1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
|
//===-- AMDGPURegBankLegalizeHelper.cpp -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Implements actual lowering algorithms for each ID that can be used in
/// Rule.OperandMapping. Similar to legalizer helper but with register banks.
//
//===----------------------------------------------------------------------===//
#include "AMDGPURegBankLegalizeHelper.h"
#include "AMDGPUGlobalISelUtils.h"
#include "AMDGPUInstrInfo.h"
#include "AMDGPURegBankLegalizeRules.h"
#include "AMDGPURegisterBankInfo.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineUniformityAnalysis.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#define DEBUG_TYPE "amdgpu-regbanklegalize"
using namespace llvm;
using namespace AMDGPU;
RegBankLegalizeHelper::RegBankLegalizeHelper(
MachineIRBuilder &B, const MachineUniformityInfo &MUI,
const RegisterBankInfo &RBI, const RegBankLegalizeRules &RBLRules)
: ST(B.getMF().getSubtarget<GCNSubtarget>()), B(B), MRI(*B.getMRI()),
MUI(MUI), RBI(RBI), RBLRules(RBLRules),
SgprRB(&RBI.getRegBank(AMDGPU::SGPRRegBankID)),
VgprRB(&RBI.getRegBank(AMDGPU::VGPRRegBankID)),
VccRB(&RBI.getRegBank(AMDGPU::VCCRegBankID)) {}
void RegBankLegalizeHelper::findRuleAndApplyMapping(MachineInstr &MI) {
const SetOfRulesForOpcode &RuleSet = RBLRules.getRulesForOpc(MI);
const RegBankLLTMapping &Mapping = RuleSet.findMappingForMI(MI, MRI, MUI);
SmallSet<Register, 4> WaterfallSgprs;
unsigned OpIdx = 0;
if (Mapping.DstOpMapping.size() > 0) {
B.setInsertPt(*MI.getParent(), std::next(MI.getIterator()));
applyMappingDst(MI, OpIdx, Mapping.DstOpMapping);
}
if (Mapping.SrcOpMapping.size() > 0) {
B.setInstr(MI);
applyMappingSrc(MI, OpIdx, Mapping.SrcOpMapping, WaterfallSgprs);
}
lower(MI, Mapping, WaterfallSgprs);
}
void RegBankLegalizeHelper::splitLoad(MachineInstr &MI,
ArrayRef<LLT> LLTBreakdown, LLT MergeTy) {
MachineFunction &MF = B.getMF();
assert(MI.getNumMemOperands() == 1);
MachineMemOperand &BaseMMO = **MI.memoperands_begin();
Register Dst = MI.getOperand(0).getReg();
const RegisterBank *DstRB = MRI.getRegBankOrNull(Dst);
Register Base = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(Base);
const RegisterBank *PtrRB = MRI.getRegBankOrNull(Base);
LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
SmallVector<Register, 4> LoadPartRegs;
unsigned ByteOffset = 0;
for (LLT PartTy : LLTBreakdown) {
Register BasePlusOffset;
if (ByteOffset == 0) {
BasePlusOffset = Base;
} else {
auto Offset = B.buildConstant({PtrRB, OffsetTy}, ByteOffset);
BasePlusOffset = B.buildPtrAdd({PtrRB, PtrTy}, Base, Offset).getReg(0);
}
auto *OffsetMMO = MF.getMachineMemOperand(&BaseMMO, ByteOffset, PartTy);
auto LoadPart = B.buildLoad({DstRB, PartTy}, BasePlusOffset, *OffsetMMO);
LoadPartRegs.push_back(LoadPart.getReg(0));
ByteOffset += PartTy.getSizeInBytes();
}
if (!MergeTy.isValid()) {
// Loads are of same size, concat or merge them together.
B.buildMergeLikeInstr(Dst, LoadPartRegs);
} else {
// Loads are not all of same size, need to unmerge them to smaller pieces
// of MergeTy type, then merge pieces to Dst.
