1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
//===- MemProfRadixTree.cpp - Radix tree encoded callstacks ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file contains logic that implements a space efficient radix tree
// encoding for callstacks used by MemProf.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/MemProfRadixTree.h"
namespace llvm {
namespace memprof {
// Encode a call stack into RadixArray. Return the starting index within
// RadixArray. For each call stack we encode, we emit two or three components
// into RadixArray. If a given call stack doesn't have a common prefix relative
// to the previous one, we emit:
//
// - the frames in the given call stack in the root-to-leaf order
//
// - the length of the given call stack
//
// If a given call stack has a non-empty common prefix relative to the previous
// one, we emit:
//
// - the relative location of the common prefix, encoded as a negative number.
//
// - a portion of the given call stack that's beyond the common prefix
//
// - the length of the given call stack, including the length of the common
// prefix.
//
// The resulting RadixArray requires a somewhat unintuitive backward traversal
// to reconstruct a call stack -- read the call stack length and scan backward
// while collecting frames in the leaf to root order. build, the caller of this
// function, reverses RadixArray in place so that we can reconstruct a call
// stack as if we were deserializing an array in a typical way -- the call stack
// length followed by the frames in the leaf-to-root order except that we need
// to handle pointers to parents along the way.
//
// To quickly determine the location of the common prefix within RadixArray,
// Indexes caches the indexes of the previous call stack's frames within
// RadixArray.
template <typename FrameIdTy>
LinearCallStackId CallStackRadixTreeBuilder<FrameIdTy>::encodeCallStack(
const llvm::SmallVector<FrameIdTy> *CallStack,
const llvm::SmallVector<FrameIdTy> *Prev,
const llvm::DenseMap<FrameIdTy, LinearFrameId> *MemProfFrameIndexes) {
// Compute the length of the common root prefix between Prev and CallStack.
uint32_t CommonLen = 0;
if (Prev) {
auto Pos = std::mismatch(Prev->rbegin(), Prev->rend(), CallStack->rbegin(),
CallStack->rend());
CommonLen = std::distance(CallStack->rbegin(), Pos.second);
}
// Drop the portion beyond CommonLen.
assert(CommonLen <= Indexes.size());
Indexes.resize(CommonLen);
// Append a pointer to the parent.
if (CommonLen) {
uint32_t CurrentIndex = RadixArray.size();
uint32_t ParentIndex = Indexes.back();
// The offset to the parent must be negative because we are pointing to an
// element we've already added to RadixArray.
assert(ParentIndex < CurrentIndex);
RadixArray.push_back(ParentIndex - CurrentIndex);
}
// Copy the part of the call stack beyond the common prefix to RadixArray.
assert(CommonLen <= CallStack->size());
for (FrameIdTy F : llvm::drop_begin(llvm::reverse(*CallStack), CommonLen)) {
// Remember the index of F in RadixArray.
Indexes.push_back(RadixArray.size());
RadixArray.push_back(
MemProfFrameIndexes ? MemProfFrameIndexes->find(F)->second : F);
}
assert(CallStack->size() == Indexes.size());
// End with the call stack length.
RadixArray.push_back(CallStack->size());
// Return the index within RadixArray where we can start reconstructing a
// given call stack from.
return RadixArray.size() - 1;
}
template <typename FrameIdTy>
void CallStackRadixTreeBuilder<FrameIdTy>::build(
llvm::MapVector<CallStackId, llvm::SmallVector<FrameIdTy>>
&&MemProfCallStackData,
const llvm::DenseMap<FrameIdTy, LinearFrameId> *MemProfFrameIndexes,
llvm::DenseMap<FrameIdTy, FrameStat> &FrameHistogram) {
// Take the vector portion of MemProfCallStackData. The vector is exactly
// what we need to sort. Also, we no longer need its lookup capability.
llvm::SmallVector<CSIdPair, 0> CallStacks = MemProfCallStackData.takeVector();
// Return early if we have no work to do.
if (CallStacks.empty()) {
RadixArray.clear();
CallStackPos.clear();
return;
}
// Sorting the list of call stacks in the dictionary order is sufficient to
// maximize the length of the common prefix between two adjacent call stacks
// and thus minimize the length of RadixArray. However, we go one step
// further and try to reduce the number of times we follow pointers to parents
// during deserilization. Consider a poorly encoded radix tree:
//
// CallStackId 1: f1 -> f2 -> f3
// |
// CallStackId 2: +--- f4 -> f5
// |
// CallStackId 3: +--> f6
//
// Here, f2 and f4 appear once and twice, respectively, in the call stacks.
// Once we encode CallStackId 1 into RadixArray, every other call stack with
// common prefix f1 ends up pointing to CallStackId 1. Since CallStackId 3
// share "f1 f4" with CallStackId 2, CallStackId 3 needs to follow pointers to
// parents twice.
