1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
//===- GCNVOPDUtils.cpp - GCN VOPD Utils ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file contains the AMDGPU DAG scheduling
/// mutation to pair VOPD instructions back to back. It also contains
// subroutines useful in the creation of VOPD instructions
//
//===----------------------------------------------------------------------===//
#include "GCNVOPDUtils.h"
#include "AMDGPUSubtarget.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MacroFusion.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDAGMutation.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/MC/MCInst.h"
using namespace llvm;
#define DEBUG_TYPE "gcn-vopd-utils"
bool llvm::checkVOPDRegConstraints(const SIInstrInfo &TII,
const MachineInstr &FirstMI,
const MachineInstr &SecondMI, bool IsVOPD3) {
namespace VOPD = AMDGPU::VOPD;
const MachineFunction *MF = FirstMI.getMF();
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
if (IsVOPD3 && !ST.hasVOPD3())
return false;
if (!IsVOPD3 && (TII.isVOP3(FirstMI) || TII.isVOP3(SecondMI)))
return false;
if (TII.isDPP(FirstMI) || TII.isDPP(SecondMI))
return false;
const SIRegisterInfo *TRI = dyn_cast<SIRegisterInfo>(ST.getRegisterInfo());
const MachineRegisterInfo &MRI = MF->getRegInfo();
// Literals also count against scalar bus limit
SmallVector<const MachineOperand *> UniqueLiterals;
auto addLiteral = [&](const MachineOperand &Op) {
for (auto &Literal : UniqueLiterals) {
if (Literal->isIdenticalTo(Op))
return;
}
UniqueLiterals.push_back(&Op);
};
SmallVector<Register> UniqueScalarRegs;
assert([&]() -> bool {
for (auto MII = MachineBasicBlock::const_iterator(&FirstMI);
MII != FirstMI.getParent()->instr_end(); ++MII) {
if (&*MII == &SecondMI)
return true;
}
return false;
}() && "Expected FirstMI to precede SecondMI");
// Cannot pair dependent instructions
for (const auto &Use : SecondMI.uses())
if (Use.isReg() && FirstMI.modifiesRegister(Use.getReg(), TRI))
return false;
auto getVRegIdx = [&](unsigned OpcodeIdx, unsigned OperandIdx) {
const MachineInstr &MI = (OpcodeIdx == VOPD::X) ? FirstMI : SecondMI;
const MachineOperand &Operand = MI.getOperand(OperandIdx);
if (Operand.isReg() && TRI->isVectorRegister(MRI, Operand.getReg()))
return Operand.getReg();
return Register();
};
auto InstInfo =
AMDGPU::getVOPDInstInfo(FirstMI.getDesc(), SecondMI.getDesc());
for (auto CompIdx : VOPD::COMPONENTS) {
const MachineInstr &MI = (CompIdx == VOPD::X) ? FirstMI : SecondMI;
const MachineOperand &Src0 = *TII.getNamedOperand(MI, AMDGPU::OpName::src0);
if (Src0.isReg()) {
if (!TRI->isVectorRegister(MRI, Src0.getReg())) {
if (!is_contained(UniqueScalarRegs, Src0.getReg()))
UniqueScalarRegs.push_back(Src0.getReg());
}
} else if (!TII.isInlineConstant(Src0)) {
if (IsVOPD3)
return false;
addLiteral(Src0);
}
if (InstInfo[CompIdx].hasMandatoryLiteral()) {
if (IsVOPD3)
return false;
auto CompOprIdx = InstInfo[CompIdx].getMandatoryLiteralCompOperandIndex();
addLiteral(MI.getOperand(CompOprIdx));
}
if (MI.getDesc().hasImplicitUseOfPhysReg(AMDGPU::VCC))
UniqueScalarRegs.push_back(AMDGPU::VCC_LO);
if (IsVOPD3) {
for (auto OpName : {AMDGPU::OpName::src1, AMDGPU::OpName::src2}) {
const MachineOperand *Src = TII.getNamedOperand(MI, OpName);
if (!Src)
continue;
if (OpName == AMDGPU::OpName::src2) {
if (AMDGPU::hasNamedOperand(MI.getOpcode(), AMDGPU::OpName::bitop3))
continue;
if (MI.getOpcode() == AMDGPU::V_CNDMASK_B32_e64) {
UniqueScalarRegs.push_back(Src->getReg());
continue;
}
}
if (!Src->isReg() || !TRI->isVGPR(MRI, Src->getReg()))
return false;
}
for (auto OpName : {AMDGPU::OpName::clamp, AMDGPU::OpName::omod,
AMDGPU::OpName::op_sel}) {
if (TII.hasModifiersSet(MI, OpName))
return false;
}
// Neg is allowed, other modifiers are not. NB: even though sext has the
// same value as neg, there are no combinable instructions with sext.
for (auto OpName :
{AMDGPU::OpName::src0_modifiers, AMDGPU::OpName::src1_modifiers,
AMDGPU::OpName::src2_modifiers}) {
const MachineOperand *Mods = TII.getNamedOperand(MI, OpName);
if (Mods && (Mods->getImm() & ~SISrcMods::NEG))
return false;
}
}
}
if (UniqueLiterals.size() > 1)
return false;
if ((UniqueLiterals.size() + UniqueScalarRegs.size()) > 2)
return false;
// On GFX12+ if both OpX and OpY are V_MOV_B32 then OPY uses SRC2
// source-cache.