SmallVector<Register, 4> MergeTyParts;
for (Register Reg : LoadPartRegs) {
if (MRI.getType(Reg) == MergeTy) {
MergeTyParts.push_back(Reg);
} else {
auto Unmerge = B.buildUnmerge({DstRB, MergeTy}, Reg);
for (unsigned i = 0; i < Unmerge->getNumOperands() - 1; ++i)
MergeTyParts.push_back(Unmerge.getReg(i));
}
}
B.buildMergeLikeInstr(Dst, MergeTyParts);
}
MI.eraseFromParent();
}
void RegBankLegalizeHelper::widenLoad(MachineInstr &MI, LLT WideTy,
LLT MergeTy) {
MachineFunction &MF = B.getMF();
assert(MI.getNumMemOperands() == 1);
MachineMemOperand &BaseMMO = **MI.memoperands_begin();
Register Dst = MI.getOperand(0).getReg();
const RegisterBank *DstRB = MRI.getRegBankOrNull(Dst);
Register Base = MI.getOperand(1).getReg();
MachineMemOperand *WideMMO = MF.getMachineMemOperand(&BaseMMO, 0, WideTy);
auto WideLoad = B.buildLoad({DstRB, WideTy}, Base, *WideMMO);
if (WideTy.isScalar()) {
B.buildTrunc(Dst, WideLoad);
} else {
SmallVector<Register, 4> MergeTyParts;
auto Unmerge = B.buildUnmerge({DstRB, MergeTy}, WideLoad);
LLT DstTy = MRI.getType(Dst);
unsigned NumElts = DstTy.getSizeInBits() / MergeTy.getSizeInBits();
for (unsigned i = 0; i < NumElts; ++i) {
MergeTyParts.push_back(Unmerge.getReg(i));
}
B.buildMergeLikeInstr(Dst, MergeTyParts);
}
MI.eraseFromParent();
}
void RegBankLegalizeHelper::lowerVccExtToSel(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
Register Src = MI.getOperand(1).getReg();
unsigned Opc = MI.getOpcode();
int TrueExtCst = Opc == G_SEXT ? -1 : 1;
if (Ty == S32 || Ty == S16) {
auto True = B.buildConstant({VgprRB, Ty}, TrueExtCst);
auto False = B.buildConstant({VgprRB, Ty}, 0);
B.buildSelect(Dst, Src, True, False);
} else if (Ty == S64) {
auto True = B.buildConstant({VgprRB_S32}, TrueExtCst);
auto False = B.buildConstant({VgprRB_S32}, 0);
auto Lo = B.buildSelect({VgprRB_S32}, Src, True, False);
MachineInstrBuilder Hi;
switch (Opc) {
case G_SEXT:
Hi = Lo;
break;
case G_ZEXT:
Hi = False;
break;
case G_ANYEXT:
Hi = B.buildUndef({VgprRB_S32});
break;
default:
llvm_unreachable("Opcode not supported");
}
B.buildMergeValues(Dst, {Lo.getReg(0), Hi.getReg(0)});
} else {
llvm_unreachable("Type not supported");
}
MI.eraseFromParent();
}
std::pair<Register, Register> RegBankLegalizeHelper::unpackZExt(Register Reg) {
auto PackedS32 = B.buildBitcast(SgprRB_S32, Reg);
auto Mask = B.buildConstant(SgprRB_S32, 0x0000ffff);
auto Lo = B.buildAnd(SgprRB_S32, PackedS32, Mask);
auto Hi = B.buildLShr(SgprRB_S32, PackedS32, B.buildConstant(SgprRB_S32, 16));
return {Lo.getReg(0), Hi.getReg(0)};
}
std::pair<Register, Register> RegBankLegalizeHelper::unpackSExt(Register Reg) {
auto PackedS32 = B.buildBitcast(SgprRB_S32, Reg);
auto Lo = B.buildSExtInReg(SgprRB_S32, PackedS32, 16);
auto Hi = B.buildAShr(SgprRB_S32, PackedS32, B.buildConstant(SgprRB_S32, 16));
return {Lo.getReg(0), Hi.getReg(0)};
}
std::pair<Register, Register> RegBankLegalizeHelper::unpackAExt(Register Reg) {
auto PackedS32 = B.buildBitcast(SgprRB_S32, Reg);
auto Lo = PackedS32;
auto Hi = B.buildLShr(SgprRB_S32, PackedS32, B.buildConstant(SgprRB_S32, 16));
return {Lo.getReg(0), Hi.getReg(0)};
}
void RegBankLegalizeHelper::lowerUnpackBitShift(MachineInstr &MI) {
Register Lo, Hi;
switch (MI.getOpcode()) {
case AMDGPU::G_SHL: {
auto [Val0, Val1] = unpackAExt(MI.getOperand(1).getReg());
auto [Amt0, Amt1] = unpackAExt(MI.getOperand(2).getReg());
Lo = B.buildInstr(MI.getOpcode(), {SgprRB_S32}, {Val0, Amt0}).getReg(0);
Hi = B.buildInstr(MI.getOpcode(), {SgprRB_S32}, {Val1, Amt1}).getReg(0);
break;
}
case AMDGPU::G_LSHR: {
auto [Val0, Val1] = unpackZExt(MI.getOperand(1).getReg());
auto [Amt0, Amt1] = unpackZExt(MI.getOperand(2).getReg());
Lo = B.buildInstr(MI.getOpcode(), {SgprRB_S32}, {Val0, Amt0}).getReg(0);
Hi = B.buildInstr(MI.getOpcode(), {SgprRB_S32}, {Val1, Amt1}).getReg(0);
break;
}
case AMDGPU::G_ASHR: {
auto [Val0, Val1] = unpackSExt(MI.getOperand(1).getReg());
auto [Amt0, Amt1] = unpackSExt(MI.getOperand(2).getReg());
Lo = B.buildAShr(SgprRB_S32, Val0, Amt0).getReg(0);
Hi = B.buildAShr(SgprRB_S32, Val1, Amt1).getReg(0);
break;
}
default:
llvm_unreachable("Unpack lowering not implemented");
}
B.buildBuildVectorTrunc(MI.getOperand(0).getReg(), {Lo, Hi});
MI.eraseFromParent();
}
static bool isSignedBFE(MachineInstr &MI) {
if (GIntrinsic *GI = dyn_cast<GIntrinsic>(&MI))
return (GI->is(Intrinsic::amdgcn_sbfe));
return MI.getOpcode() == AMDGPU::G_SBFX;
}
void RegBankLegalizeHelper::lowerV_BFE(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
assert(MRI.getType(Dst) == LLT::scalar(64));
bool Signed = isSignedBFE(MI);
unsigned FirstOpnd = isa<GIntrinsic>(MI) ? 2 : 1;
// Extract bitfield from Src, LSBit is the least-significant bit for the
// extraction (field offset) and Width is size of bitfield.
