have
// a corresponding LLVM register number at all. So if we can't map the
// EH register number to an LLVM register number, assume it's just a
// valid DWARF register number as is.
if (std::optional<MCRegister> LRegNum = getLLVMRegNum(RegNum, true)) {
int DwarfRegNum = getDwarfRegNum(*LRegNum, false);
if (DwarfRegNum == -1)
return RegNum;
else
return DwarfRegNum;
}
return RegNum;
}
int MCRegisterInfo::getSEHRegNum(MCRegister RegNum) const {
const DenseMap<MCRegister, int>::const_iterator I = L2SEHRegs.find(RegNum);
if (I == L2SEHRegs.end()) return (int)RegNum;
return I->second;
}
int MCRegisterInfo::getCodeViewRegNum(MCRegister RegNum) const {
if (L2CVRegs.empty())
report_fatal_error("target does not implement codeview register mapping");
const DenseMap<MCRegister, int>::const_iterator I = L2CVRegs.find(RegNum);
if (I == L2CVRegs.end())
report_fatal_error("unknown codeview register " + (RegNum < getNumRegs()
? getName(RegNum)
: Twine(RegNum)));
return I->second;
}
bool MCRegisterInfo::regsOverlap(MCRegister RegA, MCRegister RegB) const {
// Regunits are numerically ordered. Find a common unit.
auto RangeA = regunits(RegA);
MCRegUnitIterator IA = RangeA.begin(), EA = RangeA.end();
auto RangeB = regunits(RegB);
MCRegUnitIterator IB = RangeB.begin(), EB = RangeB.end();
do {
if (*IA == *IB)
return true;
} while (*IA < *IB ? ++IA != EA : ++IB != EB);
return false;
}
bool MCRegisterInfo::isArtificialRegUnit(unsigned Unit) const {
for (MCRegUnitRootIterator Root(Unit, this); Root.isValid(); ++Root)
if (isArtificial(*Root))
return true;
return false;
}
|