bool SkipSrc = ST.getGeneration() >= AMDGPUSubtarget::GFX12 &&
FirstMI.getOpcode() == AMDGPU::V_MOV_B32_e32 &&
SecondMI.getOpcode() == AMDGPU::V_MOV_B32_e32;
bool AllowSameVGPR = ST.hasGFX1250Insts();
if (InstInfo.hasInvalidOperand(getVRegIdx, *TRI, SkipSrc, AllowSameVGPR,
IsVOPD3))
return false;
if (IsVOPD3) {
// BITOP3 can be converted to DUAL_BITOP2 only if src2 is zero.
if (AMDGPU::hasNamedOperand(SecondMI.getOpcode(), AMDGPU::OpName::bitop3)) {
const MachineOperand &Src2 =
*TII.getNamedOperand(SecondMI, AMDGPU::OpName::src2);
if (!Src2.isImm() || Src2.getImm())
return false;
}
if (AMDGPU::hasNamedOperand(FirstMI.getOpcode(), AMDGPU::OpName::bitop3)) {
const MachineOperand &Src2 =
*TII.getNamedOperand(FirstMI, AMDGPU::OpName::src2);
if (!Src2.isImm() || Src2.getImm())
return false;
}
}
LLVM_DEBUG(dbgs() << "VOPD Reg Constraints Passed\n\tX: " << FirstMI
<< "\n\tY: " << SecondMI << "\n");
return true;
}
/// Check if the instr pair, FirstMI and SecondMI, should be scheduled
/// together. Given SecondMI, when FirstMI is unspecified, then check if
/// SecondMI may be part of a fused pair at all.
static bool shouldScheduleVOPDAdjacent(const TargetInstrInfo &TII,
const TargetSubtargetInfo &TSI,
const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
const SIInstrInfo &STII = static_cast<const SIInstrInfo &>(TII);
const GCNSubtarget &ST = STII.getSubtarget();
unsigned EncodingFamily = AMDGPU::getVOPDEncodingFamily(ST);
unsigned Opc2 = SecondMI.getOpcode();
const auto checkVOPD = [&](bool VOPD3) -> bool {
auto SecondCanBeVOPD = AMDGPU::getCanBeVOPD(Opc2, EncodingFamily, VOPD3);
// One instruction case
if (!FirstMI)
return SecondCanBeVOPD.Y || SecondCanBeVOPD.X;
unsigned Opc = FirstMI->getOpcode();
auto FirstCanBeVOPD = AMDGPU::getCanBeVOPD(Opc, EncodingFamily, VOPD3);
if (!((FirstCanBeVOPD.X && SecondCanBeVOPD.Y) ||
(FirstCanBeVOPD.Y && SecondCanBeVOPD.X)))
return false;
return checkVOPDRegConstraints(STII, *FirstMI, SecondMI, VOPD3);
};
return checkVOPD(false) || (ST.hasVOPD3() && checkVOPD(true));
}
namespace {
/// Adapts design from MacroFusion
/// Puts valid candidate instructions back-to-back so they can easily
/// be turned into VOPD instructions
/// Greedily pairs instruction candidates. O(n^2) algorithm.
struct VOPDPairingMutation : ScheduleDAGMutation {
MacroFusionPredTy shouldScheduleAdjacent; // NOLINT: function pointer
VOPDPairingMutation(
MacroFusionPredTy shouldScheduleAdjacent) // NOLINT: function pointer
: shouldScheduleAdjacent(shouldScheduleAdjacent) {}
void apply(ScheduleDAGInstrs *DAG) override {
const TargetInstrInfo &TII = *DAG->TII;
const GCNSubtarget &ST = DAG->MF.getSubtarget<GCNSubtarget>();
if (!AMDGPU::hasVOPD(ST) || !ST.isWave32()) {
LLVM_DEBUG(dbgs() << "Target does not support VOPDPairingMutation\n");
return;
}
std::vector<SUnit>::iterator ISUI, JSUI;
for (ISUI = DAG->SUnits.begin(); ISUI != DAG->SUnits.end(); ++ISUI) {
const MachineInstr *IMI = ISUI->getInstr();
if (!shouldScheduleAdjacent(TII, ST, nullptr, *IMI))
continue;
if (!hasLessThanNumFused(*ISUI, 2))
continue;
for (JSUI = ISUI + 1; JSUI != DAG->SUnits.end(); ++JSUI) {
if (JSUI->isBoundaryNode())
continue;
const MachineInstr *JMI = JSUI->getInstr();
if (!hasLessThanNumFused(*JSUI, 2) ||
!shouldScheduleAdjacent(TII, ST, IMI, *JMI))
continue;
if (fuseInstructionPair(*DAG, *ISUI, *JSUI))
break;
}
}
LLVM_DEBUG(dbgs() << "Completed VOPDPairingMutation\n");
}
};
} // namespace
std::unique_ptr<ScheduleDAGMutation> llvm::createVOPDPairingMutation() {
return std::make_unique<VOPDPairingMutation>(shouldScheduleVOPDAdjacent);
}
|