Register Src = MI.getOperand(FirstOpnd).getReg();
Register LSBit = MI.getOperand(FirstOpnd + 1).getReg();
Register Width = MI.getOperand(FirstOpnd + 2).getReg();
// Comments are for signed bitfield extract, similar for unsigned. x is sign
// bit. s is sign, l is LSB and y are remaining bits of bitfield to extract.
// Src >> LSBit Hi|Lo: x?????syyyyyyl??? -> xxxx?????syyyyyyl
unsigned SHROpc = Signed ? AMDGPU::G_ASHR : AMDGPU::G_LSHR;
auto SHRSrc = B.buildInstr(SHROpc, {{VgprRB, S64}}, {Src, LSBit});
auto ConstWidth = getIConstantVRegValWithLookThrough(Width, MRI);
// Expand to Src >> LSBit << (64 - Width) >> (64 - Width)
// << (64 - Width): Hi|Lo: xxxx?????syyyyyyl -> syyyyyyl000000000
// >> (64 - Width): Hi|Lo: syyyyyyl000000000 -> ssssssssssyyyyyyl
if (!ConstWidth) {
auto Amt = B.buildSub(VgprRB_S32, B.buildConstant(SgprRB_S32, 64), Width);
auto SignBit = B.buildShl({VgprRB, S64}, SHRSrc, Amt);
B.buildInstr(SHROpc, {Dst}, {SignBit, Amt});
MI.eraseFromParent();
return;
}
uint64_t WidthImm = ConstWidth->Value.getZExtValue();
auto UnmergeSHRSrc = B.buildUnmerge(VgprRB_S32, SHRSrc);
Register SHRSrcLo = UnmergeSHRSrc.getReg(0);
Register SHRSrcHi = UnmergeSHRSrc.getReg(1);
auto Zero = B.buildConstant({VgprRB, S32}, 0);
unsigned BFXOpc = Signed ? AMDGPU::G_SBFX : AMDGPU::G_UBFX;
if (WidthImm <= 32) {
// SHRSrc Hi|Lo: ????????|???syyyl -> ????????|ssssyyyl
auto Lo = B.buildInstr(BFXOpc, {VgprRB_S32}, {SHRSrcLo, Zero, Width});
MachineInstrBuilder Hi;
if (Signed) {
// SHRSrc Hi|Lo: ????????|ssssyyyl -> ssssssss|ssssyyyl
Hi = B.buildAShr(VgprRB_S32, Lo, B.buildConstant(VgprRB_S32, 31));
} else {
// SHRSrc Hi|Lo: ????????|000syyyl -> 00000000|000syyyl
Hi = Zero;
}
B.buildMergeLikeInstr(Dst, {Lo, Hi});
} else {
auto Amt = B.buildConstant(VgprRB_S32, WidthImm - 32);
// SHRSrc Hi|Lo: ??????sy|yyyyyyyl -> sssssssy|yyyyyyyl
auto Hi = B.buildInstr(BFXOpc, {VgprRB_S32}, {SHRSrcHi, Zero, Amt});
B.buildMergeLikeInstr(Dst, {SHRSrcLo, Hi});
}
MI.eraseFromParent();
}
void RegBankLegalizeHelper::lowerS_BFE(MachineInstr &MI) {
Register DstReg = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(DstReg);
bool Signed = isSignedBFE(MI);
unsigned FirstOpnd = isa<GIntrinsic>(MI) ? 2 : 1;
Register Src = MI.getOperand(FirstOpnd).getReg();
Register LSBit = MI.getOperand(FirstOpnd + 1).getReg();
Register Width = MI.getOperand(FirstOpnd + 2).getReg();
// For uniform bit field extract there are 4 available instructions, but
// LSBit(field offset) and Width(size of bitfield) need to be packed in S32,
// field offset in low and size in high 16 bits.
// Src1 Hi16|Lo16 = Size|FieldOffset
auto Mask = B.buildConstant(SgprRB_S32, maskTrailingOnes<unsigned>(6));
auto FieldOffset = B.buildAnd(SgprRB_S32, LSBit, Mask);
auto Size = B.buildShl(SgprRB_S32, Width, B.buildConstant(SgprRB_S32, 16));
auto Src1 = B.buildOr(SgprRB_S32, FieldOffset, Size);
unsigned Opc32 = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
unsigned Opc64 = Signed ? AMDGPU::S_BFE_I64 : AMDGPU::S_BFE_U64;
unsigned Opc = Ty == S32 ? Opc32 : Opc64;
// Select machine instruction, because of reg class constraining, insert
// copies from reg class to reg bank.