//
// We try to alleviate the situation by sorting the list of call stacks by
// comparing the popularity of frames rather than the integer values of
// FrameIds. In the example above, f4 is more popular than f2, so we sort the
// call stacks and encode them as:
//
// CallStackId 2: f1 -- f4 -> f5
// | |
// CallStackId 3: | +--> f6
// |
// CallStackId 1: +--> f2 -> f3
//
// Notice that CallStackId 3 follows a pointer to a parent only once.
//
// All this is a quick-n-dirty trick to reduce the number of jumps. The
// proper way would be to compute the weight of each radix tree node -- how
// many call stacks use a given radix tree node, and encode a radix tree from
// the heaviest node first. We do not do so because that's a lot of work.
llvm::sort(CallStacks, [&](const CSIdPair &L, const CSIdPair &R) {
// Call stacks are stored from leaf to root. Perform comparisons from the
// root.
return std::lexicographical_compare(
L.second.rbegin(), L.second.rend(), R.second.rbegin(), R.second.rend(),
[&](FrameIdTy F1, FrameIdTy F2) {
uint64_t H1 = FrameHistogram[F1].Count;
uint64_t H2 = FrameHistogram[F2].Count;
// Popular frames should come later because we encode call stacks from
// the last one in the list.
if (H1 != H2)
return H1 < H2;
// For sort stability.
return F1 < F2;
});
});
// Reserve some reasonable amount of storage.
RadixArray.clear();
RadixArray.reserve(CallStacks.size() * 8);
// Indexes will grow as long as the longest call stack.
Indexes.clear();
Indexes.reserve(512);
// CallStackPos will grow to exactly CallStacks.size() entries.
CallStackPos.clear();
CallStackPos.reserve(CallStacks.size());
// Compute the radix array. We encode one call stack at a time, computing the
// longest prefix that's shared with the previous call stack we encode. For
// each call stack we encode, we remember a mapping from CallStackId to its
// position within RadixArray.
//
// As an optimization, we encode from the last call stack in CallStacks to
// reduce the number of times we follow pointers to the parents. Consider the
// list of call stacks that has been sorted in the dictionary order:
//
// Call Stack 1: F1
// Call Stack 2: F1 -> F2
// Call Stack 3: F1 -> F2 -> F3
//
// If we traversed CallStacks in the forward order, we would end up with a
// radix tree like:
//
// Call Stack 1: F1
// |
// Call Stack 2: +---> F2
// |
// Call Stack 3: +---> F3
//
// Notice that each call stack jumps to the previous one. However, if we
// traverse CallStacks in the reverse order, then Call Stack 3 has the
// complete call stack encoded without any pointers. Call Stack 1 and 2 point
// to appropriate prefixes of Call Stack 3.
const llvm::SmallVector<FrameIdTy> *Prev = nullptr;
for (const auto &[CSId, CallStack] : llvm::reverse(CallStacks)) {
LinearCallStackId Pos =
encodeCallStack(&CallStack, Prev, MemProfFrameIndexes);
CallStackPos.insert({CSId, Pos});
Prev = &CallStack;
}
// "RadixArray.size() - 1" below is problematic if RadixArray is empty.
assert(!RadixArray.empty());
// Reverse the radix array in place. We do so mostly for intuitive
// deserialization where we would read the length field and then the call
// stack frames proper just like any other array deserialization, except
// that we have occasional jumps to take advantage of prefixes.
for (size_t I = 0, J = RadixArray.size() - 1; I < J; ++I, --J)
std::swap(RadixArray[I], RadixArray[J]);
// "Reverse" the indexes stored in CallStackPos.
for (auto &[K, V] : CallStackPos)
V = RadixArray.size() - 1 - V;
}
// Explicitly instantiate class with the utilized FrameIdTy.
template class LLVM_EXPORT_TEMPLATE CallStackRadixTreeBuilder<FrameId>;
template class LLVM_EXPORT_TEMPLATE CallStackRadixTreeBuilder<LinearFrameId>;
template <typename FrameIdTy>
llvm::DenseMap<FrameIdTy, FrameStat>
computeFrameHistogram(llvm::MapVector<CallStackId, llvm::SmallVector<FrameIdTy>>
&MemProfCallStackData) {
llvm::DenseMap<FrameIdTy, FrameStat> Histogram;
for (const auto &KV : MemProfCallStackData) {
const auto &CS = KV.second;
for (unsigned I = 0, E = CS.size(); I != E; ++I) {
auto &S = Histogram[CS[I]];
++S.Count;
S.PositionSum += I;
}
}
return Histogram;
}
// Explicitly instantiate function with the utilized FrameIdTy.
template LLVM_ABI llvm::DenseMap<FrameId, FrameStat>
computeFrameHistogram<FrameId>(
llvm::MapVector<CallStackId, llvm::SmallVector<FrameId>>
&MemProfCallStackData);
template LLVM_ABI llvm::DenseMap<LinearFrameId, FrameStat>
computeFrameHistogram<LinearFrameId>(
llvm::MapVector<CallStackId, llvm::SmallVector<LinearFrameId>>
&MemProfCallStackData);
} // namespace memprof
} // namespace llvm
|