auto S_BFE = B.buildInstr(Opc, {{SgprRB, Ty}},
{B.buildCopy(Ty, Src), B.buildCopy(S32, Src1)});
if (!constrainSelectedInstRegOperands(*S_BFE, *ST.getInstrInfo(),
*ST.getRegisterInfo(), RBI))
llvm_unreachable("failed to constrain BFE");
B.buildCopy(DstReg, S_BFE->getOperand(0).getReg());
MI.eraseFromParent();
}
void RegBankLegalizeHelper::lowerSplitTo32(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(Dst);
assert(DstTy == V4S16 || DstTy == V2S32 || DstTy == S64);
LLT Ty = DstTy == V4S16 ? V2S16 : S32;
auto Op1 = B.buildUnmerge({VgprRB, Ty}, MI.getOperand(1).getReg());
auto Op2 = B.buildUnmerge({VgprRB, Ty}, MI.getOperand(2).getReg());
unsigned Opc = MI.getOpcode();
auto Flags = MI.getFlags();
auto Lo =
B.buildInstr(Opc, {{VgprRB, Ty}}, {Op1.getReg(0), Op2.getReg(0)}, Flags);
auto Hi =
B.buildInstr(Opc, {{VgprRB, Ty}}, {Op1.getReg(1), Op2.getReg(1)}, Flags);
B.buildMergeLikeInstr(Dst, {Lo, Hi});
MI.eraseFromParent();
}
void RegBankLegalizeHelper::lowerSplitTo32Select(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(Dst);
assert(DstTy == V4S16 || DstTy == V2S32 || DstTy == S64 ||
(DstTy.isPointer() && DstTy.getSizeInBits() == 64));
LLT Ty = DstTy == V4S16 ? V2S16 : S32;
auto Op2 = B.buildUnmerge({VgprRB, Ty}, MI.getOperand(2).getReg());
auto Op3 = B.buildUnmerge({VgprRB, Ty}, MI.getOperand(3).getReg());
Register Cond = MI.getOperand(1).getReg();
auto Flags = MI.getFlags();
auto Lo =
B.buildSelect({VgprRB, Ty}, Cond, Op2.getReg(0), Op3.getReg(0), Flags);
auto Hi =
B.buildSelect({VgprRB, Ty}, Cond, Op2.getReg(1), Op3.getReg(1), Flags);
B.buildMergeLikeInstr(Dst, {Lo, Hi});
MI.eraseFromParent();
}
void RegBankLegalizeHelper::lowerSplitTo32SExtInReg(MachineInstr &MI) {
auto Op1 = B.buildUnmerge(VgprRB_S32, MI.getOperand(1).getReg());
int Amt = MI.getOperand(2).getImm();
Register Lo, Hi;
// Hi|Lo: s sign bit, ?/x bits changed/not changed by sign-extend
if (Amt <= 32) {
auto Freeze = B.buildFreeze(VgprRB_S32, Op1.getReg(0));
if (Amt == 32) {
// Hi|Lo: ????????|sxxxxxxx -> ssssssss|sxxxxxxx
Lo = Freeze.getReg(0);
} else {
// Hi|Lo: ????????|???sxxxx -> ssssssss|ssssxxxx
Lo = B.buildSExtInReg(VgprRB_S32, Freeze, Amt).getReg(0);
}
auto SignExtCst = B.buildConstant(SgprRB_S32, 31);
Hi = B.buildAShr(VgprRB_S32, Lo, SignExtCst).getReg(0);
} else {
// Hi|Lo: ?????sxx|xxxxxxxx -> ssssssxx|xxxxxxxx
Lo = Op1.getReg(0);
Hi = B.buildSExtInReg(VgprRB_S32, Op1.getReg(1), Amt - 32).getReg(0);
}
B.buildMergeLikeInstr(MI.getOperand(0).getReg(), {Lo, Hi});
MI.eraseFromParent();
}
void RegBankLegalizeHelper::lower(MachineInstr &MI,
const RegBankLLTMapping &Mapping,
SmallSet<Register, 4> &WaterfallSgprs) {
switch (Mapping.LoweringMethod) {
case DoNotLower:
return;
case VccExtToSel:
return lowerVccExtToSel(MI);
case UniExtToSel: {
LLT Ty = MRI.getType(MI.getOperand(0).getReg());
auto True = B.buildConstant({SgprRB, Ty},
MI.getOpcode() == AMDGPU::G_SEXT ? -1 : 1);
auto False = B.buildConstant({SgprRB, Ty}, 0);
// Input to G_{Z|S}EXT is 'Legalizer legal' S1. Most common case is compare.
// We are making select here. S1 cond was already 'any-extended to S32' +
// 'AND with 1 to clean high bits' by Sgpr32AExtBoolInReg.
B.buildSelect(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), True,
False);
MI.eraseFromParent();
return;
}
case UnpackBitShift:
return lowerUnpackBitShift(MI);
case Ext32To64: {
const RegisterBank *RB = MRI.getRegBank(MI.getOperand(0).getReg());
MachineInstrBuilder Hi;
switch (MI.getOpcode()) {
case AMDGPU::G_ZEXT: {
Hi = B.buildConstant({RB, S32}, 0);
break;
}
case AMDGPU::G_SEXT: {
// Replicate sign bit from 32-bit extended part.
auto ShiftAmt = B.buildConstant({RB, S32}, 31);
Hi = B.buildAShr({RB, S32}, MI.getOperand(1).getReg(), ShiftAmt);
break;
}
case AMDGPU::G_ANYEXT: {
Hi = B.buildUndef({RB, S32});
break;
}
default:
llvm_unreachable("Unsuported Opcode in Ext32To64");
}
B.buildMergeLikeInstr(MI.getOperand(0).getReg(),
{MI.getOperand(1).getReg(), Hi});
MI.eraseFromParent();
return;
}
case UniCstExt: {
uint64_t ConstVal = MI.getOperand(1).getCImm()->getZExtValue();
B.buildConstant(MI.getOperand(0).getReg(), ConstVal);
MI.eraseFromParent();
return;
}
case VgprToVccCopy: {
Register Src = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(Src);
// Take lowest bit from each lane and put it in lane mask.
// Lowering via compare, but we need to clean high bits first as compare
// compares all bits in register.
Register BoolSrc = MRI.createVirtualRegister({VgprRB, Ty});
if (Ty == S64) {
auto Src64 = B.buildUnmerge(VgprRB_S32, Src);
auto One = B.buildConstant(VgprRB_S32, 1);
auto AndLo = B.buildAnd(VgprRB_S32, Src64.getReg(0), One);
auto Zero = B.buildConstant(VgprRB_S32, 0);
auto AndHi = B.buildAnd(VgprRB_S32, Src64.getReg(1), Zero);
B.buildMergeLikeInstr(BoolSrc, {AndLo, AndHi});
} else {
assert(Ty == S32 || Ty == S16);
auto One = B.buildConstant({VgprRB, Ty}, 1);
B.buildAnd(BoolSrc, Src, One);
}
auto Zero = B.buildConstant({VgprRB, Ty}, 0);
B.buildICmp(CmpInst::ICMP_NE, MI.getOperand(0).getReg(), BoolSrc, Zero);
MI.eraseFromParent();
return;
}
case V_BFE:
return lowerV_BFE(MI);
case S_BFE:
return lowerS_BFE(MI);
case SplitTo32:
return lowerSplitTo32(MI);
case SplitTo32Select:
return lowerSplitTo32Select(MI);
case SplitTo32SExtInReg:
return lowerSplitTo32SExtInReg(MI);
case SplitLoad: {
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
unsigned Size = DstTy.getSizeInBits();
// Even split to 128-bit loads
if (Size > 128) {
LLT B128;
if (DstTy.isVector()) {
LLT EltTy = DstTy.getElementType();
B128 = LLT::fixed_vector(128 / EltTy.getSizeInBits(), EltTy);
} else {
B128 = LLT::scalar(128);
}
if (Size / 128 == 2)
splitLoad(MI, {B128, B128});
else if (Size / 128 == 4)
splitLoad(MI, {B128, B128, B128, B128});
else {
LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
llvm_unreachable("SplitLoad type not supported for MI");
}
}
// 64 and 32 bit load
else if (DstTy == S96)
splitLoad(MI, {S64, S32}, S32);
else if (DstTy == V3S32)
splitLoad(MI, {V2S32, S32}, S32);
else if (DstTy == V6S16)
splitLoad(MI, {V4S16, V2S16}, V2S16);
else {
LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
llvm_unreachable("SplitLoad type not supported for MI");
}
break;
}
case WidenLoad: {
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
if (DstTy == S96)
widenLoad(MI, S128);
else if (DstTy == V3S32)
widenLoad(MI, V4S32, S32);
else if (DstTy == V6S16)
widenLoad(MI, V8S16, V2S16);
else {
LLVM_DEBUG(dbgs() << "MI: "; MI.dump(););
llvm_unreachable("WidenLoad type not supported for MI");
}
break;
}
}
// TODO: executeInWaterfallLoop(... WaterfallSgprs)
}
LLT RegBankLegalizeHelper::getTyFromID(RegBankLLTMappingApplyID ID) {
switch (ID) {
case Vcc:
case UniInVcc:
return LLT::scalar(1);
case Sgpr16:
case Vgpr16:
return LLT::scalar(16);
case Sgpr32:
case Sgpr32Trunc:
case Sgpr32AExt:
case Sgpr32AExtBoolInReg:
case Sgpr32SExt:
case Sgpr32ZExt:
case UniInVgprS32:
case Vgpr32:
case Vgpr32SExt:
case Vgpr32ZExt:
return LLT::scalar(32);
case Sgpr64:
case Vgpr64:
return LLT::scalar(64);
case Sgpr128:
case Vgpr128:
return LLT::scalar(128);
case VgprP0:
return LLT::pointer(0, 64);
case SgprP1:
case VgprP1:
return LLT::pointer(1, 64);
case SgprP3:
case VgprP3:
return LLT::pointer(3, 32);
case SgprP4:
case VgprP4:
return LLT::pointer(4, 64);
case SgprP5:
case VgprP5:
return LLT::pointer(5, 32);
case SgprV2S16:
case VgprV2S16:
case UniInVgprV2S16:
return LLT::fixed_vector(2, 16);
case SgprV2S32:
case VgprV2S32:
return LLT::fixed_vector(2, 32);
case SgprV4S32:
case VgprV4S32:
case UniInVgprV4S32:
return LLT::fixed_vector(4, 32);
default:
return LLT();
}
}
LLT RegBankLegalizeHelper::getBTyFromID(RegBankLLTMappingApplyID ID, LLT Ty) {
switch (ID) {
case SgprB32:
case VgprB32:
case UniInVgprB32:
if (Ty == LLT::scalar(32) || Ty == LLT::fixed_vector(2, 16) ||
isAnyPtr(Ty, 32))
return Ty;
return LLT();
case SgprPtr32:
case VgprPtr32:
return isAnyPtr(Ty, 32) ? Ty : LLT();
case SgprPtr64:
case VgprPtr64:
return isAnyPtr(Ty, 64) ? Ty : LLT();
case SgprPtr128:
case VgprPtr128:
return isAnyPtr(Ty, 128) ? Ty : LLT();
case SgprB64:
case VgprB64:
case UniInVgprB64:
if (Ty == LLT::scalar(64) || Ty == LLT::fixed_vector(2, 32) ||
Ty == LLT::fixed_vector(4, 16) || isAnyPtr(Ty, 64))
return Ty;
return LLT();
case SgprB96:
case VgprB96:
case UniInVgprB96:
if (Ty == LLT::scalar(96) || Ty == LLT::fixed_vector(3, 32) ||
Ty == LLT::fixed_vector(6, 16))
return Ty;
return LLT();
case SgprB128:
case VgprB128:
case UniInVgprB128:
if (Ty == LLT::scalar(128) || Ty == LLT::fixed_vector(4, 32) ||
Ty == LLT::fixed_vector(2, 64) || isAnyPtr(Ty, 128))
return Ty;
return LLT();
case SgprB256:
case VgprB256:
case UniInVgprB256:
if (Ty == LLT::scalar(256) || Ty == LLT::fixed_vector(8, 32) ||
Ty == LLT::fixed_vector(4, 64) || Ty == LLT::fixed_vector(16, 16))
return Ty;
return LLT();
case SgprB512:
case VgprB512:
case UniInVgprB512:
if (Ty == LLT::scalar(512) || Ty == LLT::fixed_vector(16, 32) ||
Ty == LLT::fixed_vector(8, 64))
return Ty;
return LLT();
default:
return LLT();
}
}
const RegisterBank *
RegBankLegalizeHelper::getRegBankFromID(RegBankLLTMappingApplyID ID) {
switch (ID) {
case Vcc:
return VccRB;
case Sgpr16:
case Sgpr32:
case Sgpr64:
case Sgpr128:
case SgprP1:
case SgprP3:
case SgprP4:
case SgprP5:
case SgprPtr32:
case SgprPtr64:
case SgprPtr128:
case SgprV2S16:
case SgprV2S32:
case SgprV4S32:
case SgprB32:
case SgprB64:
case SgprB96:
case SgprB128:
case SgprB256:
case SgprB512:
case UniInVcc:
case UniInVgprS32:
case UniInVgprV2S16:
case UniInVgprV4S32:
case UniInVgprB32:
case UniInVgprB64:
case UniInVgprB96:
case UniInVgprB128:
case UniInVgprB256:
case UniInVgprB512:
case Sgpr32Trunc:
case Sgpr32AExt:
case Sgpr32AExtBoolInReg:
case Sgpr32SExt:
case Sgpr32ZExt:
return SgprRB;
case Vgpr16:
case Vgpr32:
case Vgpr64:
case Vgpr128:
case VgprP0:
case VgprP1:
case VgprP3:
case VgprP4:
case VgprP5:
case VgprPtr32:
case VgprPtr64:
case VgprPtr128:
case VgprV2S16:
case VgprV2S32:
case VgprV4S32:
case VgprB32:
case VgprB64:
case VgprB96:
case VgprB128:
case VgprB256:
case VgprB512:
case Vgpr32SExt:
case Vgpr32ZExt:
return VgprRB;
default:
return nullptr;
}
}
void RegBankLegalizeHelper::applyMappingDst(
MachineInstr &MI, unsigned &OpIdx,
const SmallVectorImpl<RegBankLLTMappingApplyID> &MethodIDs) {
// Defs start from operand 0
for (; OpIdx < MethodIDs.size(); ++OpIdx) {
if (MethodIDs[OpIdx] == None)
continue;
MachineOperand &Op = MI.getOperand(OpIdx);
Register Reg = Op.getReg();
LLT Ty = MRI.getType(Reg);
[[maybe_unused]] const RegisterBank *RB = MRI.getRegBank(Reg);
switch (MethodIDs[OpIdx]) {
// vcc, sgpr and vgpr scalars, pointers and vectors
case Vcc:
case Sgpr16:
case Sgpr32:
case Sgpr64:
case Sgpr128:
case SgprP1:
case SgprP3:
case SgprP4:
case SgprP5:
case SgprV2S16:
case SgprV2S32:
case SgprV4S32:
case Vgpr16:
case Vgpr32:
case Vgpr64:
case Vgpr128:
case VgprP0:
case VgprP1:
case VgprP3:
case VgprP4:
case VgprP5:
case VgprV2S16:
case VgprV2S32:
case VgprV4S32: {
assert(Ty == getTyFromID(MethodIDs[OpIdx]));
assert(RB == getRegBankFromID(MethodIDs[OpIdx]));
break;
}
// sgpr and vgpr B-types
case SgprB32:
case SgprB64:
case SgprB96:
case SgprB128:
case SgprB256:
case SgprB512:
case SgprPtr32:
case SgprPtr64:
case SgprPtr128:
case VgprB32:
case VgprB64:
case VgprB96:
case VgprB128:
case VgprB256:
case VgprB512:
case VgprPtr32:
case VgprPtr64:
case VgprPtr128: {
assert(Ty == getBTyFromID(MethodIDs[OpIdx], Ty));
assert(RB == getRegBankFromID(MethodIDs[OpIdx]));
break;
}
// uniform in vcc/vgpr: scalars, vectors and B-types
case UniInVcc: {
assert(Ty == S1);
assert(RB == SgprRB);
Register NewDst = MRI.createVirtualRegister(VccRB_S1);
Op.setReg(NewDst);
auto CopyS32_Vcc =
B.buildInstr(AMDGPU::G_AMDGPU_COPY_SCC_VCC, {SgprRB_S32}, {NewDst});
B.buildTrunc(Reg, CopyS32_Vcc);
break;
}
case UniInVgprS32:
case UniInVgprV2S16:
case UniInVgprV4S32: {
assert(Ty == getTyFromID(MethodIDs[OpIdx]));
assert(RB == SgprRB);
Register NewVgprDst = MRI.createVirtualRegister({VgprRB, Ty});
Op.setReg(NewVgprDst);
buildReadAnyLane(B, Reg, NewVgprDst, RBI);
break;
}
case UniInVgprB32:
case UniInVgprB64:
case UniInVgprB96:
case UniInVgprB128:
case UniInVgprB256:
case UniInVgprB512: {
assert(Ty == getBTyFromID(MethodIDs[OpIdx], Ty));
assert(RB == SgprRB);
Register NewVgprDst = MRI.createVirtualRegister({VgprRB, Ty});
Op.setReg(NewVgprDst);
AMDGPU::buildReadAnyLane(B, Reg, NewVgprDst, RBI);
break;
}
// sgpr trunc
case Sgpr32Trunc: {
assert(Ty.getSizeInBits() < 32);
assert(RB == SgprRB);
Register NewDst = MRI.createVirtualRegister(SgprRB_S32);
Op.setReg(NewDst);
B.buildTrunc(Reg, NewDst);
break;
}
case InvalidMapping: {
LLVM_DEBUG(dbgs() << "Instruction with Invalid mapping: "; MI.dump(););
llvm_unreachable("missing fast rule for MI");
}
default:
llvm_unreachable("ID not supported");
}
}
}
void RegBankLegalizeHelper::applyMappingSrc(
MachineInstr &MI, unsigned &OpIdx,
const SmallVectorImpl<RegBankLLTMappingApplyID> &MethodIDs,
SmallSet<Register, 4> &SgprWaterfallOperandRegs) {
for (unsigned i = 0; i < MethodIDs.size(); ++OpIdx, ++i) {
if (MethodIDs[i] == None || MethodIDs[i] == IntrId || MethodIDs[i] == Imm)
continue;
MachineOperand &Op = MI.getOperand(OpIdx);
Register Reg = Op.getReg();
LLT Ty = MRI.getType(Reg);
const RegisterBank *RB = MRI.getRegBank(Reg);
switch (MethodIDs[i]) {
case Vcc: {
assert(Ty == S1);
assert(RB == VccRB || RB == SgprRB);
if (RB == SgprRB) {
auto Aext = B.buildAnyExt(SgprRB_S32, Reg);
auto CopyVcc_Scc =
B.buildInstr(AMDGPU::G_AMDGPU_COPY_VCC_SCC, {VccRB_S1}, {Aext});
Op.setReg(CopyVcc_Scc.getReg(0));
}
break;
}
// sgpr scalars, pointers and vectors
case Sgpr16:
case Sgpr32:
case Sgpr64:
case Sgpr128:
case SgprP1:
case SgprP3:
case SgprP4:
case SgprP5:
case SgprV2S16:
case SgprV2S32:
case SgprV4S32: {
assert(Ty == getTyFromID(MethodIDs[i]));
assert(RB == getRegBankFromID(MethodIDs[i]));
break;
}
// sgpr B-types
case SgprB32:
case SgprB64:
case SgprB96:
case SgprB128:
case SgprB256:
case SgprB512:
case SgprPtr32:
case SgprPtr64:
case SgprPtr128: {
assert(Ty == getBTyFromID(MethodIDs[i], Ty));
assert(RB == getRegBankFromID(MethodIDs[i]));
break;
}
// vgpr scalars, pointers and vectors
case Vgpr16:
case Vgpr32:
case Vgpr64:
case Vgpr128:
case VgprP0:
case VgprP1:
case VgprP3:
case VgprP4:
case VgprP5:
case VgprV2S16:
case VgprV2S32:
case VgprV4S32: {
assert(Ty == getTyFromID(MethodIDs[i]));
if (RB != VgprRB) {
auto CopyToVgpr = B.buildCopy({VgprRB, Ty}, Reg);
Op.setReg(CopyToVgpr.getReg(0));
}
break;
}
// vgpr B-types
case VgprB32:
case VgprB64:
case VgprB96:
case VgprB128:
case VgprB256:
case VgprB512:
case VgprPtr32:
case VgprPtr64:
case VgprPtr128: {
assert(Ty == getBTyFromID(MethodIDs[i], Ty));
if (RB != VgprRB) {
auto CopyToVgpr = B.buildCopy({VgprRB, Ty}, Reg);
Op.setReg(CopyToVgpr.getReg(0));
}
break;
}
// sgpr and vgpr scalars with extend
case Sgpr32AExt: {
// Note: this ext allows S1, and it is meant to be combined away.
assert(Ty.getSizeInBits() < 32);
assert(RB == SgprRB);
auto Aext = B.buildAnyExt(SgprRB_S32, Reg);
Op.setReg(Aext.getReg(0));
break;
}
case Sgpr32AExtBoolInReg: {
// Note: this ext allows S1, and it is meant to be combined away.
assert(Ty.getSizeInBits() == 1);
assert(RB == SgprRB);
auto Aext = B.buildAnyExt(SgprRB_S32, Reg);
// Zext SgprS1 is not legal, make AND with 1 instead. This instruction is
// most of times meant to be combined away in AMDGPURegBankCombiner.
auto Cst1 = B.buildConstant(SgprRB_S32, 1);
auto BoolInReg = B.buildAnd(SgprRB_S32, Aext, Cst1);
Op.setReg(BoolInReg.getReg(0));
break;
}
case Sgpr32SExt: {
assert(1 < Ty.getSizeInBits() && Ty.getSizeInBits() < 32);
assert(RB == SgprRB);
auto Sext = B.buildSExt(SgprRB_S32, Reg);
Op.setReg(Sext.getReg(0));
break;
}
case Sgpr32ZExt: {
assert(1 < Ty.getSizeInBits() && Ty.getSizeInBits() < 32);
assert(RB == SgprRB);
auto Zext = B.buildZExt({SgprRB, S32}, Reg);
Op.setReg(Zext.getReg(0));
break;
}
case Vgpr32SExt: {
// Note this ext allows S1, and it is meant to be combined away.
assert(Ty.getSizeInBits() < 32);
assert(RB == VgprRB);
auto Sext = B.buildSExt({VgprRB, S32}, Reg);
Op.setReg(Sext.getReg(0));
break;
}
case Vgpr32ZExt: {
// Note this ext allows S1, and it is meant to be combined away.
assert(Ty.getSizeInBits() < 32);
assert(RB == VgprRB);
auto Zext = B.buildZExt({VgprRB, S32}, Reg);
Op.setReg(Zext.getReg(0));
break;
}
default:
llvm_unreachable("ID not supported");
}
}
}
void RegBankLegalizeHelper::applyMappingPHI(MachineInstr &MI) {
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
if (Ty == LLT::scalar(1) && MUI.isUniform(Dst)) {
B.setInsertPt(*MI.getParent(), MI.getParent()->getFirstNonPHI());
Register NewDst = MRI.createVirtualRegister(SgprRB_S32);
MI.getOperand(0).setReg(NewDst);
B.buildTrunc(Dst, NewDst);
for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
Register UseReg = MI.getOperand(i).getReg();
auto DefMI = MRI.getVRegDef(UseReg)->getIterator();
MachineBasicBlock *DefMBB = DefMI->getParent();
B.setInsertPt(*DefMBB, DefMBB->SkipPHIsAndLabels(std::next(DefMI)));
auto NewUse = B.buildAnyExt(SgprRB_S32, UseReg);
MI.getOperand(i).setReg(NewUse.getReg(0));
}
return;
}
// ALL divergent i1 phis should be already lowered and inst-selected into PHI
// with sgpr reg class and S1 LLT.
// Note: this includes divergent phis that don't require lowering.
if (Ty == LLT::scalar(1) && MUI.isDivergent(Dst)) {
LLVM_DEBUG(dbgs() << "Divergent S1 G_PHI: "; MI.dump(););
llvm_unreachable("Make sure to run AMDGPUGlobalISelDivergenceLowering "
"before RegBankLegalize to lower lane mask(vcc) phis");
}
// We accept all types that can fit in some register class.
// Uniform G_PHIs have all sgpr registers.
// Divergent G_PHIs have vgpr dst but inputs can be sgpr or vgpr.
if (Ty == LLT::scalar(32) || Ty == LLT::pointer(1, 64) ||
Ty == LLT::pointer(4, 64)) {
return;
}
LLVM_DEBUG(dbgs() << "G_PHI not handled: "; MI.dump(););
llvm_unreachable("type not supported");
}
[[maybe_unused]] static bool verifyRegBankOnOperands(MachineInstr &MI,
const RegisterBank *RB,
MachineRegisterInfo &MRI,
unsigned StartOpIdx,
unsigned EndOpIdx) {
for (unsigned i = StartOpIdx; i <= EndOpIdx; ++i) {
if (MRI.getRegBankOrNull(MI.getOperand(i).getReg()) != RB)
return false;
}
return true;
}
void RegBankLegalizeHelper::applyMappingTrivial(MachineInstr &MI) {
const RegisterBank *RB = MRI.getRegBank(MI.getOperand(0).getReg());
// Put RB on all registers
unsigned NumDefs = MI.getNumDefs();
unsigned NumOperands = MI.getNumOperands();
assert(verifyRegBankOnOperands(MI, RB, MRI, 0, NumDefs - 1));
if (RB == SgprRB)
assert(verifyRegBankOnOperands(MI, RB, MRI, NumDefs, NumOperands - 1));
if (RB == VgprRB) {
B.setInstr(MI);
for (unsigned i = NumDefs; i < NumOperands; ++i) {
Register Reg = MI.getOperand(i).getReg();
if (MRI.getRegBank(Reg) != RB) {
auto Copy = B.buildCopy({VgprRB, MRI.getType(Reg)}, Reg);
MI.getOperand(i).setReg(Copy.getReg(0));
}
}
}
}
|